函数的性质(单调,奇偶性)(3.25)
- 格式:doc
- 大小:155.00 KB
- 文档页数:3
函数的单调性、奇偶性、对称性、周期性湖南祁阳四中 何双桥整理一、函数的单调性1.单调性的定义一般地,设函数()f x 的定义域为I :如果对于定义域I 内的某个区间D 上的任意两个自变量值1x 、2x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数,区间D 我们称为函数()f x 的单调增区间;如果对于定义域I 内的某个区间D 上的任意两个自变量值1x 、2x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数,区间D 我们称为函数()f x 的单调减区间。
2.单调函数与严格单调函数设()f x 为定义在I 上的函数,若对任何12,x x I ∈,当12x x <时,总有(ⅰ) )()(21x x f f ≤,则称()f x 为I 上的增函数,特别当且仅当严格不等式12()()f x f x <成立时称()f x 为I 上的严格单调递增函数。
(ⅱ) )()(21x x f f ≥,则称()f x 为I 上的减函数,特别当且仅当严格不等式12()()f x f x >成立时称()f x 为I 上的严格单调递减函数。
2.函数单调的充要条件★若()f x 为区间I 上的单调递增函数,1x 、2x 为区间内两任意值,那么有:1212()()0f f x x x x ->-或1212)[()()]0f f x x x x -->( ★若()f x 为区间I 上的单调递减函数,1x 、2x 为区间内两任意值,那么有:1212()()0f f x x x x -<-或1212)[()()]0f f x x x x --<( 3.函数单调性的判断(证明)(1)作差法(定义法)(2)作商法4.复合函数的单调性的判定对于函数()y f u =和()u g x =,如果函数()u g x =在区间(,)a b 上具有单调性,当(),x a b ∈时(),u m n ∈,且函数()y f u =在区间(,)m n 上也具有单调性,则复合函数(())y f g x =在区间(),a b 具有单调性。
函数的奇偶性与单调性函数的奇偶性与单调性是数学中的重要概念,它们能够帮助我们更好地理解和分析函数的特征和行为。
本文将介绍函数的奇偶性和单调性的基本概念,并探讨二者之间的关系。
一、函数的奇偶性在数学中,函数的奇偶性是指函数在对称轴上的性质。
一个函数可以是奇函数或偶函数,或者既不是奇函数也不是偶函数。
1. 奇函数如果对于函数f(x),对于任意x,有f(-x) = -f(x),则称该函数为奇函数。
简单来说,奇函数的特点是关于原点对称,即函数图像关于原点对称。
奇函数的典型例子是正弦函数sin(x)和正切函数tan(x)等:- sin(-x) = -sin(x)- tan(-x) = -tan(x)2. 偶函数如果对于函数f(x),对于任意x,有f(-x) = f(x),则称该函数为偶函数。
简单来说,偶函数的特点是关于y轴对称,即函数图像关于y轴对称。
偶函数的典型例子是余弦函数cos(x)和双曲余弦函数cosh(x)等:- cos(-x) = cos(x)- cosh(-x) = cosh(x)3. 既不是奇函数也不是偶函数对于一些函数,既不满足奇函数的特性,也不满足偶函数的特性,此时我们称该函数为既不是奇函数也不是偶函数。
二、函数的单调性函数的单调性是指函数在定义域上的取值变化趋势。
一个函数可以是单调递增的、单调递减的,或者既不是单调递增也不是单调递减。
1. 单调递增如果对于函数f(x),对于任意x1和x2,当x1 < x2时,有f(x1) ≤ f(x2),则称该函数在定义域上是单调递增的。
单调递增函数的典型例子是线性函数y = kx (k > 0)和指数函数y = a^x (a > 1)等。
2. 单调递减如果对于函数f(x),对于任意x1和x2,当x1 < x2时,有f(x1) ≥ f(x2),则称该函数在定义域上是单调递减的。
单调递减函数的典型例子是线性函数y = kx (k < 0)和指数函数y = a^x (0 < a < 1)等。
〔一〕函数单调性 1.增函数、减函数如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数; 如果对于定义域I 内某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数. 注意:求函数的单调区间,必须先求函数的定义域. 2、增、减函数的性质:增函数: 12x x <⇔12()()f x f x < 减函数: 12x x <⇔12()()f x f x < 式子的变形:设[]2121,,x x b a x x ≠∈⋅那么 []1212()()()0x x f x f x -->⇔[]ba x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x xf x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. 3、判断函数单调性的方法步骤:利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤:1)、取值: 设任意两个实数12,x x 有, 12,x x ∈D ,且12x x <;2)、作差:)()(21x f x f -;3)、变形:通常方法:因式分解;配方; 分母有理化; 4)、定号:即判断差)()(21x f x f -的正负;5)、下结论:即指出函数f(x)在给定的区间D 上的单调性. 取值→作差→变形→定号→下结论例:证明函数 在R 上是增函数.xx x f +=3)(一些重要函数的单调性:1、一次函数的图象y=kx+b 的单调性:(1)当k>0时,函数在R 上是增函数 〔2〕当k<0时,函数在R 上是减函数 2、反比例函数的图象)0(≠=k xky 的单调性: 〔1〕当k>0时,函数在()()+∞∞-,0,0,上是减函数 〔2〕当k<0时,函数在()()+∞∞-,0,0,上是增函数 3、二次函数的图象)0(2≠++=a c bx ax y 的单调性〔1〕当a>0时,函数在⎪⎭⎫ ⎝⎛-∞-a b 2,上是减函数, 在⎪⎭⎫⎝⎛+∞-,2a b 上是增函数 〔2〕当a<0时,函数在⎪⎭⎫ ⎝⎛-∞-a b 2,上是增函数,在⎪⎭⎫⎝⎛+∞-,2a b 上是减函数 例题:偶函数()f x 在区间[0,)+∞单调增加,那么满足(21)f x -<1()3f 的x 取值X 围是: ()变式:二次函数的根本性质例1、函数2()2f x x t x =-+在[1,2]上是单调递增函数,那么实数t的取值X 围是_________二、两个函数和差乘除单调性和复合函数的单调性1、如果函数f(x)在区间D 上是增〔减〕函数,函数g(x)在区间D 上是增(减)函数;函数F(x)=f(x)+g(x)在D 上为增(减)函数。
