高中数学压轴题试卷整合
- 格式:doc
- 大小:364.00 KB
- 文档页数:5
压轴题01函数性质的综合运用函数是高中数学的主干,也是高考考查的重点,而函数的性质是函数的灵魂,它对函数概念的理解以及利用函数性质来解决相关函数问题起到十分重要的作用.此外在高考试题的考查中函数的性质也是常见题型.考向一:利用奇偶性、单调性解函数不等式考向二:奇函数+M 模型与奇函数+函数模型考向三:周期运用的综合运用1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x ;②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;③定号:判断差的正负或商与1的大小关系;④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x是增函数,则()f x-为减函数;若()f x是减函数,则()f x-为增函数;②若()f x和()g x均为增(或减)函数,则在()f x和()g x的公共定义域上()()f xg x+为增(或减)函数;③若()0f x>且()f x为增函数,1()f x为减函数;④若()0f x>且()f x为减函数,1()f x为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x是偶函数⇔函数()f x的图象关于y轴对称;函数()f x是奇函数⇔函数()f x的图象关于原点中心对称.(3)若奇函数()y f x=在0x=处有意义,则有(0)0f=;偶函数()y f x=必满足()(||)f x f x=.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x的定义域关于原点对称,则函数()f x能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x=+-,1()()()]2h x f x f x=--,则()()()f xg xh x=+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f xg x f x g x f x g x f x g x+-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x=的奇偶性原来:内偶则偶,两奇为奇.(8)常见奇偶性函数模型奇函数:①函数1()()01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-.③函数2()log log (1)aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =或函数()log )a f x x =.注意:关于①式,可以写成函数2()(0)1xm f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+.②函数()log (1)2mx a mxf x a =+-.③函数(||)f x 类型的一切函数.④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.1.(2023·河北唐山·开滦第二中学校考一模)已知函数()222e e 287x x f x x x --=++-+则不等式()()232f x f x +>+的解集为()A.1(1)3--,B.1(,1)(,)3-∞--+∞ C.1(1)3-,D.1(,(1,)3-∞-⋃+∞2.(2023·安徽宣城·统考二模)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=.若()3f x +为奇函数,322g x ⎛⎫+ ⎪⎝⎭为偶函数,且()03g =-,()12g =,则()20231i g i ==∑()A.670B.672C.674D.6763.(2023·甘肃定西·统考一模)定义在R 上的函数()f x 满足()()()f x y f x f y +=+,当0x >时,()0f x <,则不等式()()22530f x f x x -+-<的解集为()A.5,3⎛⎫-∞ ⎪⎝⎭B.51,2⎛⎫- ⎪⎝⎭C.()5,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭D.5,3⎛⎫+∞ ⎪⎝⎭4.(2023·吉林通化·梅河口市第五中学校考一模)已知函数()()lg 122x xf x x -=-++,则不等式()()12f x f x +<的解集为()A.()(),11,-∞-⋃+∞B.()2,1--C.()(),21,-∞-+∞ D.()()1,1,3-∞-⋃+∞5.(2023·内蒙古·模拟预测)已知()f x 是定义在[]4,4-上的增函数,且()f x 的图象关于点()0,1对称,则关于x 的不等式()()23350f x f x x +-+->的解集为()A.(),1-∞B.()1,+∞C.(]1,7D.(]1,26.(2023·广西梧州·统考一模)已知定义在R 上的函数()f x 在(,1]-∞上单调递增,若函数(1)f x +为偶函数,且(3)0f =,则不等式()0xf x >的解集为()A.(1,3)-B.(,1)(3,)-∞-⋃+∞C.(,1)(0,3)-∞-⋃D.(1,0)(3,)-+∞ 7.