Liouville and Toda Solitons in M-theory
- 格式:pdf
- 大小:149.60 KB
- 文档页数:12
2维声学黑洞与1维流体的对应研究杨晓焕;颜骏;陈海霖;余毅【摘要】The correspondence relationship between two-dimensional black holes and one-dimensional fluid is studied in this paper.The expression of acoustic metric is derived according to the hydromechanics equations,and we obtain some exact black hole solutions in two-dimensional dilaton gravity model.Moreover,the energy density ρ,speed ν and drive potential f in one-dimension fluid are calculated and the physical properties of these fluid parameters are also analyzed and discussed.%研究2维声学黑洞与1维流体的对应关系,在流体力学方程的基础上推导声学度规的表达式,获得了2维dilaton引力模型中的一些精确黑洞解.计算了1维流体中的能量密度ρ,速度ν和驱动势f,还分析和讨论了这些流体参量的物理性质.【期刊名称】《四川师范大学学报(自然科学版)》【年(卷),期】2016(039)006【总页数】7页(P875-881)【关键词】2维引力;声学黑洞;引力-流体对应【作者】杨晓焕;颜骏;陈海霖;余毅【作者单位】四川师范大学物理与电子工程学院, 四川成都 610066;四川师范大学物理与电子工程学院, 四川成都 610066;四川师范大学物理与电子工程学院, 四川成都 610066;四川师范大学物理与电子工程学院, 四川成都 610066【正文语种】中文【中图分类】O351.2高维时空中的引力方程难以求解,2维引力中的场方程相对简单,因此2维引力可以为研究高维空间中的广义相对论提供理想实验室.2维引力与理论物理中的弦理论和共形场论有密切关系,还与纯数学理论中的几何拓扑学和调和映照有一定的联系.近年来,2维引力作为一种Toy模型,有助于人们对4维引力模型及其量子化深人理解,因此对它的研究具有积极的理论意义.在20世纪80年代初,物理学家已开始着手研究2维引力及其相关的量子Liouville理论,分别在光锥规范、共形规范下深入研究了2维引力问题,并在矩阵模型的框架下获得了2维量子引力模型的一些精确解.这些解极大地丰富了人们对弦理论、共形场论甚至临界现象的进一步理解,因此,从各个不同侧面深入研究2维引力模型就显得非常必要了.2维引力的物理性质已经得到了充分研究[1-12].描述2维时空中黑洞的精确的共形场论是在WZW模型中发展起来的,2维dilation引力理论已经被广泛地应用于研究黑洞的蒸发问题.此外,2维高阶引力模型、2维引力的可积与可解性质已分别在共形规范和光锥规范下得到分析.另一方面,在平坦的2维时空中存在一种非线性标量场的作用模型,即sine-Gordon模型,这一模型中存在孤子解.因此,人们自然希望研究2维引力和sine-Gordon物质场的相互作用,通过CGHS模型的框架研究sine-Gordon物质场作用下的黑洞解.文献[13-16]发现了2维引力模型中的sine-Gordon孤子解和sinh-Gordon时空带解.由于天体物理中黑洞表面温度极低,其霍金辐射非常微弱,因此目前尚未观察到这一物理效应.另外,无论在早期宇宙残留物中寻找小型黑洞或者是在粒子物理对撞机中制造出微黑洞,在短期内这些探索的成功机率都很小.由于声波在不均匀流体中的传播性质和光波在弯曲空间中的传播性质非常相似,所以在流体力学实验中可较容易模拟黑洞的物理性质.流体力学的基础方程是连续性方程和Euler方程[17])ν]=F,式中,ρ为流体密度,ν是流体速度,F=-P,P是压力,F是压力P产生的力密度,这时流体假定没有粘滞性.根据速度矢量的关系式(1/2ν2)=(ν·)ν,引入速度式ν=-φ,那么Euler方程变为p)-).再定义h=p/ρ,那么Euler方程约化为在流体中当振动很小和速度很小时,那么流体中的压强和密度相对变化也很小,这时p和ρ可以表示为p=p0+p1,ρ=ρ0+ρ1,p0和ρ0分别代表流体中平衡密度和平衡压强,p1和ρ1表示围绕平衡的微小涨落.当涨落的二阶小量忽略后,那么线性化处理后的速度势所满足的波动方程为∂t2φ=c22φ,这里c表示声速.根据连续性方程(1)式得到∂t ρ1+·(ρ1ν0+ρ0ν1)=0.并且h(p)可展开为如果忽略流体的牛顿引力势和外力的驱动,那么只剩下流体压强产生的作用力,这时利用(7)式对Euler方程(4)进行线性化处理后得到对方程φ0)2=0,φ1=0.方程(9)式可以重新表示为这时有φ1+ν0·φ1),现将(11)式代入(6)式可以得到如下波动方程φ1+ν0·φ1))+·(-ρ0φ1+φ1+ν0·φ1))=0,这一二阶偏微分方程可以描述线性化标量势φ1的传播规律,即这一方程确定了声学扰动的传播形式.为了将流体方程和引力理论联系起来首先定义如下的局域声速再构造一个4×4矩阵根据(13)式和(14)式那么波动方程(12)式可以重新写成这时定义弯曲时空上的达朗贝尔算符为式中这里g=det(gμν)是度规的行列式,并且有根据矩阵(14)式的行列式可以得到因此有所以得到了如下形式的逆声学度规那么声学度规应为这时声学度规的间隔形式可以表示为].2维dilaton引力模型的作用量[18-20]为2b(φ)2-8πG(-V(φ)Λ)},式中,ψ是辅助场,φ是dilaton场,V(φ)是势函数,G是牛顿常数,b、Λ为常数作用量(24)式对应的辅助场方程为引力场方程为ψ)2)+gμν2ψ-μνψ=8πGTμν,φ)-2b(μφνφφ)2),dilaton场方程为这时2维静态度规选择为[21-29]其中,α(x)是度规因子.此时引力物质系统方程组化为α″=-8πGΛV(φ),(αφ命题 1 dilaton场φ和度规α有如下关系:式中,X0是积分常数,下面证明这一关系式.用αφ′乘以(32)式两边得对(31)式两边求导得将(34)式与(35)式联立消去dV/dx后得即φ又因为并且‴-2α′α″)=αα‴.由(37)~(39)式可得φ′)2]=即所以命题1证毕.命题 2 当标量场势能V(φ)=e-2aφ时有式中a是势能常数,下面证明这一关系式成立.当标量场势能取为V(φ)=e-2aφ时,(31)式变为将上式整理得又因为并且φ′)2]=所以即那么(47)式变为式中β=b/a2.化简上式得所以命题2证毕.命题 3 当β=p/(p+2)=1(p→∞),场方程有如下的黑洞度规和dilaton场解φ(51)式中A、C、E是积分常数,下面证明这一命题成立.由(50)式得α″=-8πGΛe-2aEe-Cx,α‴=8πGΛCe-2aEe-Cx.将α′、α″、α‴带入式命题2中的(41)式的左端得同理,将α″带入(43)式得所以命题3证毕.下面说明命题3得到的2维度规可以描述一种黑洞,取B=8GΛπe-2aE/C2则度规(50)式化为当C>0,x→-∞或C<0,x→+∞时,可知黑洞度规出现奇异性质;当xC=-ln(A/B)/C,同样可知黑洞度规也出现奇异性质,根据曲率R=-α″可计算出不同时空奇点处的曲率分别为所以xC表示黑洞的视界位置,可以为正值或负值.标量场φ(x)在奇点处的性质为φ因此,这个解可以描写2维黑洞,此黑洞的真正奇点位于x→±∞处.黑洞的ADM 质量定义为φ′)2].K是积分常数,可以证明解析解(50)式和(51)式对应的2维黑洞质量为这里,A、C>0,当a>0,由(51)式知系数C越大,φ(x)越强,那么对应的黑洞质量越大.取C=1,E=0,8πG=1,Λ=1,则(50)和(51)式化为命题 4 对(29)式中黑洞度规和时空坐标做如下变换,则黑洞度规可化为声学度规的形式,下面证明这一命题成立.如果使用如下变换[30]则有dx2=ρ02dx2,于是有这时声学度规的表达式为2v0dxdt+dx2].这一度规恰好对应于(23)式中i=j=1的特殊情况.由(65)式可以看出当2M=J时,黑洞的视界为于xc=-ln2M处,这时其对应的声学视界位于c=v0处.命题 5 1维流体力学中的Euler方程和连续方程为ρ0(x)v0(x)A(x)=常数,式中,ρ0是流体密度,p是流体压强,v0是流体速度,f是驱动外力的势,A(x)通量截面,下面证明这一命题.引入如下变换则(70)和(71)式等价于如下方程组这时讨论一种特殊情况,当声速c=常数时有如下关系式并且另外以及将(75)~(78)式代入(73)式命题即可得这一等式成立.另外有(70)式容易得到(71)式,所以命题5成立,再根据Euler方程(70)式和连续性方程(71)式可求出1维流体中的能量密度ρ0(x)、速度v0(x)和驱动势f(x)的如下表达式式中,s是与流体通量A有关的常数,f0是积分常数.当黑洞质量取为M=1/2,声速取为c=1,常数取为s=1,f0=1时,那么可以作出黑洞视界外流体参量,如图1~3所示.当黑洞质量取定时,计算结果表明流体密度随空间坐标增大而增大,而流体速度随空间坐标增大而减小.另外,流体驱动势也随空间坐标增大而减小.根据流体方程组解可以直接看出,当空间坐标不变时,随着黑洞质量的增大,流体密度变大,对应的流体速度变小.本文首先根据流体力学中的连续方程和Euler方程分析了流体中的微小振动,这种振动所对应的速度势满足的方程可以描述声波现象,对流体方程组进行线性化处理后得到密度、压强和速度势涨落满足的波动方程,这一方程也可描述标量势的传播规律.当定义适当的度规张量后,那么波动方程就可化为一个弯曲时空下的标量场方程,由此可以导出声学度规的表达式.其次,本文推导了2维dilaon引力模型中的场方程组,根据3个命题进一步获得了2维度规的解析解,通过物理分析后表明这一解可以描述2维时空中的黑洞,其时空奇点为无穷远处,而视界的位置由势能强度Λ和a所决定.经过适当的坐标变换后发现2维黑洞度规可以变化为对应的声学度规,这时2维引力场方程可与1维流体中的Euler方程发生联系,因此可以求出声学黑洞中的流体密度、压强和驱动势的解析解.当黑洞质量取为定值时,本文对流体速度和驱动势作出了数值图形,并讨论了这些流体参量在空间中的变化规律.另外,2维定态时空中霍金温度定义为4πTH=(dα/dx)|x=xc,代入视界坐标xc=-ln 2M便可求出霍金温度为TH=M/2π,因此2维时空中黑洞质量越大,霍金温度越高,最近,W. G. Unruh 进一步分析了在实验室测量霍金辐射的可能性[31-32],所以通过流体力学中的一个小型平台可以模拟黑洞中的各种比较复杂的物理现象[33-35].【相关文献】[1] KATANAEV M O, VOLOVICH I V. String model with dynamical geometry and torsion[J]. Phys Lett,1986,B175(4):413-415.[2] KATANAEV M O, VOLOVICH I V. Two dimensional gravity with dynamical torion and strings[J]. Ann Phys,1990,197(1):1-32.[3] 颜骏,胡诗可. 两维量子引力中的一种可解模型[J]. 高能物理与核物理,1991,15(7):598-605.[4] SCHMIDT H J. Scale-invariant gravity in two dimensions[J]. J MathPhys,1991,32(6):1562-1566.[5] 颜骏,陶必友,胡诗可. 两维引力中的一种可积模型[J]. 高能物理与核物理,1993,17(4):322-328.[6] SOLODUKHIN S. On exact integrability of 2-D Poincare gravity[J]. Mod PhysLett,1994,A9(30):2817-2823.[7] KUMMER W, WIDERIN P. Non-einsteinian gravity in d=2:symmetry and current algebra[J]. Mod Phys Lett,1994,A9(15):1407-1413.[8] QIUX M, YAN J, PENG D Y . String theory and an integrable model in two-dimensional gravity with dynamical torsion[J]. Gen Rel Grav,1997,29(9):1195-1207.[9] 彭点云,颜骏,邱孝明. 玻色弦耦合的两维引力模型的数值研究[J]. 计算物理,1998,15(2):134-138.[10] SCHMIDT H J. The classical solutions of two-dimensional gravity[J]. Gen RelGrav,1999,31(8):1187-1210.[11] 颜骏,陶必友. 二维弦引力模型中粒子的运动性质[J]. 四川师范大学学报(自然科学版),2004,27(6):626-629.[12] YAN J. Integrability of nonlinear equations of motion on two-dimensional world sheet space-time[J]. Commun Theor Phys,2005,44(2):283-287.