函数单调性与奇偶性1. 函数的单调性在数学中,函数的单调性是指函数在定义域上的增减性质。
具体地说,一个函数被称为是递增的(或非递减的),如果对于任意的 x1 和 x2(x1 < x2)都满足f(x1) <= f(x2);一个函数被称为是递减的(或非递增的),如果对于任意的 x1 和x2(x1 < x2)都满足 f(x1) >= f(x2);一个函数被称为是严格递增的,如果对于任意的 x1 和 x2(x1 < x2)都满足 f(x1) < f(x2);一个函数被称为是严格递减的,如果对于任意的 x1 和 x2(x1 < x2)都满足 f(x1) > f(x2)。
函数的单调性对于函数图像的形状有着重要的影响。
当一个函数递增时,其图像会从左下方向右上方倾斜;当一个函数递减时,其图像会从左上方向右下方倾斜。
严格递增和严格递减是指函数图像不会出现水平的平行线段。
2. 函数的奇偶性函数的奇偶性描述了函数图像关于坐标轴的对称性。
具体地说,一个函数被称为是奇函数,如果对于任意的 x,都满足 f(-x) = -f(x);一个函数被称为是偶函数,如果对于任意的 x,都满足 f(-x) = f(x)。
此外,如果一个函数既不是奇函数也不是偶函数,则被称为是既非奇也非偶函数。
奇函数的图像关于原点对称,即如果点 (x, y) 在函数图像上,则点 (-x, -y) 也在函数图像上;偶函数的图像关于 y 轴对称,即如果点 (x, y) 在函数图像上,则点 (-x, y) 也在函数图像上。
既非奇也非偶函数的图像不具备对称性。
3. 函数单调性与奇偶性的关系对于一个函数而言,其单调性与奇偶性有一定的关系。
如果一个函数是奇函数,则它可能是严格递增的或严格递减的;如果一个函数是偶函数,则它可能是递增的或递减的。
但需要注意的是,一个函数的单调性并不决定它的奇偶性,也就是说,递增(或递减)函数可以是奇函数、偶函数或既非奇也非偶函数。
专题04 函数的基本性质(单调性、奇偶性、周期性、对称性)知识点1 函数的单调性 1、单调函数的定义设函数f (x )的定义域为I.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x , 当21x x <时,都有)()(21x f x f <,那么就说函数f(x)在区间D 上是单调递增函数。
当21x x <时,都有)()(21x f x f >,那么就说函数f(x)在区间D 上是单调递减函数。
2、单调性的图形趋势(从左往右)上升趋势 下降趋势3、函数的单调区间若函数y =f(x)在区间D 上是增函数或减函数,则称函数y =f(x)在这一区间上具有(严格的)单调性,区间D 叫做y =f(x)的单调区间. 4、单调性定义的等价形式:(1)函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<-x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x f x f x x .(2)函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>-x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x f x f x x .5、定义法证明函数单调性的步骤①取值:设1x ,2x 为该区间内任意的两个值,且12x x <②作差变形:做差()()12f x f x -,并通过通分、因式分解、配方、有理化等方法,向有利于判断差值符号的方向变形③定号:确定差值的符号,当符号不确定时,可以分类讨论 ④判断:根据定义做出结论。
函数的单调性和奇偶性1.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数); 注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2)(2)单调区间:如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
例1、如下图是定义在闭区间[-5,5]上的函数)(x f y =的图象,根据图象说出)(x f y =的单调区间,以及函数)(x f y =的最值。
说明:两个单调区间不能用“ ”连接。
(3)利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f (x 1)-f (x 2); ○3 变形(通常是因式分解、配方、有理化); ○4 定号(即判断差f (x 1)-f (x 2)的正负);○5 下结论(即指出函数f (x )在给定的区间D 上的单调性)。
例2:利用函数单调性的定义证明:(1) 1()f x x x=+在区间)0,(-∞上是单调增函数; (2) ()f x x =-在定义域上是减函数。
(4)判断函数单调性的方法:图像法、定义法、利用已知函数的单调性、复合函数法(同增异减) 例3:讨论函数f (x )=21++x ax (a ≠21)在(-2,+∞)上的单调性.531-2-5xOy(5)简单性质①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数。
函数的性质(奇偶性、单调性、周期性、对称性)“定义域优先”的思想是研究函数的前提,在求值域、奇偶性、单调性、周期性、换元时易忽略定义域,所以必须先考虑函数的定义域,离开函数的定义域去研究函数的性质没有任何意义。