(2023·河南·开封高中校考模拟预测)已知()f x 是定义域为R 的奇函数,当0x >时,()()2ln 1f x x x =++,则不等式()211ln2f x +>+的解集为()A.{1}∣<x x B.{0}x x <∣C.{1}xx >∣D.{0}xx >∣8.(2023·福建泉州·校考模拟预测)已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为()A.](2-∞,B.[)2,+∞C.[]24-,D.[]14,9.(2023·陕西西安·高三西北工业大学附属中学校考阶段练习)已知函数()(32e log e 1xx f x x =++在[],(0)k k k ->上的最大值与最小值分别为M 和m ,则M m +=()A.2-B.0C.2D.410.(2023·江西南昌·统考一模)已知函数()()35112=-+f x x ,若对于任意的[]2,3x ∈,不等式()()21+-≤f x f a x 恒成立,则实数a 的取值范围是()A.(),2-∞B.(],2-∞C.(),4-∞D.(],4∞-11.(2023·全国·高三专题练习)已知函数()e e 2x xf x x x -=-++在区间[]22-,上的最大值与最小值分别为,M N ,则M N +的值为()A.2-B.0C.2D.412.(2023·全国·高三专题练习)若对x ∀,R y ∈.有()()()4f x y f x f y +=+-,则函数22()()1xg x f x x =++在[2018-,2018]上的最大值和最小值的和为()A.4B.8C.6D.1213.(多选题)(2023·浙江杭州·统考二模)已知函数()f x (x ∈R )是奇函数,()()2f x f x +=-且()12f =,()f x '是()f x 的导函数,则()A.()20232f =B.()f x '的一个周期是4C.()f x '是偶函数D.()11f '=14.(多选题)(2023·安徽滁州·统考二模)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若12f x ⎛⎫- ⎪⎝⎭,()1g x +均为奇函数,则()A.()00f =B.()00g =C.()()14f f -=D.()()14g g -=15.(多选题)(2023·吉林·统考三模)设定义在R 上的可导函数()f x 与()g x 导函数分别为()f x '和()g x ',若()()212f x g x x =-+,()1f x +与()g x 均为偶函数,则()A.()11g '=B.()20220323g =-'C.()24f '=-D.991198100i f i =⎛⎫= ⎪⎝'⎭∑16.(多选题)(2023·海南海口·校考模拟预测)已知定义在R 上的函数()f x 在(],2-∞上单调递增,且()2f x +为偶函数,则()A.()f x 的对称中心为()2,0B.()f x 的对称轴为直线2x =C.()()14f f -<D.不等式()()34f x f x +>的解集为()1,1,5⎛⎫-∞+∞ ⎪⎝⎭ 17.(多选题)(2023·广东佛山·佛山一中校考一模)设函数()y f x =的定义域为R ,且满足(1)(1)f x f x +=-,(2)()0f x f x -+-=,当[]1,1x ∈-时,()1f x x =-+,则下列说法正确的是()A.()1y f x =+是偶函数B.()3y f x =+为奇函数C.函数()lg =-y f x x 有8个不同的零点D.()202311k f k ==∑18.(2023·江西吉安·统考一模)已知函数()f x 的定义域为R ,其导函数为()g x ,若函数(22)f x +为偶函数,函数(1)g x -为偶函数,则下列说法正确的序号有___________.①函数()f x 关于2x =轴对称;②函数()f x 关于(1,0)-中心对称;③若(2)1,(5)1f f -==-,则(26)(16)=3g f +-;④若当12x -≤≤时,1()e 1x f x +=-,则当1417x ≤≤时,17()e 1x f x -=-.19.(2023·陕西榆林·统考一模)已知函数()f x 是定义在()2,2-上的增函数,且()f x 的图象关于点()0,2-对称,则关于x 的不等式()()240f x f x +++>的解集为__________.20.(2023·全国·校联考模拟预测)已知定义在R 上的函数()f x 满足:对任意实数a ,b 都有()()()1a a b b f f f +=+-,且当0x >时,()1f x >.若()23f =,则不等式()212f x x --<的解集为______.21.(2023·江西赣州·高三统考阶段练习)已知()f x 是定义在[]4,4-上的增函数,且()f x 的图象关于点()0,1对称,则关于x 的不等式()()23350f x f x x +-+->的解集为______.22.(2023·湖南湘潭·高三湘钢一中校考开学考试)已知()f x 是定义在()5,5-上的增函数,且()f x 的图象关于点()0,1-对称,则关于x 的不等式()()211320f x f x x ++-++>的解集为_________.23.(2023·江苏常州·高三校联考开学考试)已知函数()2e e e ex xx x f x x ---=++,则不等式()()21122f x f x x ++-<+的解集为__________.24.