[13] STITZEL B. Two-dimensional gravitation and sine-Gordon solitons[J]. PhysRev,1995,D52(10):2192-2201.[14] YAN J, QIU X M. Sinh-Gordon matter field and a solvable model in two-dimensional gravity[J]. Gen Rel Grav,1998,30(9):1319-1329.[15] YAN J, WANG S J, TAO B Y. A solvable model in two-dimensional gravity coupled to a nonlinear matter field[J]. Commun Theor Phys,2001,35(1):19-21.[16] 颜骏,陶必友. 二维Dilaton引力模型中的带电Sine-Gordon孤子解[J]. 高能物理与核物理,2003,27(9):767-769.[17] 朗道 L D,栗弗席兹 E M. 流体动力学[M]. 北京:高等教育出版社,2013:1-50.[18] MANN R B, SHIEKH A, TARASOV L. Classical and quantum properties of two-dimensional black holes[J]. Nucl Phys,1990,B341:134-154.[19] MANN R B. Conservation laws and two-dimensional black holes in dilation gravity[J]. Phys Rev,1993,D47(10):4438-4442.[20] 刘文莉. 二维引力模型中黑洞解的研究[D]. 成都:西南交通大学,2001:17-27.[21] YAN J. Functional integrals and quantum fluctuations on two-dimensional noncommutative space-time[J]. Commun Theor Phys,2009,52(3):445-448.[22] 邹伯夏,颜骏,李季根. 黑洞背景下费米物质能量密度涨落的计算[J]. 物理学报,2010,59(11):7602-7606.[23] ZOU B X, YAN J, LI J G, et al. Functional integrals and energy density fluctuations on black hole background[J]. Gen Relativ Gravit,2011,43:305-314.[24] 邓强,颜骏. 具有奇异物质与暗能量作用的二维Brans-Dicke宇宙模型[J]. 四川大学学报(自然科学版),2007,44(5):1053-1058.[25] YAN J, TAO B Y. Inflation cosmological solution in two- dimensional Brans-Dicke gravity Model[J]. J Southwest Jiaotong University(English Edition),2007,15(4):365-367.[26] 邓强,颜骏. 有限温度下的二维暗能量星模型[J]. 物理学报,2008,57(7):3978-3982.[27] YAN J. A two-dimensional Brans-Dicke star model with exotic matter and dark energy [J]. Commun Theor Phys,2009,52(6):1016-1018.[28] 李季根,颜骏,邹伯夏,苏文杰. 奇异物质与暗能量作用的sine-Gordon孤子星模型[J]. 物理学报,2011,60(5):050301.[29] SU W J, YAN J. A sine-Gordon soliton star model with a mix of dark energy and fermi matter[J]. Can J Phys,2012,90:1279-1285.[30] CADONI M. Acoustic analogues of black hole singularities[J]. Phys Rev,2005,D72:0840.[31] UNRUH W G. Experimental black hole evaporation[J]. Phys Rev Lett,1981,46(21):1351-1353.[32] UNRUH W G. Has Hawking radiation been measured[J]. Found Phys,2014,44:532-545.[33] BARCELO C, LIBERATI S, VISSER M. Analogue gravity[J]. Living Rev,Relativity,2011,14:3.[34] FACCIO D. Analogue Gravity Phenomenology[M]. Heidelberg:Springer-Verlog,2013:31-47.[35] VOLOVIK G E. The Universe in a Helium Droplet[M]. Oxfod:Oxford UniversePress,2003:1-15.。
小学上册英语第三单元真题英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1.He is reading a ______. (book)2. A ________ (泥土) test can improve growth.3.My action _______ can fly high in the sky.4. A lizard can lose its tail as a ________________ (逃脱) tactic.5.Which flower is known for its strong fragrance?A. RoseB. TulipC. DaisyD. DandelionA6.Oxygen is essential for _______ in living organisms.7.I saw a ________ in the trees.8.I love watching _____ (海豚) play in the ocean.9.I drink _____ (juice) every day.10.The ____ has a bright orange color and is often seen in the wild.11. A ball falls to the ground because of _______.12.Certain plants can ______ (改善) air quality in cities.13.小蚂蚁) works hard to gather food. The ___14.I have a ___ (story/book) to tell you.15._____ (水分保持) is essential for healthy plants.16.Many flowers bloom in ______ (春天) and attract pollinators.17.The capital of Japan is _____ (21).18.The walrus finds food on the _______ (海底).19.The soup is ___. (delicious)20.My grandma has a beautiful _______ (名词). 它在 _______ (地点).21.My grandma enjoys knitting ____ (sweaters).22.The ________ was a significant trade route in ancient times.23.The grass is _______ (green).24.What is the primary color that results from mixing yellow and blue?A. GreenB. OrangeC. PurpleD. BrownA25.What do we call the time it takes for the Earth to rotate once on its axis?A. MonthB. DayC. YearD. HourB26.I have a toy ________ (玩具名称) that can stack high.27.The _______ of a solution is how concentrated it is.28.The _____ (金鲨) glides through the ocean with grace. 金鲨优雅地穿梭于海洋中。
分数阶RLβCα电路特性研究周瑞;胡国珍;章磊【摘要】为探究RLC电路在分数阶下的新特性与新规律,将分数阶电感与电容引入RLC电路.基于分数阶电容与电感定义,推导出分数阶RLC电路阻抗表达式的一般情况;给出纯虚阻抗的满足条件,分析分数阶阶次等系统参数对纯虚阻抗的影响规律;给出分数阶RLC电路短路状态的一般规律与满足条件,推导出短路频率与短路电阻的规律表达式;推导出分数阶RLC电路纯实阻抗电路状态的满足电路频率;给出分数阶RLC电路设计优化举例.研究结果表明,由于分数阶阶次引入,RLC电路设计将展现更多自由度与灵活性.【期刊名称】《湖北理工学院学报》【年(卷),期】2019(035)001【总页数】7页(P6-12)【关键词】分数阶电路;纯虚阻抗;短路阻抗;纯实频率【作者】周瑞;胡国珍;章磊【作者单位】湖北理工学院电气与电子信息工程学院,湖北黄石435003;湖北理工学院电气与电子信息工程学院,湖北黄石435003;湖北理工学院电气与电子信息工程学院,湖北黄石435003【正文语种】中文【中图分类】TM13分数阶微积分理论的提出已有300多年时间,起初由于缺少应用背景,其发展缓慢,无实质性研究进展。
近些年来,许多研究学者致力于将传统整数阶系统拓展至分数阶域,探究分数阶系统新特性与规律[1]。
因此,分数阶微积分理论已是研究热点,并被广泛应用于生物医学[2]、混沌系统[3-4]与控制系统[5-6]等诸多领域。
现有的研究结果表明,由于新分数阶变量引入,使得研究系统拥有更多可能性、灵活性与自由度等分数阶域新规律。
近年来,分数阶元器件已取得初步研究结果。
分数阶电感与分数阶电容相继在实验室被制造出来,充分说明了分数阶元器件的存在性及其分数阶的本质特性[7-10]。
因此,基于分数阶元器件的电路理论也将面临新的挑战与机遇。
目前,分数阶非线性电路在忆阻器系统[11]、数字设计[12]、稳定性分析[13]等领域已取得了一系列研究成果[14-17]。
一类耦合KdV方程的孤波解和周期波解及其相互关系张卫国;徐伟;李想【摘要】运用平面动力系统的理论和方法对一类耦合KdV波动方程所对应的平面动力系统进行了定性分析,给出了该方程在一定条件下存在唯一钟状孤波解和无穷多个周期波解的结论.分别利用待定系数法和首次积分法求得了该方程钟状孤波解和周期波解的精确表达式,并直观地指出了它们所对应的解轨线在全局相图中的位置.进一步讨论了方程孤波解与Jacobi椭圆函数型周期波解的关系,并直观地给出了当模数趋于1时Jacobi椭圆函数周期波解向钟状孤波解演变的三维示意图.%For a class of coupled KdV equations, the theory and method of planar dynamical system were applied to qualitatively analyse the dynamical system which the equation corresponds to. It is concluded that the equation has a unique bell profile solitary wave solution and infinite number of periodic wave solutions. The exact expressions of the bell solitary wave solution and the periodic solutions were provided by using the methods of undetermined coefficients and first integral respectively,and the positions of their orbits on the global phase portrait were pointed out. The relation between the solitary wave solution and the periodic wave solutions was discussed. Finally, 3-dimensional figures were presented to illustrate the evolution process of Jacobi elliptic functional periodic wave solution to bell solitary wave solution when the modulus tends to be 1.