1. 奇偶性奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数; ②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;③f(-x)÷f(x)=1是偶;f(x)÷f(-x)=-1为奇函数. (1)若定义域关于原点对称(2)若定义域不关于原点对称 非奇非偶 例如:3x y =在)1,1[-上不是奇函数常用性质:1.0)(=x f 是既奇又偶函数;2.奇函数若在0=x 处有定义,则必有0)0(=f ; 3.偶函数满足)()()(x f x f x f =-=;4.奇函数图象关于原点对称,偶函数图象关于y 轴对称;5.0)(=x f 除外的所有函数的奇偶性满足:(1)奇函数±奇函数=奇函数 偶函数±偶函数=偶函数 奇函数±偶函数=非奇非偶(2) 奇函数×奇函数=偶函数 偶函数×偶函数=偶函数 奇函数×偶函数=奇函数 6.任何函数)(x f 可以写成一个奇函数2)()()(x f x f x --=ϕ和一个偶函数2)()()(x f x f x -+=ψ的和。
2. 单调性 定义:函数定义域为A ,区间,若对任意且①总有则称在区间M 上单调递增②总有则称在区间M 上单调递减应用:(一)常用定义法来证明一个函数的单调性一般步骤:(1)设值(2)作差(3)变形(4)定号(5)结论 (二)求函数的单调区间定义法、图象法、复合函数法、导数法(以后学) 注:常用结论(1) 奇函数在对称区间上的单调性相同 (2) 偶函数在对称区间上的单调性相反 (3) 复合函数单调性-------同增异减3. 周期性(1)一般地对于函数,若存在一个不为0的常数T ,使得内一切值时总有,那么叫做周期函数,T 叫做周期,kT (T 的整数倍)也是它的周期(2)如果周期函数在所有周期中存在一个最小正数,就把这个最小正数叫最小正周期。
函数的性质——奇偶性、单调性、周期性知识点及题型归纳知识点精讲函数奇偶性定义设D D x x f y (),(∈=为关于原点对称的区间),如果对于任意的D x ∈,都有)()(x f x f =-,则称函数)(x f y =为偶函数;如果对于任意的D x ∈,都有)()(x f x f -=-,则称函数)(x f y =为奇函数. 性质(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数)(x f 是偶函数⇔函数)(x f 的图象关于y 轴对称;函数)(x f 是奇函数⇔函数)(x f 的图象关于原点中心对称.(3)若奇函数)(x f y =在0=x 处有意义,则有0)0(=f ;偶函数)(x f y =必满足|)(|)(x f x f =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数)(x f 的定义域关于原点对称,则函数)(x f 能表示成一个偶函数与一个奇函数的和的形式.记)]()([21)(x f x f x g -+=,)]()([21)(x f x f x h --=,则)()()(x h x g x f +=. (6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如)()(),()(),()(),()(x g x f x g x f x g x f x g x f ÷⨯-+.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇)(÷⨯奇=偶;奇)(÷⨯偶=奇;偶)(÷⨯偶=偶.(7)复合函数)]([x g f y =的奇偶性原来:内偶则偶,两奇为奇.函数的单调性定义一般地,设函数)(x f 的定义域为D ,区间D M ⊆,若对于任意的M x x ∈21,,当21x x <时,都有)()(21x f x f <(或)()(21x f x f >),则称函数)(x f 在区间M 上是单调递增(或单调递减)的,区间M 为函数)(x f 的一个增(减)区间.注:定义域中的M x x ∈21,具有任意性,证明时应特别指出“对于任意的M x x ∈21,”.单调性是针对定义域内的某个区间讨论的.设],[,21b a M x x =∈且21x x <,则)(0)()(2121x f x x x f x f ⇔>--在],[b a 上是增函数⇔过单调递增函数图象上任意不同两点的割线的斜率恒大于零⇔0)]()()[(2121>--x f x f x x .)(0)()(2121x f x x x f x f ⇔<--在],[b a 上是减函数⇔过单调递减函数图象上任意不同两点的割线的斜率恒小于零⇔0)]()()[(2121<--x f x f x x .性质对于运算函数有如下结论:在公共区间上,增+增=增;减+减=减;增-减=增;减-增=减.一般地,对于乘除运算没有必然的结论.如“增×增=增”不一定成立;“若)(x f 为增函数,则)(1x f 为减函数”也是错误的.如)0,()(≠∈=x R x x x f ,则xx f y 1)(1==为减函数是不正确的,但若具备如下特殊要求,则结论成立: 若)(x f 为增函数,且(0)(>x f 或)(x f 0<),则)(1x f 为减函数. 若)(x f 为减函数,且(0)(>x f 或)(x f 0<),则)(1x f 为增函数. 复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数. 函数的周期性定义设函数))((D x x f y ∈=,如存在非零常数T ,使得对任何D T x D x ∈+∈,,且)()(x f T x f =+,则函数)(x f 为周期函数,T 为函数的一个周期.若在所有的周期中存在一个最小的正数,则这个最小的正数叫做最小正周期.注:函数的周期性是函数的“整体”性质,即对于定义域D 中的任何一个x ,都满足)()(x f T x f =+;若)(x f 是周期函数,则其图像平移若干整数个周期后,能够完全重合.性质若)(x f 的周期为T ,则)0,(≠∈n Z n nT 也是函数)(x f 的周期,并且有)()(x f nT x f =+.有关函数周期性的重要结论(如表所示)()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x a f x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数函数的的对称性与周期性的关系 (1)若函数)(x f y =有两条对称轴)(,b a b x a x <==,则函数)(x f 是周期函数,且)(2a b T -=;(2)若函数)(x f y =的图象有两个对称中心))(,(),,(b a c b c a <,则函数)(x f y =是周期函数,且)(2a b T -=;(3)若函数)(x f y =有一条对称轴a x =和一个对称中心))(0,(b a b <,则函数)(x f y =是周期函数,且)(4a b T -=.