(2023·辽宁·鞍山一中校联考模拟预测)已知函数()f x ,()g x 的定义域均为R ,()1f x +是奇函数,且()()12f x g x -+=,()()32f x g x +-=,则下列结论正确的是______.(只填序号)①()f x 为偶函数;②()g x 为奇函数;③()20140k f k ==∑;④()20140k g k ==∑.25.(2023·陕西西安·西北工业大学附属中学校考模拟预测)已知函数()(32e log e 1xxf x x =++在[](),0k k k ->上的最大值与最小值分别为M 和m ,则函数()()()31g x M m x M m x -=+++-⎡⎤⎣⎦的图象的对称中心是___________.26.(2023·全国·高三专题练习)设函数()())221ln1x xf x x ++=+的最大值为M ,最小值为N ,则M N +的值为________。
高中数学圆锥曲线压轴题大全(总25页)-本页仅作为预览文档封面,使用时请删除本页-数学压轴题圆锥曲线类一1.如图,已知双曲线C :x a yba b 2222100-=>>(),的右准线l 1与一条渐近线l 2交于点M ,F 是双曲线C 的右焦点,O 为坐标原点.(I )求证:O M M F→⊥→; (II )若||MF →=1且双曲线C 的离心率e =62,求双曲线C 的方程;(III )在(II )的条件下,直线l 3过点A (0,1)与双曲线C 右支交于不同的两点P 、Q 且P在A 、Q 之间,满足A P A Q →=→λ,试判断λ的范围,并用代数方法给出证明.2.已知函数f x x n x n f n n x n n N ()()[()]()(*)=≤--+--<≤∈⎧⎨⎩00111,, 数列{}a n 满足a f n nN n=∈()(*) (I )求数列{}a n 的通项公式; (II )设x 轴、直线x a =与函数y f x =()的图象所围成的封闭图形的面积为Sa a ()()≥0,求S nS n n N ()()(*)--∈1; (III )在集合M N N kkZ ==∈{|2,,且10001500≤<k }中,是否存在正整数N ,使得不等式a S n S n n->--10051()()对一切n N >恒成立?若存在,则这样的正整数N 共有多少个?并求出满足条件的最小的正整数N ;若不存在,请说明理由.(IV )请构造一个与{}a n 有关的数列{}b n ,使得l i m ()n nb b b →∞+++12 存在,并求出这个极限值. 19. 设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程; (II )若A 、B 分别为l l 12、上的点,且2512||||A B F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线; (III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP O Q →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.3. 已知数列{}a n 的前n 项和为S n N n ()*∈,且S m m a n n=+-()1对任意自然数都成立,其中m 为常数,且m <-1. (I )求证数列{}a n 是等比数列;(II )设数列{}a n 的公比q f m =(),数列{}b n 满足:b a b f b n n 11113==-,() ()*n n N ≥∈2,,试问当m 为何值时,l i m (l g )l i m (n b a n b b b b b b n n →∞=→∞+++3122334…+-b b n n 1)成立?4.设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为A ,过点A 与AF 垂直的直线分别交椭圆和x 轴正半轴于P ,Q 两点,且P 分向量AQ 所成的比为8∶5.(1)求椭圆的离心率; (2)若过F Q A ,,三点的圆恰好与直线l :033=++y x 相切,求椭圆方程.5.(理)给定正整数n 和正数b ,对于满足条件b a a n ≥-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.(文)给定正整数n 和正数b ,对于满足条件b a a n =-+211的所有无穷等差数列{}n a ,试求1221++++++=n n n a a a y 的最大值,并求出y 取最大值时{}n a 的首项和公差.6.垂直于x 轴的直线交双曲线2222=-y x 于M 、N 不同两点,A 1、A 2分别为双曲线的左顶点和右顶点,设直线A 1M 与A 2N 交于点P (x 0,y 0)(Ⅰ)证明:;2202为定值y x +(Ⅱ)过P 作斜率为02y x -的直线l ,原点到直线l 的距离为d ,求d 的最小值. 7.已知函数x x x f sin )(-= (Ⅰ)若;)(],,0[的值域试求函数x f x π∈(Ⅱ)若);32(3)()(2:),,0(],,0[xf x f f x +≥+∈∈θθπθπ求证(Ⅲ)若)32(3)()(2,),)1(,(],)1(,[xf x f f Z k k k k k x ++∈+∈+∈θθππθππ与猜想的大小关系(不必写出过程).