【期刊名称】《上海理工大学学报》【年(卷),期】2012(034)004【总页数】7页(P307-313)【关键词】耦合KdV波动方程;定性分析;孤波解;周期波解;全局相图【作者】张卫国;徐伟;李想【作者单位】上海理工大学理学院,上海 200093;上海理工大学理学院,上海200093;上海理工大学理学院,上海 200093【正文语种】中文【中图分类】O175.2;N941 问题的提出耦合KdV波动方程[1]可用来描述两个内部长波之间相互作用的过程,其中α,β,λ,δ,ε为非零参数.在变量ν=0时,方程(1)可约化为在固态物理、等离子物理、流体物理和量子理论等领域有广泛应用的KdV方程[2-7].近年来,多位学者研究了方程(1)的孤波解求解问题.陆宝群等分别利用待定系数法和函数展开法求得了方程(1)的精确孤波解[8-9];Ito[10]运用循环算子推出了当α=δ=-2,β=-6,ε=0时,耦合方程具有无限多的对称性;叶彩儿[11]证明了当α=β=λ=δ=ε=1时,耦合方程具有Painleve性质,在Painleve性质下可积,并通过自Backlund变换求出了方程(3)的孤立波解和奇异行波解.然而以往文献没有给出过方程(1)孤波解唯一性的结论,也没有研究过方程(1)的孤波解与周期波解之间的关系.现运用平面动力系统方法研究耦合KdV波动方程(1)的孤波解、周期波解的存在性,给出孤波解唯一性的结论,并分别运用假设待定法和首次积分法求出这两种解的精确解,还进一步研究这两种解的相关性.目前研究非线性发展方程孤波解与周期波解之间相互关系的文献还比较少,这种研究在理论和应用上显然是有意义的,因为它可揭示参数的变化对解的影响,加深人们对非线性波动的认识,并给非线性波动的控制提供有益的信息.文中首先运用平面动力系统理论和方法对方程(1)的行波解进行定性分析,给出不同参数下的全局相图,说明在一定条件下该方程只存在唯一的钟状孤波解,而同时却有无穷多个周期波解.其次分别运用待定系数法和首次积分法求出该方程钟状孤波解和周期波解的精确表达式,并直观指出它们所对应的解轨线在全局相图中的位置.随后讨论了方程孤波解与Jacobi椭圆函数型周期波解的关系,即当模数k趋近于1时,Jacobi椭圆函数周期波解逐渐扩张演变为钟状孤波解.最后作出了Jacobi椭圆函数周期波解向钟状孤波解演变的三维示意图.2 方程(1)有界行波解的定性分析设方程(1)有行波解u(x,t)=u(ξ)=u(x-ct),ν(x,t)=ν(ξ)=ν(x-ct),将其代入方程(1)中,可得将上式积分一次,可得其中,E1,E2为积分常数.由式(4)中第二个式子,可知现记为使得u(ξ)处处正则,现取E2=0,这等价于u(ξ),ν(ξ)当的极限满足则有将式(6)代入式(4)中第一个式子,可得其中这样,在积分常数E2=0的条件下就将求方程(1)孤波解和周期波解的问题转化为了式(6)和式(7).由于式(6)中u(ξ)满足方程(7),故对方程(7)解的性态和求解的研究是本文的关键.现在研究方程(7),令x=u(ξ),y=u′(ξ),则方程(7)可转化为与之等价的平面动力系统在(x,y)平面上,系统(9)有限远奇点的个数依赖于方程f(x)=lx2+mx+p=0的实根的个数.记f(x)=0的判别式为Δ=m2-4lp.易知该方程在Δ=0时有一个实根,在Δ<0有两个共轭复根,在Δ>0有两个不等的实根.因现只考虑系统(9)的有界行波解,所以始终假设Δ>0.设方程f(x)=0的实根为a1,a2,分别为当l>0时,a1<a2;当l<0时,a1>a2.记系统(9)在奇点Pi(ai,0)(i=1,2)处的Jacobi矩阵为显然,系统(9)是Hamilton系统,有首次积分由Liouville定理的推论可知,Hamilton系统不可能存在渐近稳定与不稳定的平衡点(焦点、结点),平衡点只能是中心或鞍点;也不可能存在渐近稳定与不稳定的极限环,只可能存在简单闭轨.在典型的Hamilton系统中,只可能存在有限个平衡点,但可以有无穷多个周期闭轨.因故P1为鞍点,因故P2为中心点.对系统(9)作Poincare变换,可得系统(9)在y轴上各存在一对无穷远奇点Ai(i=1,2),且在Ai周围各存在一个抛物型区域.另外,Poincare圆盘的圆周为轨线.由上述分析,可得到系统(9)的全局相图,如图1所示.图1 系统(9)的全局相图Fig.1 Global phase portraits of system(9)由相图1,可得到下列命题.命题1 设l≠0,除去奇点P1,P2和轨线L(P1,P1)以及由L(P1,P1)包围的闭轨线外,系统(9)的其它轨线均是无界的,并且这些轨线上的点的x坐标值和y坐标值也均是无界的.证明设l≠0,除去奇点P1,P2和轨线L(P1,P1),L(P2,P2)以及这些轨线周围的闭轨线外,系统(9)的其它轨线均是无界的,它们在+∞时,或者趋于A1或者趋于A2.因此,这些轨线上的y坐标值一定是无界的.下面用反证法证明这些轨线上的x坐标值也是无界的.设这些轨线上的点的x坐标值是有界的.一方面,由于轨线上的任意点的切线斜率满足所以当时.另一方面,由微分中值定理可以判定:当时不可能保持有界.这个矛盾表明,这些轨线上的点的x坐标值是无界的.命题2 设l≠0,系统(9)存在一条同宿轨道和无穷多条闭轨线(见图1).考虑到平面动力系统(9)中的同宿轨对应方程(1)的钟状孤波解,闭轨对应方程(1)周期行波解,因此由命题1、命题2和全局相图1,可得如下定理.定理1 设积分常数E2=0,若行波波速c和积分常数E1满足m2-4lp>0,则方程(1)存在唯一的钟状孤波解(对应于同宿轨道L(P1,P1))和无穷多个周期行波解.由于所讨论的方程(1)中参数α,β,λ,δ,ε都是非零的,故命题1和命题2中假设l≠0自然成立.3 方程(1)的钟状孤波解受文献[12]的启发,方程(7)有解其中,A,B,s,D待定.将式(11)代入方程(7)中,根据es(ξ+ξ0)(s=0,1,2,3,4,5,6)的线性无关性,并经化简得到A,B,s,D满足的方程组解方程组(12),可得下列两组解又因将式(14)中各数值代入式(11),可得方程(7)的解为经判定,此解不是有界行波解,故可将其排除.综合上面计算和前面的定性分析的结果,可得到下面关于方程(1)钟状孤波解的定理.定理2 假设定理1中条件成立,则方程(1)的唯一钟状孤波解为其中,l,m,p由式(8)给定.孤波解(u(ξ),ν(ξ))中的u(ξ)对应于图1中的同宿轨L(P1,P1).定理2中的唯一性,已由定理1给出.另外因为sechx是偶函数,当时的解与k=时的解相同.易验,本文所求孤波解与文献[8]用函数展开法所求方程(1)的钟状孤波解是等价的.文献[9]用待定系数法所求钟状孤波解是本文所研究方程(1)的钟状孤波解式(15)和式(16)在m2-4lp=16,E1=E2=0时的情况.文献[10]中通过自Backlund变换求得方程(3)的孤波解是本文研究的方程(1)在α=1,β=1,λ=1,δ=1,ε=1,即l=5/2,m=-5c时的特殊情况.用定性分析及假设待定结合方法的好处在于:利用定性分析的结果,可以清楚地看出方程(1)有界行波解存在的个数和大致形态,可以很直观地指出用假设待定方法求出的方程(1)的有界行波解对应的解轨线在全局相图中的位置,两者之间具有一一对应的关系.4 方程(1)的周期波解现结合前面定性分析中的部分结论,通过适当变换并运用首次积分方法对方程(1)的周期波解进行求解.由对方程(1)有界行波解的定性分析中可知,平面动力系统(9)是Hamilton系统,且具有首次积分式(10),式(10)即为系统(9)的Hamilton函数.以l <0的情形为例,求出对应图1(b)中同宿轨道所围中心的闭轨线对应的周期波解,对于l>0情形的结论可类似得到.设(a,0)为周期轨道与x轴的交点,由于在对称同宿轨道内包围中心的同一周期轨道上点的Hamilton量相等,即于是,有可证得Hamilton量的取值范围为其中由式(17),可得记,则式(19)可写成对上式积分一次,可得易验,在Δ=m2-4lp>0和h1满足式(17)条件下,F(x)=0有3个实根e1,e2,e3,它们由l,m,p,h1确定,故F(x)可写成F(x)=(x-e1)(x-e2)(x-e3).当l<0时,有e3<a2<e2<a1<e1,且在(e3,e2)及(e1,+∞)时,F(x)>0,此时为求出有界的周期波解,应限制x在(e3,e2)内取值,如图2所示.现取α=e3,并令则有其中将式(22)代入式(20),可得图2 F(x)>0的范围Fig.2 Range of F(x)>0利用椭圆函数cn(ζ,k)的微分公式令t=cn(ζ),则式(24)变为考虑到cn(0)=1,由式(25),有将式(26)代入式(23)中,立即有由式(27)得将其代入式(22),得到方程(7)的周期波解再考虑到cn(ξ+4 K)=cn(ξ),可得K=,显然K随k变化,即椭圆函数周期T=4 K可由l,m,p,h1确定.同理,当l>0时,图1(a)中同宿轨道所围中心的闭轨线对应方程(7)的周期波解为综合上面的计算,可得到关于方程(1)的周期波解的如下定理.定理3 设定理1中条件成立.则方程(1)有Jacobi椭圆函数周期波解up(ξ)对应于图1(a),(b)中的同宿轨道L(P1,P1)所包围中心奇点的闭轨线.下面通过假设待定法求方程(7)的周期波解.受文献[13]的启发,假设方程(7)有解将其代入到式(7)中,可求得用首次积分法求解方程(1)的周期波解,主要目的在于以此说明椭圆函数中的模数k与周期波解对应的轨线和x轴的交点e1,e2,e3相关,从而k与方程(1)中的参数及波速等相关.5 方程(1)的孤波解和周期波解的关系从全局相图的角度观察,方程(1)的孤波解(u(ξ),ν(ξ))中的u(ξ)对应于全局相图1(a),(b)中的同宿轨线L(P1,P1),而周期波解(up(ξ),νp(ξ))中的up(ξ)对应于包围中心的闭轨线,它被包含于由同宿轨线L(P1,P1)所包围的区域中.下面以l<0的情形为例进行讨论.考察在对称同宿轨道内的周期波解up(ξ)当k→1时向孤波解u(ξ)的演变,对于l>0情形的结论可类似得到.当l<0时,系统(9)过鞍点P1(a1,0)的同宿轨道上点的Hamilton量为其中再由Hamilton函数知,H即Hamilton量为h2的轨线在l<0时与x轴的交点.其中,包含于同宿轨道的周期闭轨线与x轴的交点的横坐标e1,e2,e3与x1,x2,x3关系为x1<e3<e2<x2=a1<e1<x3(见图1(b)),且当模数时,有e3→x1,e2→x2=a1,e1→x2=a1.结合上面的分析,可求得其中,整理式(36),即有综合上面的计算和前面的定性分析,可得到如下定理.定理4 当k→1时,方程(1)的周期波解对应相图上的周期闭轨扩张成同宿轨道L(P1,P1).为了直观地体现周期波解与孤波解之间的关联性,现作出Jacobi椭圆函数周期波解up(ξ)向孤波解u(ξ)演变的三维示意图,如图3所示.图3中,取此时l=3,m=4,p=1.[1] Kumpershmidt B A.A coupled Korteweg-de Vries equation with dispersion[J].J Phys A:Math Gen,1985,(18):571-573.[2] Garder C S.The Korteweg-de Vries equation and generalizations IV [J].Journal of Mathematical Physics,1971,12(4):1548-1551.[3] Konno K,Ichikawa Y H.A modified Korteweg-de Vries equation forion acoustic waves[J].J Phys Soc Japan, 1974,37(7):1631-1636.图3 k→1时周期波解up(ξ)趋向于孤波解u(ξ)Fig.3 Periodic wave solution up(ξ)tends to solitary wave solution u(ξ)when k→1[4] Dodd R K,Eilbeckj C,Gibbon D J,et al.Solitons and nonlinear wave equations[M].London:Academic Press Inc Ltd,1982.[5] Narayanamurti V,Varma C M.Nonlinear propagation of heat pulses in solids[J].Phys Rev Lett,1970,25(16):1105-1108.[6] Tappert F D,Varma C M.Asymptotic theory of selftrapping of heat pulses in solids[J].Phys Rev Lett,1970,25(16):1108-1111.[7] Zhang W G,Chang Q S,Fan E G.Methods of judging shape of solitary wave and solutions formula for some evolution equations with nonlinear terms of high order[J].J Math And Appl,2003,287(1):1-18.[8] Lu B Q,Pan Z L,Qu B Z,et al.Solitary wave solutions for some systems of coupled nonlinear equations[J].Physics Letters A,1993,180(1):61-64.