题型归纳及思路提示题型1 函数的奇偶性思路提示:判断函数的奇偶性,常用以下两种方法:(1)定义法.①首先看定义域是否关于原点对称;②若)()(x f x f -=-,则函数)(x f 为奇函数;若)()(x f x f =-,则函数)(x f 为偶函数.若函数)(x f 的图像关于y 轴对称,则)(x f 为偶函数.【例2.25】判断下列函数的奇偶性.(1)3|3|36)(2-+-=x x x f ; (2)11)(22-+-=x x x f ; (3))1(log )(22++=x x x f ;(4)2|2|)1(log )(22---=x x x f ; (5)⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f .解析 (1)由3|3|36)(2-+-=x x x f 可知⎩⎨⎧-≠≠≤≤-⇒⎩⎨⎧≠-+≥-606603|3|0362x x x x x 且,故函数)(x f 的定义域为}6006|{≤<<<-x x x 或,定义域不关于原点对称,故)(x f 为非奇非偶函数.(2)由110101222±=⇒=⇒⎩⎨⎧≥-≥-x x x x ,故函数)(x f 的定义域为}1,1{-,关于原点对称,故0)(=x f ,所以)()()(x f x f x f -==-,所以函数)(x f 既是奇函数又是偶函数.(3)因为对任意实数x ,都有0||12≥+>++x x x x ,故定义域为R.且)()1(log 11(log )1(log )(222222x f x x x x x x x f -=++-=++=-+=-),故)(x f 为奇函数.(4)由100102|2|012<<<<-⇒⎩⎨⎧≠-->-x x x x 或,定义域关于原点对称. 此时,xx x x x f --=---=)1(log 2|2|)1(log )(2222,故有)()(x f x f -=-,所以)(x f 为奇函数. (5)当0<x 时,)()(,02x f x x x f x -=--=->-;当0>x 时,)()(,02x f x x x f x -=-=-<-.故)(x f 为奇函数.评注 利用定义判断函数的奇偶性要注意以下几点:①首先必须判断)(x f 的定义域是否关于原点对称.若不关于原点对称,则是非奇非偶函数.若关于原点对②有些函数必须根据定义域化简解析式后才可判断,否则可能无法判断或判断错误,如本例(2),若不化简可能误判为偶函数,而本例(4)可能误判为非奇非偶函数.③本例(3)若用奇偶性的等价形式,则01log )1(log )1(log )()(22222==+++-+=+-x x x x x f x f ,即)()(x f x f -=-,故)(x f 为奇函数,显然,等价形式的整理较定义法更为容易.这提醒我们,在函数解析式较复杂时,有时使用等价形式来判断奇偶性较为方便.变式1:判断下列函数的奇偶性.(1)xx x x f -+-=11)1()(; (2)24|3|3)(x x x f -+-=; (3)⎪⎩⎪⎨⎧>-≤≤--<+=)1(2)11(0)1(2)(x x x x x x f ;(4)|2||2|)(++-=x x x f .变式2:已知函数2lg )2lg()(2-++=x x x f ,试判断其奇偶性.【例2.26】已知函数),0()(2R x x xa x x f ∈≠+=,试判断其奇偶性. 分析 利用函数奇偶性的定义进行判断.解析 当0=a 时,2)(x x f =,满足)()(x f x f =-,故)(x f 为偶函数;当0≠a 时,xa x x f x a x x f -=-+=22)(,)(,假设)()(x f x f =-对任意R x ∈,0≠x 恒成立,则此时0=a ,与前提矛盾;假设)()(x f x f -=-对任意R x ∈,0≠x 恒成立,则此时022=x ,即0=x ,与条件定义域},0|{R x x x ∈≠矛盾.综上所述,当0=a 时,)(x f 为偶函数;当0≠a 时,函数)(x f 为非奇非偶函数.评注 ①函数)(x f 是奇函数⇔0)()(=-+x f x f ;函数)(x f 是偶函数0)()(=--⇔x f x f .奇偶函数②若要说明一个函数为非奇非偶函数,可以举一个反例.③本题的结论还可以借用运算函数的的奇偶性的规律获得,已知函数是一个由2x 与x a 通过加法法则运算得到的函数,而2x y =为偶函数,)0(≠=a x a y 为奇函数,故当0≠a 时,)(x f 为“偶+奇”形式,故为非奇非偶函数;当0=a 时,则2)(x x f =为偶函数.变式1:函数)()1221()(x f x F x ⋅-+=是偶函数,并且)(x f 不等于零,则)(x f 是( ) A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数变式2:对于函数R x x f y ∈=),(,“|)(|x f y =的图象关于y 轴对称”是“)(x f 是奇函数”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【例 2.27】定义在实数集上的函数)(x f ,对任意R y x ∈,都有)()(2)()(y f x f y x f y x f =-++,且0)0(≠f ,试判断)(x f 的奇偶性.分析 对于抽象函数的奇偶性判断通常利用赋值法得到)(x f 与)(x f -的关系.解析 由函数定义域为R 可知定义域关于原点对称.依题意可令0,0==y x ,得2)]0([2)0(2f f =,因为0)0(≠f ,所以1)0(=f .令0=x ,可得)(2)()(y f y f y f =-+,即)()(y f y f -=,所以)()(x f x f -=,故函数)(x f 为偶函数.评注 对于抽象函数奇偶性的判断,常通过赋值法(如令1,1,0-=x 等)凑成含有)(x f 与)(x f -的关系的式子,然后进行判断.变式1:已知函数)(x f 在R 上有定义,且对任意R y x ∈,都有)()()(y f x f y x f +=+,试判断)(x f 的奇偶性.变式2:若定义在R 上的函数)(x f 满足对任意R x x ∈21,有1)()()(2121++=+x f x f x x f ,则下列说法正确的是( )A.)(x f 是奇函数B.)(x f 是偶函数C.)(x f +1为奇函数D.)(x f +1为偶函数变式3:已知函数)(x f 在)1,1(-上有定义,且对任意)1,1(,-∈y x 都有)1()()(xyy x f y f x f ++=+,试判断函数)(x f 的奇偶性.变式4:已知)(x f ,)(x g 在R 上有定义,对任意的R y x ∈,,有)()()()()(y f x g y g x f y x f -=-,且0)1(≠f .(1)求证:)(x f 为奇函数;(2)若)2()1(f f =,求)1()1(-+g g 的值.【例 2.28】已知偶函数1)1()(23++-=mx x a x f 的定义域为),83(2m m m --,则=+a m 2______________.分析 定义域关于原点对称是奇函数或偶函数的必要条件.解析 因为)(x f 为偶函数,故其定义域必关于原点对称,所以0832=--m m ,且m m m <--832,解得4=m .由函数)(x f 为偶函数得3x 的系数为0,则01=-a ,即1=a ,故62=+a m .变式1:若函数))(12()(a x x x x f -+=为奇函数,则=a ( ) 21.A 32.B 43.C 1.D 变式2:若函数)2(log )(22a x x x f a ++=是奇函数,则=a _____________.变式3:若a x f x +-=121)(是奇函数,则=a _____________.变式4:函数k k k x f xx(212)(⋅+-=为常数)为其定义域上的奇函数,则=k ____________.变式5:函数)1)(11(log )(>--=a x kx x f a 为其定义域上的奇函数,则=k __________.【例2.29】已知函数)(x f 是定义在R 上的偶函数,当)0,(-∞∈x 时,4)(x x x f -=,则当),0(+∞∈x 时,)(x f =_______________.解析 当0>x 时,则44)()()(,0x x x x x f x --=---=-<-,因为)(x f 是偶函数,所以)(x f 4)(x x x f --=-=,故当),0(+∞∈x 时,4)(x x x f --=.评注 解此类题分三步:第一步将所求解析式自变量的范围转化为已知解析式中自变量的范围;第2步将转化后的自变量代入已知解析式;第3步利用函数的奇偶性求出解析式.变式1:已知函数)(x f 为R 上的奇函数,且当0>x 时,2)(x x x f -=,求函数)(x f 的解析式.【例2.30】已知)(x f 为定义域是关于原点对称区间上的函数,求证:)(x f 一定可以写成一个奇函数与一个偶函数之和的形式.分析 先设)(x f 能写成一个函数)(x g 和一个偶函数)(x h 之和,再利用奇偶函数的定义列方程组,解方程组即得.解析 先假设存在)()()(x h x g x f +=……………①其中)(x g 为奇函数,)(x h 是偶函数,则)()()()()(x h x g x h x g x f +-=-+-=-………②由①+②得,2)()()(x f x f x h -+=,由①-②得,2)()()(x f x f x g --=. 由此,我们得出结论,对定义域关于原点对称的函数)(x f ,都可以写成一个奇函数与一个偶函数之和.变式1:已知定义在R 上的奇函数)(x f 和偶函数)(x g 满足)1,0(2)()(≠>+-=+-a a a a x g x f x x .若a g =)2(,则)2(f =( )2.A 415.B 417.C 2.a D变式2:设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论正确的是( )A.|)(|)(x g x f +是偶函数 |)(|)(.x g x f B -是奇函数)(|)(|.x g x f C +是偶函数 )()(|.x g x f D -是奇函数【例2.31】函数)(1sin )(3R x x x x f ∈++=,若2)(=a f ,则)(a f -的值为( )3.A 0.B 1.-C 2.-D分析 函数1sin )(3++=x x x f 中x x y sin 3+=为奇函数,借助奇函数的性质求解.解析 令x x x g sin )(3+=,得1)()(+=x g x f ,依题意得,21)(=+a g ,所以1)(=a g .由)(x g y =为奇函数,故1)()(-=-=-a g a g ,所以01)()(=+-=-a g a f ,故选B.评注 本题中虽然函数整体没有奇偶性,但可利用局部的奇偶性求解,尤其是当)(x f 为奇函数时,0)()(=+-x f x f ,特别地0)()(max min =+x f x f .变式1:对于函数c bx x a x f ++=sin )((其中Z c R b a ∈∈,,),选取c b a ,,的一组计算)1(f 和)1(-f ,所得出的正确结果一定不可能是( )A.4和6B.3和1C.2和4D.1和2变式2:已知函数),(4sin )(3R b a x b ax x f ∈++=,5))10(lg(log 2=f ,则=))2(lg(lg f ( )A.5-B.5-C.3D.4变式3:设函数1sin )1()(22+++=x x x x f 的最大值为M ,最小值为m ,则.______=+n M题型2 函数的单调性(区间)思路提示判断函数的单调性一般有四种方法:定义法、图像法、复合函数单调性法和导数法.【例2.32】求证:函数)0()(>+=a xa x x f 在),[+∞a 上是增函数. 分析 利用函数单调性的定义来证明. 解析 设任意的两个实数),[,21+∞∈a x x 且21x x <,则有)1)()()()(2121212121x x a x x x a x a x x x f x f --=++-=-(.因为),[,21+∞∈a x x ,所以a x x >21,0,012121<->-x x x x a ,)()(0)()(2121x f x f x f x f <⇒<-,故)(x f 在),[+∞a 上是增函数. 