[9] Xu X J,Zhang J F.New exact and explicit solitary wave solutions to a class of coupled nonlinear equations[J].Communications in Nonlinear Science &Numerical Simulation,1998,3(3):189-193.[10] Ito M.Symmetries and conservation laws of a coupled nonlinear wave equation[J].Phys lett A,1982,91(7):335-338.[11]叶彩儿.几个非线性发展方程(组)的精确解与Painleve分析[D].杭州:浙江大学,2003:28-31.[12]张卫国,刘刚,任迎春.非线性波动方程的孤波解与余弦周期波解[J].上海理工大学学报,2008,30(1):15-21.[13] An J Y,Zhang W G.Exact periodic solutions to generalized BBM equation and relevant conclusions[J].Acta Mathematicae Applicatae Sinica,2006,22(3):509-516.【相关文献】[1] Kumpershmidt B A.A coupled Korteweg-de Vries equation with dispersion[J].J Phys A:Math Gen,1985,(18):571-573.[2] Garder C S.The Korteweg-de Vries equation and generalizations IV[J].Journal of Mathematical Physics,1971,12(4):1548-1551.[3] Konno K,Ichikawa Y H.A modified Korteweg-de Vries equation for ion acoustic waves[J].J Phys Soc Japan, 1974,37(7):1631-1636.[4] Dodd R K,Eilbeckj C,Gibbon D J,et al.Solitons and nonlinear wave equations [M].London:Academic Press Inc Ltd,1982.[5] Narayanamurti V,Varma C M.Nonlinear propagation of heat pulses in solids [J].Phys Rev Lett,1970,25(16):1105-1108.[6] Tappert F D,Varma C M.Asymptotic theory of selftrapping of heat pulses in solids [J].Phys Rev Lett,1970,25(16):1108-1111.[7] Zhang W G,Chang Q S,Fan E G.Methods of judging shape of solitary wave and solutions formula for some evolution equations with nonlinear terms of high order[J].J Math And Appl,2003,287(1):1-18.[8] Lu B Q,Pan Z L,Qu B Z,et al.Solitary wave solutions for some systems of coupled nonlinear equations[J].Physics Letters A,1993,180(1):61-64.[9] Xu X J,Zhang J F.New exact and explicit solitary wave solutions to a class of coupled nonlinear equations[J].Communications in Nonlinear Science &Numerical Simulation,1998,3(3):189-193.[10] Ito M.Symmetries and conservation laws of a coupled nonlinear wave equation [J].Phys lett A,1982,91(7):335-338.[11]叶彩儿.几个非线性发展方程(组)的精确解与Painleve分析[D].杭州:浙江大学,2003:28-31.[12]张卫国,刘刚,任迎春.非线性波动方程的孤波解与余弦周期波解[J].上海理工大学学报,2008,30(1):15-21.[13] An J Y,Zhang W G.Exact periodic solutions to generalized BBM equation andrelevant conclusions[J].Acta Mathematicae Applicatae Sinica,2006,22(3):509-516.。
非线性分数阶演化方程的新解刘银龙;夏铁成;刘泽宇【摘要】通过使用改进的分数阶sub-equation方法寻求一些非线性分数阶演化方程的精确解,如分数阶Burgers方程、耦合分数阶Burgers方程与非线性分数阶Klein-Gordon方程等,并得到了这些非线性分数阶演化方程的新解.【期刊名称】《上海大学学报(自然科学版)》【年(卷),期】2016(022)004【总页数】8页(P469-476)【关键词】改进的分数阶sub-equation方法;分数阶Burgers方程;耦合分数阶Burgers方程;分数阶Klein-Gordon方程【作者】刘银龙;夏铁成;刘泽宇【作者单位】上海大学理学院,上海200444;上海大学理学院,上海200444;上海大学理学院,上海200444【正文语种】中文【中图分类】O1781695年,莱布尼兹定义了分数微积分-普通微积分的推广.但直到最近几十年分数微分方程才重新得到学者们的关注,这是因为其对复杂现象有确切的描述,例如非布朗运动、系统识别、流体流动、控制问题、信号处理、黏弹性材料、聚合物和其他的学科领域的问题.众所周知分数阶方程的最大优势是其非本地属性,这意味着未来系统的状态不仅取决于其当前状态也取决于其所有的历史状态.例如,部分衍生品、流体动力交通模型可以消除由连续交通流的假设[1]引起的缺陷.最近,许多学者开始研究分数阶的函数分析,如把Yang-Laplace转换和Yang-Fourier转换的性质和定理应用到分数阶微分方程、微分系统和偏微分方程等.为了更好地理解复杂的非线性物理现象及其在实际生活中进一步的应用,一个自然而然的问题出现了,即怎样才能得到分数阶偏微分方程(fractional partial differential equation,FPDE)的精确解.目前,已经建立和发展了很多有效的方法,从而获得了FPDE的数值和分析解,如有限差分法[2]、有限元法、Adomian分解方法[3]、微分转换方法[4]、变分迭代法[5]、摄动法[6]等.另外,一些偏微分方程已经被研究和解决,如脉冲分数微分方程[7]、分广义Burgers流体[8]、分数阶热和波动方程[9]等.最近,He等[10]和Geng等[11]应用Exp-function方法寻求偏微分方程精确解.这种Expfunction方法得到了广泛的应用,并被用来寻找非线性演化方程的孤波解和周期解,如Maccari系统[12]、Klein-Gordon方程[13]、KdV-mKdV方程[14-15]、Broer-Kaup系统、Kaup-Kupershmidt方程和Toda lattice方程等.这表明,通过Exp-function方法可以得到含参数的解,并且从中可以发现一些大多数现有方法的已知解.张盛等[16]提出了一种新的寻求偏微分方程精确解的直接方法,该方法被称为分数阶sub-equation方法,是基于齐次平衡原则[17]、修正的Jumarie黎曼——刘维尔导数[18]和符号计算.张盛等使用这种方法成功地获得了非线性分数阶演化方程的精确解.众所周知,当使用直接法找到非线性偏微分方程精确解时,选择一个适当的拟设是非常重要的.本研究正是通过运用改进的分数阶sub-equation方法[19]来寻找在流体力学中分数阶方程的精确解.首先,考虑分数阶Burgers方程与耦合分数阶Burgers方程[20]:Esipov导出了这个耦合系统.耦合Burgers方程系统的研究是非常重要的,因为这个系统在流体悬浮液或胶体中受到的重力的影响是一个简单的模型沉降或进化了体积浓度的两种粒子,其中常量p,q是依赖于系统参数沛克莱数、由重力引起的斯托克斯粒子速度和布朗扩散系数.另外,尝试对非线性分数阶Klein-Gordon方程[21]进行了求解,可知非线性分数阶Klein-Gordon方程描述了许多非线性类型,且该Klein-Gordon方程在一些实际应用程序中起着重要作用,如固态物理、非线性光学和量子场论等.修正的α阶Jumarie's Riemann-Liouville导数的定义如下:上述定义的分数阶导数具有3种性质:上面的这些性质在后续的分数阶方程计算中非常重要.对于改进的分数阶sub-equation方法的步骤如下.步骤1 给定一个分数阶偏微分方程,式中,x与t是两个独立的变量,且是未知函数,P是关于ui以及分数阶导数的多项式.步骤2 通过行波变换式中,c是待定常数.方程(6)便可以约化成关于Uj=u(ξ)分数阶常微分方程步骤3 假定式中,aj,i(i=-mj,-mj-1,…,mj)为待定常数,mj为通过平衡方程(6)或(8)中最高次项与非线性项得到的正数,并且φ=φ(ξ)满足这里,其中是含一个参数的Mittag-Leffler函数.步骤4 把方程(9)和(10)代入方程(8)中,并利用修正的Riemann-Liouville导数的性质[22],得到一个关于φ(ξ)的多项式.令φ(ξ)k(k=0,1,…,-1,-2,…)的系数为0,得到一组关于c,ai(i=-n,-n+1,…,n-1,n)的超定方程组.步骤5 假定这些常数c,ai(i=-n,-n+1,…,n-1,n)可以通过上述超定方程组求得,则将这些常数代入方程(9)中就可以得到方程(7)的精确解.下面将用改进的分数阶sub-equation方法去求偏微分方程(1)~(3)的解.2.1 分数阶Burgers方程通过行波变换u=u(ξ),ξ=x+ct,方程(1)将会被约化成如下的非线性分数阶常微分方程:通过平衡方程(11)中最高次项与非线性项,可将解设成这里的φ(ξ)满足方程(10).将方程(10),(13)代入方程(12),令φ(ξ)i的系数等于0,这样就可以得到一系列关于c,a-1,a0,a1的超定方程.用Maple计算这组方程,有情形1式中,c,α,η是任意的常数.情形2式中,c,α,η是任意的常数.通过情形1,利用方程(10)和(13)的解可以得到方程(1)的解:式中,σ<0,ξ=x+ct.这里,σ<0,ξ=x+ct.式中,σ>0,ξ=x+ct.在这里,σ>0,ξ=x+ct.式中,σ=0,ξ=x+ct,ω是常数.当然,通过情形2可以得到更多的解,这里就不一一列出了.2.2 耦合分数阶Burgers方程通过行波变换u=u(ξ),v=v(ξ),ξ=x+ct,方程(2)将会被约化成如下的非线性分数阶常微分方程:根据前面所描述的方法,可以设方程(14)有如下解的形式:这里的φ(ξ)满足方程(10).将方程(10)和(15)代入到方程(13)中,令φ(ξ)i的系数等于0,这样就可以得到一系列关于c,a-1,a0,a1,b-1,b0,b1超定方程组.用Maple计算该方程组,有式中,η,q,a0是任意的常数.式中,a0,b0,b-1是任意的常数.利用方程(10),(15)和(16a)的解可以得到方程(2)的解:式中,这里,式中,这里,式中,ω是常数.2.3 非线性分数阶Klein-Gordon方程重复上述过程,通过行波变换u=u(ξ),ξ=x+ct,方程(3)将会被约化成如下的非线性分数阶常微分方程:平衡方程(16)中的最高次项与非线性项,可将解设成这里的φ(ξ)满足方程(10).将方程(11)和(17)代入方程(16)中,同样可以得到一组关于c,a-2,a-1,a0,a1,a2超定方程组.用Maple计算这组方程得利用方程(10),(18)和(19f)的解可以得到方程(3)的解:式中这里,式中在这里式中是常数.本研究利用一个改进的分数阶sub-equation方法解决了在流体力学系统中的非线性偏微分方程,并成功获得了关于分数阶Buregers方程、耦合Buregers方程及分数阶Klein-Gordon方程的一些精确解析解.这些解包括广义双曲线函数、广义三角函数的解(目前所知这些解都是新解),而且这些解可能有利于进一步了解复杂的非线性物理现象和偏微分方程.此外,通过使用直接的方法选择适当的拟设在解决非线性分数阶偏微分方程过程中具有重要意义.【相关文献】[1]HE J H.Analytical solution of a nonlinear oscillator by the linearized perturbation technique[J].Commun Nonlinear Sci Numer Simul,1999,4(2):109-113.[2]CUI pact finite difference method for the fractional diffusion equation[J].J Comput Phys,2009,228(20):7792-7804.[3]EL-SAYED A M A,GABER M.The Adomian decomposition method for solving partial differential equations of fractal order in finite domains[J].Phys Lett A,2006,359(3):175-182.[4]ODIBAT Z,MOMANI S.A generalized differential transform method for linear partial differential equations of fractional order[J].Appl Math Lett,2008,21(2):194-199. [5]HE J H.A new approach to nonlinear partial differential equations[J].Commun Nonlinear Sci Numer Simul,1997,2(4):230-235.[6]HE J H.A coupling method of a homotopy technique and a perturbation technique for non-linear problems[J].Internat J Non-Linear Mech,2000,35(1):37-43.[7]MOPHOU G M.Existence of mild solutions of some semilinear neutral fractional functional evolution equations with infinite delay[J].Applied Mathematics and Computation,2010,216(1):61-69.[8]XUE C,NIE J,TAN W.An exact solution of start-up flow for the fractional generalized Burgers fluid in a porous half-space[J].Nonlinear Anal,2008,69(7):2086-2096. [9]MOLLIQ R Y,NOORANI M S M,HASHIM I.Variational iteration method for fractionalheat-and wave-like equations[J].Nonlinear Anal,2009,10(3):1854-1869.[10]HE J H,WU X.Exp-function method for nonlinear wave equations[J].Chaos Solitons Fractals, 2006,30(3):700-708.[11]GENG T,SHAN W R.A new application of Riccati equation to some nonlinear evolution equations[J].Phys Lett A,2008,372(10):1626-1630.[12]ZHANG S.Exp-function method for solving Maccaris system[J].Phys LettA,2007,371(1/2):65-71.[13]BEKIR A,BOZ A.Exact solutions for nonlinear evolution equations using Exp-function method[J].Phys Lett A,2008,372(10):1619-1625.[14]WU X H,HE J H.Solitary solutions,periodic solutions and compacton like solutions using the Exp-function method[J].Comput Math Appl,2007,54(7/8):966-986. [15]KHANI F,HAMEDI-NEZHAD S.Some new exact solutions of the(2+1)-dimensional variable coefficient Broer-Kaup system using the Exp-function method[J].Comput Math Appl,2009, 58(11/12):2325-2329.[16]ZHANG S,ZHANG H.Fractional sub-equation method and its applications to nonlinear fractional PDEs[J].Phys Lett A,2011,375(7):1069-1073.[17]WANG M.Solitary wave solutions for variant Boussinesq equations[J].Phys Lett A,1995, 199(1/2):169-172.[18]JUMARIE G.Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results[J].Comput Math Appl,2006,51(9/10):1367-1376.[19]GUO S,MEI L,LI Y,et al.The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics [J].Phys Lett A,2012,376(4):407-411.[20]BEKIR A.Theexpansion method using modified Riemann-Liouville derivative for some space-time fractional differential equations[J].Ain Shams Engineering Journal,2014,5(3):959-965.[21]SIRENDAOREJI.Auxiliary equation method and new solutions of Klein-Gordon equations[J]. Chaos,Solitons and Fractals,2007,31(4):943-950.[22]ZHOU Y,WANG M,WANG Y.Periodic wave solutions to a coupled KdV equations with variable coefficients[J].Phys Lett A,2003,308(1):31-36.。
小学上册英语第二单元测验卷英语试题一、综合题(本题有100小题,每小题1分,共100分.每小题不选、错误,均不给分)1. A ____ swims in ponds and has smooth skin.2. A saturated solution contains the maximum amount of ______.3. A ______ plays a key role in the habitat.4.What do you call a person who studies the weather?A. MeteorologistB. ClimatologistC. Atmospheric scientistD. All of the aboveD5.The _______ (The Great Famine) struck Ireland in the mid-19th century.6. A cheetah is the fastest _______ in the animal kingdom, running quickly.7.This ________ (玩具) is perfect for family bonding.8.The bee buzzes around the ______.9.ts have adapted to thrive in nutrient-poor ______. (某些植物已适应在养分贫乏的土壤中生存。
) Some pla10.We are ______ (going) to the park.11.My favorite thing about school is ________ (学习).12.My favorite color is _____ (蓝色).13.Some _______ can be climbing or trailing.14.The ____ is often seen hopping around in the grass.15. Lakes are located in ________ (五大湖位于________). The Grea16.My _____ (家庭) is my support system.17.We will have a ________ (比赛) next week.18.What color is a ripe banana?A. GreenB. YellowC. RedD. Brown19.The parakeet loves to sing and ________________ (说话).20.What is the name of the ancient civilization that built pyramids in Egypt?A. MayansB. AztecsC. EgyptiansD. GreeksC Egyptians21.Plastics are made from long chains of _____, called polymers.22. A __________ is formed when water evaporates and leaves minerals behind.23.What do you use to draw?A. PencilB. ForkC. SpoonD. Plate24. (Battle) of Waterloo ended Napoleon's rule. The ____25.The first successful vaccine for smallpox was developed in ______ (18世纪).26.What do we call the outer layer of the Earth?A. CrustB. MantleC. CoreD. ShellA27.My favorite color is _______ (blue).28.The ________ (风景) from the mountain top is beautiful.29.Which of these animals is a reptile?A. FrogB. SnakeC. RabbitD. Fish30.The process of extracting metals from ores is called _______.31.How many legs does a typical insect have?A. FourB. SixC. EightD. TenB32.My cousin, ______ (我的表弟), is very funny.33.I go to the ______ (图书馆) to borrow books.34.The parrot says _______ (你好) in many languages.35.My cousin is a ______. She loves working with children.36.What is the name of the famous cartoon character known for his love of carrots?A. Bugs BunnyB. Daffy DuckC. Porky PigD. Elmer Fudd37.My uncle is very _______ (形容词) about his job. 他总是 _______ (动词).38.The cake is _______ (在烤箱里).39.She is ______ her shoes. (tying)40.What is the capital of Jordan?A. AmmanB. AqabaC. IrbidD. ZarqaA41.It is _____ outside today. (cold/hot/warm)42.Rivers can carve canyons into the landscape through the process of ______.43.What is the name of the famous American civil rights leader?A. Nelson MandelaB. Martin Luther King Jr.C. Malcolm XD. Rosa Parks44. A neuron is a specialized cell that transmits ______.45.What do we call the study of how people interact with each other?A. SociologyB. PsychologyC. AnthropologyD. EconomicsA46.I love to sing ______ songs.47. A _______ is a small plant that grows close to the ground.48.The ______ helps with the sense of smell.49.What is the name of the fairy tale character who had long hair?A. CinderellaB. RapunzelC. Snow WhiteD. Belle50.I enjoy ______ in the sunshine.51.My sister loves to _______ (动词) in the park. 