评注 利用函数单调性的定义判定时,其步骤为:(1)取值;(2)作差比较;(3)定量;(4)判断.解题时注意所设的21,x x 在区间内须具有任意性.若否定函数单调性时,只要取两个特殊自变量说明不满足即可.变式1:已知函数)(x f 对任意R y x ∈,,满足2)()()(++=+y x f y f x f ,当0>x 时,2)(>x f ,求证:)(x f 在R 上是增函数.变式2:定义在R 上的函数0)0(),(≠=f x f y ,当0>x 时,1)(>x f ,且对任意的R b a ∈,,有)()()(b f a f b a f ⋅=+.(1)求证:1)0(=f ;(2)求证:对任意的R x ∈,恒有0)(>x f ;(3)证明:)(x f 是R 上的增函数;(4)若1)2()(2>-⋅x x f x f ,求x 的取值范围.【例2.33】设),(a -∞是函数5||42+-=x x y 的一个减区间,则实数a 的取值范围是( ) ),2.[+∞-A ]2,.(--∞B ),2.[+∞C ]2,.(-∞D分析 作出函数的图象,找出递减区间,从而确定a 的取值范围.解析 由5||42+-=x x y 得,)()(x f x f =-,知)(x f y =为偶函数,其图象关于y 轴对称.只要画出当0≥x 时的图象,然后作出其关于y 轴对称的图形即可得到0<x 部分的图象,如图所示.可知,若),(a -∞为函数)(x f 的减区间,则2-≤a .故选B.变式1:下列区间中,函数|)2ln(|)(x x f -=在其上为增函数的是( ) ]1,.(-∞A ]34,1.[-B )23,0.[C )2,1.[D变式2:(2012上海理7)已知函数a e x f a x ()(||-=为常数).若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是__________________.变式3:定义在R 上的函数)(x f 是偶函数,且)2()(x f x f -=,若)(x f 在区间]2,1[上是减函数,则)(x f ( )A.在区间]1,2[-上是增函数,在区间]4,3[上是减函数B.在区间]1,2[--上是增函数,在区间]4,3[上是减函数C.在区间]1,2[-上是减函数,在区间]4,3[上是增函数D.在区间]1,2[--上是减函数,在区间]4,3[上是增函数变式4:已知⎩⎨⎧≥<+-=)1(log )1(4)13()(x x x a x a x f a 是R 上的减函数,那么a 的取值范围是( ))1,0.(A )31,0.(B )31,71.[C )1,71.[D题型3 函数的周期性 思路提示(1))0(||)()(≠=⇒=+a a T x f a x f ;)(||)()(b a b a T b x f a x f ≠-=⇒+=+; (2))0(||2)()(≠=⇒-=+a a T x f a x f ; )(||2)()(b a b a T b x f a x f ≠-=⇒+-=+;)0,(||2)()(≠≠-=⇒=+⋅+c b a b a T c b x f a x f . (3))0(||6),2()()(≠=---=a a T a x f a x f x f . 【例2.34】已知函数)(x f 对任意实数x 都满足)(1)1(x f x f =+,若8)1(=f ,则=)2014(f ___________. 解析 1)(1(,)(1)1(=⋅+=+x f x f x f x f ),有1)2()1(=+⋅+x f x f ,所以)2()(+=x f x f ,故2=T ,所以81)1(1)0()2014(===f f f .变式1:函数)(x f 对任意实数x 都满足)(1)2(x f x f =+,若5)1(-=f ,则=))5((f f ____.【例 2.35】已知函数)(x f 满足),)(()()()(4,41)1(R y x y x f y x f y f x f f ∈-++==,则=)2010(f _____________.解析 令)1()1()()1()1()1()(4,1-++=⇒-++==x f x f x f x f x f f x f y)1()()1(--=+⇒x f x f x f ,6=T ,所以)0()2010(f f =,又令0,1==y x ,有)1()1()0()1(4f f f f +=,所以21)2010(,21)0(==f f .【例 2.36】已知函数)(x f 是定义在实数集R 上的不恒等于零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是( )A.0B.21C.1D.25分析 )(x f 为偶函数,有)()1()1(x f x x xf +=+,只能从x x =+1或者01=++x x 时入手. 解析当01=++x x 时,即21-=x 时,)21(21)21(21)21(21f f f =-=-,得0)25(,0)23(,0)21(===f f f ,故选A. 评注 本题也可以从另外一方面解答,先构造一个函数,当Z x ∉时,x x f x x f )(1)1(=++.令xx f x g )()(=,则1)1()1(++=+x x f x g .所以)()1(x g x g =+,1=T ,令21-=x ,得0)21(),21(21)21(21)21(21==-=-f f f f .因为)21(25(g g =),即021)21(25)25(==f f .故0)25(=f .变式1:已知a 为非零常数,R x ∈且)(1)(1)(x f x f a x f -+=+,试判断)(x f 的周期性.题型4 函数性质的综合 思路提示(1)奇偶性与单调性综合解题,尤其要重视利用偶函数(或轴对称函数)与单调性综合解不等式和比较大小.(2)奇偶性、单调性、周期性综合解题,尤其要注意对称性与周期性之间的关系,周期是两条对称轴(或对称中心)之间距离的2倍,是对称中心与对称轴之间距离的4倍.如函数)(x f 的图象关于点)0,(a 和点)0,(b 中心对称,可得)(||2b a b a T ≠-=.)2()(),2()(x b f x f x a f x f --=--=,所以)2()2(x b f x a f -=-,可得||2b a T -=.