我们常常一起 _______ (动词).52.Which of these is a popular fruit?A. LettuceB. StrawberryC. SpinachD. CeleryB53.My cat loves to chase ______ (光束).54.The chemical symbol for lanthanum is _______.55.An octopus has ______ arms.56.What is the primary ingredient in guacamole?A. TomatoB. AvocadoC. PepperD. OnionB Avocado57.The ________ (robot) can help us.58.We created an obstacle course with ________ (玩具车) in the backyard. It was a fun ________ (挑战).59. A hawk has excellent ________________ (视力).60.My ________ (姑姑) always brings gifts when she visits.61.The author writes _____ (小说) about adventure.62.I want to _____ (learn/teach) English.63.There are many ________ in the garden.64. A lion is a powerful _______ that rules its territory.65.My cousin is a ______. She loves to play the guitar.66.My grandma is my cherished _______ who shares wisdom and love.67.I help my dad with __________. (工作)68.What do you call a word that has the same meaning as another word?A. AntonymB. SynonymC. HomonymD. AdverbB69.The __________ is a famous area known for its culinary delights.70.What do we call the time when flowers bloom?A. WinterB. SpringC. SummerD. Fall71._____ (foraging) can lead to delicious finds.72.The coach, ______ (教练), teaches us how to play sports.73.The ______ is the outermost layer of the Earth.74.Photosynthesis converts sunlight into ______ energy.75.What is the capital of Belarus?A. MinskB. VilniusC. KyivD. WarsawA Minsk76.The element with atomic number is __________.77.My uncle is a big fan of _______ (运动). 他喜欢 _______ (动词).78.Which instrument is used to measure temperature?A. BarometerB. ThermometerC. HygrometerD. AnemometerB79.What do you use to write on paper?A. PaintB. MarkerC. PencilD. All of the aboveD80.What is the term for a young crocodile?A. HatchlingB. CalfC. PupD. KitA Hatchling81.I like to collect __________ after a storm. (雨水)82.What is the name of the famous park in New York City?A. Central ParkB. Hyde ParkC. Golden Gate ParkD. Stanley Park83.I want to learn ________ (编程).84.All matter is made up of tiny particles called _____.85.The weather is _______ (凉爽的).86.The invention of ________ changed transportation forever.87.What is the capital of Haiti?A. Port-au-PrinceB. Cap-HaïtienC. Les CayesD. JacmelA88. A baby dog is called a ______.89. A butterfly has ______ wings.90.What do you call the study of human societies and cultures?A. SociologyB. AnthropologyC. PsychologyD. Political scienceB91.What is the name of the famous scientist known for his work on the electromagnetic spectrum?A. James Clerk MaxwellB. Albert EinsteinC. Heinrich HertzD. Nikola TeslaA92.________ (植物保护倡导者) raise awareness.93.What phenomenon causes the Northern Lights?A. StarsB. Aurora BorealisC. Solar FlaresD. Meteors94.The capital of Brazil is __________.95.The Stone Age is known for the use of _______ tools.96.When I see someone I know, I wave and shout, "Hey, __!" (当我看到我认识的人时,我挥手喊:“嘿,!”)97.My mom says not to leave my _________ (玩具) on the floor.98.The first person to reach the South Pole was _______. (阿蒙森)99.The fireworks are ______ (colorful) in the sky.100.What is the opposite of "wet"?A. DryB. ColdC. HotD. HumidA。
不同阶次的分数阶复值混沌系统的广义投影同步和广义错位投影同步王志成;王震【摘要】研究了分数阶复值混沌系统的同步问题.应用不等阶次分数阶实值混沌系统的同步和复值混沌系统的同步方法,提出了广义投影同步和广义错位投影同步.针对驱动系统和响应系统阶次不相同的情况,基于分数阶非线性系统稳定性理论,以复值分数阶Chen系统为例,运用自适应控制方法设计反馈控制器,将不等阶分数阶复值系统同步问题转化为可以讨论的等阶复值系统同步问题,并通过理论分析和数值仿真验证了该理论的有效性.【期刊名称】《山东科技大学学报(自然科学版)》【年(卷),期】2019(038)003【总页数】10页(P72-81)【关键词】分数阶;复值;混沌;同步【作者】王志成;王震【作者单位】山东科技大学数学与系统科学学院,山东青岛266590;山东科技大学数学与系统科学学院,山东青岛266590【正文语种】中文【中图分类】N941.3;N941.7分数阶微积分具有和整数阶微分理论近乎同样长的历史,但由于人们的认知水平不足、缺乏对应的物理应用背景等原因,分数阶微分一直没得到相应的发展和重视[1]。
直到1982年,Mandelbrot等[2]第一次指出自然界和许多其他领域中存在很多相似于整数阶系统的分数维现象;在生物医学、力学物理、金融工程和神经网络工程等一些新兴领域,用整数微分方程建模存在很大的局限性,但利用分数阶微积分可以有效改善遗传记忆问题[3-5]。
此外,由于混沌信号具有初值敏感性、类随机性、连续宽带谱等特性,分数阶混沌系统在保密通信中具有巨大的潜在价值,可实现数字混沌加密通信,有利于提高信息的安全传输[6-7],因此研究分数阶系统具有十分重要的意义。
早在1990年,Peora和Corrol[8]就提出了混沌同步的概念,并广泛应用于物理学、气象学等各种工程和物理领域中。
近年来,混沌同步在保密通信等跨学科领域的潜在应用价值吸引了许多学者的注意[9],并取得了一些重大成果。
a r X i v :h e p -t h /9604058v 2 11 J u n 1996CTP-TAMU-12/96IC/96/54hep-th/9604058Liouville and Toda Solitons in M-theoryH.L¨u †,C.N.Pope †Center for Theoretical Physics,Texas A&M University,College Station,Texas 77843K.W.XuInternational Center for Theoretical Physics,Trieste,ItalyandInstitute of Modern Physics,Nanchang University,Nanchang,ChinaABSTRACT†Research supported in part by DOE Grant DE-FG05-91-ER406331IntroductionSolitonic extended-object solutions in the low energy effectivefield theories of the super-string and M-theory have been extensively studied.Until recently the principal focus has been on solutions that preserve some fraction of the supersymmetry,since these are ex-pected to be associated with BPS saturated states in the superstring or M-theory.The purpose of this paper is to re-examine the general equations of motion describing the p-brane solutions.In particular we shall focus on isotropic p-brane solutions[1-11],for which the D-dimensional metric takes the formds2=e2A dxµdxνηµν+e2B dy m dy m,(1)where xµare the coordinates of the d-dimensional world volume of the p-brane,y m are the coordinates of the(D−d)-dimensional transverse space,and A and B are functions of √r=2General electric and magnetic single-scalar solutionsLet us begin by considering a D-dimensional bosonic Lagrangian of the formL=eR−12n!e aφF2n,(2) where F n is an n’th rank antisymmetric tensorfield strength,and a is a constant,which can be conveniently parameterised as2d˜da2=∆−.(4)r n+1 The equations for A,B,C andφthat follow by substituting the above ans¨a tze into the equations of motion obtained from(2)are usually solved by making certain simplifying assumptions that are motivated by requiring that some fraction of the supersymmetry be preserved.In this paper,we shall obtain general solutions,in which no such further assumptions are made.To do this,we begin by re-expressing A,B andφin terms of three new quantities X,Y andΦ,defined byǫ˜dX≡dA+˜dB,Y≡A+X′=0,Y′′+X′Y′=0,(6)ρ∆λ2Φ′′+X′Φ′=−Y′2−(˜d+1) X′2−22∆Φ′2=λ2∆that in the usual p-brane solutions,the functions X and Y are both taken to be zero, corresponding to k=0=µ.In order to solve the remaining equations forΦ,it is convenient to make the coordinate transformationkρ=tanh(kξ),(9)which has the property that e X∂/∂ρ=∂/∂ξ.The equations(7)and(8)then reduce to¨Φ=−∆λ22˜de−Φ−12p2−∆λ2˜d(˜d+1)k2−a2d2X=cosh(kξ),(13)e1∆2a2d(D−2)µ2.The functions A,B andφare therefore given bye−(D−2)∆∆2d B=λ√2˜dβsinh(βξ+α)e a2(D−2)µξ/(2˜d)(cosh(kξ))−(D−2)∆2aφ=λ∆),implying that A,B andφgo to zero at r=∞(i.e.atξ=0).In particular,this means that the metric(1)approaches D-dimensional Minkowski spacetime at infinity.This asymptotically Minkowskian solution has a total of three independent free parameters,namelyλ,k andµ.The metric is singularatξ=∞,corresponding to r˜d=k.In order to interpret this as an outer event horizon,we must require that there be no curvature singularity at this location.It is also appropriate to impose the requirement that the dilatonφremainfinite at the outer event horizon, which implies thatβ=µd.Thus we haveµ=2k2√2∆,Q=λ2Φ=1+λ√∆.If k is instead positive,the mass exceeds this minimum value,and the solution describes a non-extremal black p-brane.3General multi-scalar solutionsWe now turn to the discussion of multi-scalar p-brane solutions,where a set of Nfield strengths carry independent charges.The relevant part of the supergravity Lagrangian in this case is given bye−1L=R−12n!Ni=1e a i· φF2i,(17)where φdenotes a set of N dilatonic scalarfields,and F i denotes a set of Nfield strengths of rank n,with associated dilaton vectors a i.We shall consider only solutions that are purely elementary or purely solitonic,with eachfield strength given by an ansatz of the form(4).First,we substitute the ans¨a tze(1)and(4)into the equations of motion coming from (17).As in the single-scalar case in the previous section,it is advantageous to introduce new variables in order to diagonalise the equations.Accordingly,we begin by definingX=dA+˜dB,Y=A+ǫ˜dD−2.(19)Note that the number N of field strengths whose dilaton vectors a i satisfy the above equation depends on the specific supergravity theory,and was discussed in the context of maximal supergravities in [10].The standard multi-scalar solution that arises when M ij is given by (19)is supersymmetric,and if the N independent charges λi are set equal,the solution reduces to a single-scalar supersymmetric p -brane with ∆=4/N [10,11].When M ij takes the form (19),we find that the equations of motion for X ,Y and Φi defined in (18)becomeX ′′+X ′2−1˜d2e −Φi ,(21)N i =12λ2i2˜d ˙Φ2i=−16(˜d +1)k 2+2d2(D −2)−d ˜dNµ2,(22)where a dot again means a derivative with respect to ξ,defined by (9).As in the single-scalar case,the solutions for X and Y are given by (13).The remaining equations (21)are N independent Liouville equations for the functions Φi ,subject to the single first-integral constraint (22).This can be re-expressed in terms of the HamiltonianH ≡N i =11˜d2e−Φi=16(˜d+1)˜d2(D −2)−d ˜dNµ2,(23)where p i is the momentum conjugate to Φi .Hamilton’s equations give rise to (21).Note that the equations for Φi are diagonalised into a set of N Liouville equations (21)because of the choice of the dot products M ij of the dilaton vectors,given by (19).For other choices of M ij ,the equations will not be diagonalised,but will instead have a structure of the general form of the Toda equations.However,the specific possibilities for M ij that are allowed by supergravity theories do not give the precise coefficients that would correspond to any Toda equations for any Lie algebra.The solutions of the Liouville equations (21)for Φi imply thate1˜dβi sinh(βi ξ+γi ),(24)while (22)gives the constraint ˜d i β2i=−8(˜d +1)k 2+d (2(D −2)−d ˜dN )µ2.The solution has an outer event horizon at r ˜d =k (i.e.at t =∞).The requirement that all the dilatonic fields be finite at the horizon implies that the constants βi are all equal,βi =β=µd ,and µ=2k˜dβsinh(βξ+γi ),(25)e2(D −2)B/d=(cosh(kξ))−(D −2)/(d ˜d)e(2(D −2)−d ˜dN )µξ/˜d N i =1λiThe mass per unit p-volume is given bym=14µ 2(D−2)−d˜dN + i 16µ2d2˜d2,(26) where the charges Q i=12(n−1)2(λ21e aφ−λ22e−aφ)e2(n−1)A−2X,A′′+X′A′=12(n−1)φ′2−n(X′2−22(n−1)(λ21e aφ+λ22e−aφ)e2(n−1)A−2X,where X=(n−1)(A+B)and satisfies(6).Theparametersλ1andλ2are associated withthe magnetic and electric charges of the solution.Defining new functions q1and q2byA=1n−1 ,φ=a a logλ22(2α−1)(p21+p22)+α−12+a22(n−1),(31)and H =H (p 1,p 2,q 1,q 2)is the Hamiltonian.Thus Hamilton’s equations ˙q i =∂H/∂p i imply thatp 1=α˙q 1+(1−α)˙q 2,p 2=(1−α)˙q 1+α˙q 2,(32)while ˙p i =−∂H/∂q i gives precisely the equations of motion (29).As far as we know,the equations (29),which have the general form of Toda equations,cannot be solved completely and explicitly for general values of α.1There are,however,two values of αfor which the equations do become completely solvable,namelyα=1:¨q 1=e q 1,¨q 2=e q 2,α=2:¨q 1=e 2q 1−q 2,¨q 2=e 2q 2−q 1.(33)The first case gives two independent Liouville equations,and the second case gives the SU (3)Toda equations.The solutions areα=1:e −q 1√2=12β2sinh[β2ξ+α2)],α=2:e−q 1=3 i =1f i eµi ξ,e−q 2=3 i =1g i e −µi ξ,(34)where βi and αi are arbitrary constants of integration.In the second case,the constants µi ,f i and g i satisfy the relationsµ1+µ2+µ3=0,f 1f 2f 3(µ1−µ2)2(µ2−µ3)2(µ3−µ1)2=−1,(35)g 1=−f 2f 3(µ2−µ3)2,and cyclically .The Hamiltonian is conserved,and in both cases the energy is equal to 8nk 2;α=1:H =2(β21+β22)=8nk 2,α=2:H =µ21+µ22+µ1µ2=8nk 2.