如函数)(x f 的图象关于直线a x =和直线b x =轴对称,可得)(||2b a b a T ≠-=.)2()(),2()(x b f x f x a f x f -=-=,所以)2()2(x b f x a f -=-,可得||2b a T -=.如函数)(x f 关于点)0,(a 中心对称,且关于直线b x =轴对称,可得)(||4b a b a T ≠-=.)2()(),2()(x b f x f x a f x f -=--=,所以)2()2(x b f x a f -=--,故)()44(x f x a b f =+-,||4b a T -=.【2.37】定义在R 上的偶函数)(x f 满足:对任意的)](0,(,2121x x x x ≠-∞∈,有0)]()()[(2121>--x f x f x x ,则当*N n ∈时,有( ))1()1()(.+<-<-n f n f n f A )1()()1(.+<-<-n f n f n f B )1()()1(.-<-<+n f n f n f C )()1()1(.n f n f n f D -<-<+ 分析 偶函数关于y 轴对称,关于y 轴对称的两部分图象单调性相反.解析 由]0,(,21-∞∈∀x x ,有0)]()()[(2121>--x f x f x x 可得]0,(-∞∈x 时,)(x f 单调递增,因为)(x f 为偶函数,所以当),0(+∞∈x 时,)(x f 单调递减,所以自变量绝对值越小,所对应的的函数值越大.因为110+<<-≤n n n ,所以)1()()()1(+>-=>-n f n f n f n f ,故选C.变式1:已知定义域为R 的函数)(x f 在区间),8(+∞上减函数,且函数)8(+=x f y 为偶函数,则( ) )7()6(.f f A > )7()6(.f f B > )9()7(.f f C > )10()7(.f f D >变式2:已知偶函数)(x f 在区间),0[+∞上单调递增,则满足)31()12(f x f <-的x 的取值范围是( ) )32,31.(A )32,31.[B )32,21.(C )32,21.[D变式3:设函数)(x f 是奇函数,并且在R 上为增函数,若20πθ≤≤时,0)1()sin (>-+m f m f θ恒成立,则实数m 的取值范围是( ))1,0.(A )0,.(-∞B )21,.(-∞C )1,.(-∞D变式4:设函数}{,1)3()(3n a x x x f -+-=是公差不为0的等差数列,14)(...)()(721=+++a f a f a f ,则=+++721...a a a ( )A. 0B. 7C. 14D. 21【例2.38】函数)(x f 的定义域为R ,若)1(+x f 与)1(-x f 都是奇函数,则( ) A.)(x f 是偶函数 B.)(x f 是奇函数 C.)2()(+=x f x f D.)2(+x f 是奇函数 分析 由奇偶性⇒对称性⇒周期性.解析 因为)1(+x f 为奇函数,所以)1()1(+-=+-x f x f ,故)0,1(为函数)(x f 的对称中心,由)1(-x f 为奇函数,同理)0,1(-也为函数)(x f 的对称中心,利用结论知函数)(x f 的周期为4,则)1()3(-=+x f x f ,所以)3(+x f 为奇函数.故选D.变式1:定义在R 上的偶函数)(x f 满足)()1(x f x f -=+,且在]0,1[-上单调递增,设)3(f a =,)2(),2(f c f b ==,则c b a ,,的大小关系是( )c b a A >>. b c a B >>. a c b C >>. a b c D >>.变式2:已知定义在R 上奇函数)(x f 满足)()4(x f x f -=-,且在区间]2,0[上是增函数,则( ) )80()11()25(.f f f A <<- )25()11()80(.-<<f f f B)25()80()11(.-<<f f f C )11()80()25(.f f f D <<-【例2.39】定义在R 上的函数)(x f 是奇函数,且是以2为周期的周期函数,则)7()4()1(f f f ++=( ) 1.-A 0.B 1.C 4.D 解析 因为)(x f 的T=2,且是定义在R上的奇函数,所以0)0(=f ,则0)1()0()1()7()4()1(=-++=++f f f f f f ,故选B.变式1:已知)(x f 是R 上最小正周期为2的周期函数,且当20<≤x 时,x x x f -=3)(,则函数)(x f 的图象在区间]6,0[上与x 轴的交点的个数为( ) A.6 B.7 C.8 D.9【例2.40】函数)(x f 的定义域为D ,若对任意的D x x ∈21,,当21x x <时,都有)()(21x f x f ≤,则称函数)(x f 在D 上为非减函数,设函数)(x f 在]1,0[上为非减函数,且满足以下3个条件:①0)0(=f ;②)(21)3(x f x f =;③)(1)1(x f x f -=-,则=+)81()31(f f ( ) 43.A 21.B 1.C 32.D解析 21)1(21)31(==f f ,也可得41)31(21)91(==f f ,由)(1)1(x f x f -=-可得21)21(=f ,所以41)21(21)61(==f f .因为当1021≤<≤x x 时都有)()(21x f x f ≤,所以可由618191<<得,)61()81()91(f f f ≤≤,即41)81(=f ,所以43)81()31(=+f f .故选A.变式1:定义在R 上的函数满足1)1()(,0)0(=-+=x f x f f ,)(21)3(x f x f =,且当1021≤<≤x x 时,)()(21x f x f ≤,则=)20101(f ___________.变式2:设)(x g 是定义在R 上,以1为周期的函数,若函数)()(x g x x f +=在区间]4,3[上的值域为]5,2[-,则)(x f 在区间]10,10[-上的值域为_____________.变式3:对于定义域为]1,0[的连续函数)(x f ,如果同时满足以下3个条件:①对任意的]1,0[∈x ,总有0)(≥x f ;②1)1(=f ;③若1,0,02121≤+≥≥x x x x ,都有)()()(2121x f x f x x f +≥+成立,则)(x f 为理想函数.