(36)Let us discuss the two cases in more detail.When α=1,we have a 2=n −1and hence ∆=2(n −1).In supergravity theories,the dilaton prefactors for all field strengths satisfy the condition ∆≤4[10],and hence α=1dyonic solutions can only arise for 3-form fieldλ21+λ22.The rest of the analysis is identical to the purely electric or purely magneticsolutions with charge λ.strengths in D =6and 2-form field strengths in D =4.In D =6,the solution describes a black dyonic string,whilst in D =4,it describes a non-extremal dyonic black hole.In terms of the function A and dilaton φ,the solution is given bye√β1n −1φ−(n −1)A=λ22(n −1)sinh(β2ξ+α2),(37)with the constraint β21+β22=4nk 2.The solution has an outer event horizon at ρ=1/k (i.e.at ξ=∞).As in the previous sections we should require that the curvature and thedilaton field φbe finite at this horizon,which implies that β1=β2≡β=k√4λ2,Q m =122Q 2m +1Q 2e +12(n −1)β/λi so that the metric approaches Minkowskispacetime asymptotically ,and the dilaton vanishes at infinity.The usual extremal dyonic solutions [10]are recovered in the limit k =0.It is the supersymmetric dyonic string in D =6with ∆=4,or the non-supersymmetric dyonic black hole in D =4with ∆=2.For α=2,we have a 2=3(n −1),and hence ∆=4(n −1).Thus the solution exists only in supergravity theories in D =2n =4.Since in this case ∆=4,there is only one participating 2-form field strength.The non-extremal black hole is given by (34)and (36).There are in total four independent parameters,and the solution of the SU (3)Toda equations (33)givesn −13aφ−2(n −1)A =e−q 1=c 1e µ1ξν2(ν1−ν2)+e −µ1ξ−µ2ξλ4/32λ2/31e1c 1ν1(ν1−ν2)−e −µ2ξν1ν2,(39)where ν1=2µ1+µ2and ν2=2µ2+µ1,together with the constraint H =µ21+µ22+µ1µ2=8nk 2.The solution has an outer horizon at ρ=1/k ,(i.e.at ξ=∞,)if the constants c 1and c 2are both non-negative.As in the previous cases,we require that the dilaton field be finite at the horizon.No generality is lost in satisfying this condition by taking µ2=0.Itfollows from (36)that µ21=8nk 2.Thus the a =√3−2A=λ4/31λ2/32c 1c 2e−4kξ−2c 2,eφ/√32k 2c 1c 2e4kξ+1c 2.(40)If we require that φ,A and B vanish at infinity,the coefficients c i are related to the charges λi in the following way:c 1−2c 2+1c 1−24λ2and a magnetic charge Q m =1σ1(c 1−1σ2(c 1c 2−1σ1+6c 2σ2c 2≥0,(43)where again Q m =14λ2.The solution becomes extremal if the parameter k isset to zero.We shall study this limit in the following three special cases,namely Q m =0,Q e =0or Q m =Q e .The first two cases can be obtained in the following limits:Defining c i =αi L ,we haveL →0:Q m =0,Q e =k√α2−2α1,m =2Q 2e −2k 2−kk +2α1α24Q 2m +k 24Q 2m+k 2.(44)In the extremal limit k =0the mass is equal to Q e or Q m respectively,the Bogomol’nyi bound is saturated,and the solution becomes the usual supersymmetric purely electric orpurely magnetic a =√8Q 2+4k 2.(45)In the extremal limit k =0,the mass is equal to 2√Q 2e +Q 2m ,and hence itfollows from (43)that the solution is not supersymmetric.This is generically the case in the extremal limit,if both Q e and Q m are non-zero.It is not clear whether they will survive quantum corrections.5ConclusionsIn this paper,we have shown that the general equations of motion for isotropic single-scalar,multi-scalar and dyonic p -branes can be cast in the form of Liouville,Toda or Toda-likeequations.Thus we have been able to construct the most general possible isotropic p-brane solutions for the Liouville and Toda cases.The solutions are generically non-extremal,and the dilatonic scalarfields arefinite at the outer event horizon for appropriate choices of the constants of integration.In a certain limit,the solutions reduce to the previously-known extremal p-branes.In contrast to the usual black p-branes with p≥1,the non-extremal solutions that we obtained in this paper preserve the Poincar´e invariance of the p-brane world-volume.This difference arises because the usual black p-brane solitons have metrics taking the form[12]ds2=e2A(−e2f dt2+dx i dx i)+e2B(e−2f dr2+r2dΩ2),(46)where A,B and f are functions of r,and dΩ2is the metric on the unit(D−d−1)-sphere. Although a redefinition of the radial coordinate r permits the metric e−2f dr2+r2dΩ2in the transverse space to be recast in the form dy m dy m appearing in(1),the p-brane world-volume metric−e2f dt2+dx i dx i will never take the fully-isotropic form dxµdxνηµν=−dt2+dx i dx i appearing in(1)unless p=0,in which case there are no spatial world-volume coordinates x i.Thus the non-extremal p=0solutions that we obtained in this paper contain the standard non-extremal black holes,whereas the non-extremal p≥1solutions in this paper do not overlap with the standard blackened p-brane solutions[12].AcknowledgementWe are grateful to M.J.Dufffor discussions.References[1]A.Dabholkar,G.W.Gibbons,J.A.Harvey and F.Ruiz Ruiz,Superstrings and solitons,Nucl.Phys.B340(1990)33.[2]A.Strominger,Heterotic solitons Nucl.Phys.B343(1990)167.[3]M.J.Duffand K.S.Stelle,Multi-membrane solutions of D=11supergravity,Phys.Lett.B253(1991)113.[4]M.J.Duffand J.X.Lu,Strings fromfivebranes,Phys.Rev.Lett.66(1991)1402.[5]M.J.Duffand J.X.Lu,Elementaryfivebrane solutions of D=10supergravity,Nucl.Phys.B354(1991)141.[6]C.G.Callan,J.A.Harvey and A.Strominger,World-sheet approach to heterotic in-stantons and solitons,Nucl.Phys.B359(1991)611;World-brane actions for string solitons,Nucl.Phys.B367(1991)60.[7]R.G¨u ven,Black p-brane solutions of D=11supergravity theory,Phys.Lett.B276(1992)49.[8]M.J.Duff,R.R.Khuri and J.X.Lu,String solitons,Phys.Rep.259(1995)213.[9]H.L¨u,C.N.Pope,E.Sezgin and K.S.Stelle,Stainless super p-branes,Nucl.Phys.B456(1995)669.[10]H.L¨u and C.N.Pope,p-brane solitons in maximal supergravities,hep-th/9512012,toappear in Nucl.Phys.B.[11]H.L¨u and C.N.Pope,Multi-scalar p-brane solitons,hep-th/9512153,to appear in Int.J.Mod.Phys.A.[12]M.J.Duff,H.L¨u and C.N.Pope,The black branes of M-theory,preprint CTP-TAMU-14/96.。