(1)若函数为理想函数,求)(x f 的值域;(2)判断函数])1,0[(12)(∈-=x x g x是否为理想函数,并予以证明;(3)若函数)(x f 为理想函数,假定存在]1,0[0∈x ,使得]1,0[)(0∈x f ,且00))((x x f f =,求证:00)(x x f =.最有效训练题1.已知函数)32(log )(22--=x x x f ,现使)(x f 为减函数的区间是( ) )6,3.(A )0,1.(-B )2,1.(C )1,.(--∞D2.已知函数]3,2[,)(2-∈=x x x f ,如果存在实数]3,2[,21-∈x x ,使得对任意实数]3,2[-∈x ,都有)()()(21x f x f x f ≤≤,则||21x x -的值是( )A.0B.2C.3D.53.函数)(x f )(R x ∈的图象如图所示,则下列哪个区间是函数)10)((log )(<<=a x f x g a 的单调减区间( )]21,0.[A ),21[)0,.(+∞-∞ B ]1,.[a C ]1,.[+a a D4.已知函数⎩⎨⎧≥<-=)2()2()4()(x a x x a x f x在R 上单调递增,则a 的取值范围是( ) ]4,1.(A )4,2.(B )4,2.[C ),4.(+∞D5.函数)(x f 是以2为周期的偶函数,且当)1,0(∈x 时,12)(-=xx f ,则)12(log 2f 的值为( )31.A 34.B 2.C 11.D 6.设2)(3-+=x x x f ,若5)(,1)(-==b f a f ,则=+b a ( ) 2.-A 0.B 1.C 2.D7.设函数))(()(R x ae e x x f xx∈+=-是偶函数,则实数=a __________.8.(1)奇函数)(x f 的定义域为]5,5[-,若当]5,0[∈x 时,)(x f 的图象如图所示,则不等式0)(<x f 的解集是__________.(2)已知函数)(x f y =是R 上的偶函数,且在]0,(-∞上是减函数,若()(2)f a f ≥,则实数a 的取值范围是________.9.已知(),()f x g x 分别是定义在R 上的奇函数和偶函数,且2()()23f x g x x x +=++,则()()f x g x -=_________.10.已知函数||sin 1()||1x x f x x -+=+()x R ∈的最大值为M ,最小值为m ,则M m +的值为___________.11.设()f x 是定义在R 上的奇函数,且对任意实数x 恒有(2)()f x f x +=-.当[0,2]x ∈时,2()2f x x x =-.(1)求证: ()f x 是周期函数;(2)当[2,4]x ∈时,求()f x 的解析式;(3)计算(0)(1)(2)(2015)f f f f ++++.12.已知定义域为R 的函数1()41xf x a =++是奇函数.(1)求a 的值;(2)判断()f x 的单调性;(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.。
专题: 函数的性质(单调性、奇偶性)
一、目标要求:
1、单调性的理解及单调区间的写法:
2、判断函数单调性的方法:定义法、图像法、直接法、结论法。
3、函数单调性的应用:利用单调性比较大小、利用函数单调性求解析式中参数范围、利用单调性求函数值域或求函数最值、利用单调性解抽象不等式或方程。
4、复合函数的单调性:
5、函数最值的求法:配方法、换元法、判别式法、图形法、单调法。
6、函数按奇偶分类:
7、函数奇偶性的应用:
8、函数奇偶性与单调性的联系:
7、函数奇偶性的判断方法:定义法、图像法、直接法、结论法、分段函数奇偶性的判定、复合函数奇偶性的判定。
二、例题讲解:
例1:判断下列函数的奇偶性
(1)()(f x x =+ (2)()f x =22(0)
(0)x x x x x x ⎧+<⎨-+>⎩
例2、求证:1
()f x x x =+在[1,)+∞上是增函数。
例3、设函数()()()
x a x x x f ++=1为奇函数,求a 的值。
例4、求函数()62--=x x x f 的单调区间。
例5、求函数()x x x f -+=12 在[1,+∞)上的最大值。
三、变式练习:
1、已知()()x f x f -=4,x ∈R,当x>2时,()x f 为增函数,设a=()1f ,b=()4f ,c=()2-f 试确
定a,b,c 的大小关系.
2、已知二次函数622+-=ax x y 在(-∞,4]上是减函数,求实数a 的取值范围。
3、若函数()⎩⎨⎧〈-≥+=1
,11,12x ax x x x f 在R 上是单调增函数,求实数a 的取值范围。
4、已知函数()⎪⎩⎪⎨⎧〈-≥+=,0,40,422x x x x x x x f 若()
()a f a f 〉-22,求实数a 的范围。
5、已知()x f 为奇函数,()()()32,9=-+=g x f x g ,求()2f 的值。
四、巩固练习
1、(1) 函数y =x -|1-x|的单调增区间是_____;(2) 若2()21x f x a =-
+是奇函数,则a =___ 。
2、 定义在R 上的偶函数()f x 在[0,)+∞上为增函数,且1()03
f =,则()0f x >的解集是_____ 。
3、 已知()f x 为R 上的奇函数,当0x >时,2()1f x x x =++,则()f x 解析式为________ 。
4、已知偶函数f(x)在区间[0,+∞)上单调递增,则满足 (2f x f <的x 的取值范围是____ 。
5、 设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,求不等式f (x )+f (-x )x
>0的解集;
6、 已知函数()f x 在R 上是减函数,(0,2),(3,2)A B --是其图象上的两点,求不等式2()2f x -<<的解集;
7、 若函数2()(1)2f x ax a x =+++是定义域为[2,2]-的偶函数,求该函数的值域;
8、设定义在[2,2]-上的偶函数()f x 在区间[0,2]上单调递减,若(1)()f m f m -<,求实数m 的取值范围;。