数学压轴题圆锥曲线类二1.如图,设抛物线2:xy C=的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程. (2)证明∠PFA=∠PFB. 2.设A 、B 是椭圆λ=+223y x上的两点,点N (1,3)是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点.(Ⅰ)确定λ的取值范围,并求直线AB 的方程;(Ⅱ)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由. (此题不要求在答题卡上画图)3. 已知不等式n n n 其中],[log 21131212>+++ 为大于2的整数,][log 2n 表示不超过n 2log 的最大整数. 设数列}{n a 的各项为正,且满足 ,4,3,2,),0(111=+≤>=--n a n na a b b a n n n(Ⅰ)证明 ,5,4,3,][log 222=+<n n b ba n (Ⅱ)猜测数列}{n a 是否有极限?如果有,写出极限的值(不必证明);(Ⅲ)试确定一个正整数N ,使得当N n>时,对任意b>0,都有.51<n a4.如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若点P 为l 上的动点,求∠F 1PF 2最大值.5.已知函数()f x 和()g x 的图象关于原点对称,且()22f x x x =+.(Ⅰ)求函数()g x 的解析式;(Ⅱ)解不等式()()1g x f x x ≥--;(Ⅲ)若()()()1h x g x f x λ=-+在[]1,1-上是增函数,求实数λ的取值范围.数学压轴题圆锥曲线类三1.已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT(Ⅰ)设x 为点P 的横坐标,证明x aca P F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.2.函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g += (Ⅰ)用0x 、)(0x f 、)(0x f '表示m ;(Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.3.已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈(I )证明数列{}1n a +是等比数列;(II )令212()nn f x a x a x a x=+++,求函数()f x 在点1x =处的导数(1)f '并比较2(1)f '与22313n n -的大小.4.已知动圆过定点,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.(I )求动圆圆心C 的轨迹的方程; (II )设A 、B 是轨迹C 上异于原点O 的两个不同点,直线OA 和OB 的倾斜角分别为α和β,当,αβ变化且αβ+为定值(0)θθπ<<时,证明直线AB 恒过定点,并求出该定点的坐标.5.椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程; (Ⅱ)若直线2:+=kx y l与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.6.数列{a n }满足)1(21)11(1211≥+++==+n a n n a a nn n 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=….7.已知数列:,}{且满足的各项都是正数n a .),4(,21,110N n a a a a n n n ∈-==+ (1)证明;,21N n a a n n ∈<<+(2)求数列}{n a 的通项公式a n .1.解:(I ) 右准线l 12:x a c =,渐近线l 2:y bax =∴=+M a c a b cF c c a b()()22220,,,, ,∴→=O M a c a b c ()2, M F c a c a b c b c a bc →=--=-()()22,,O M M F a b c a bc O M M F →⋅→=-=∴→⊥→2222220 ……3分(II ) e b a e a b =∴=-=∴=621222222,,||()M F b c a b c b b a cb a →=∴+=∴+=∴==1111142222222222,,, ∴双曲线C 的方程为:x y 2221-= ……7分 (III )由题意可得01<<λ ……8分证明:设l 31:y k x =+,点P x y Q x y ()()1122,,, x =由x y y kx 22221-==+⎧⎨⎩得()1244022--+=kx k x l 3与双曲线C 右支交于不同的两点P 、Q∴-≠=+->+=->=-->⎧⎨⎪⎪⎪⎩⎪⎪⎪∴≠±<<-<⎧⎨⎪⎪⎪⎩⎪⎪⎪120161612041204120221012022212212222k k k x x k k x x k k k k k ∆() ∴-<<-122k ……11分 A P A Q x y x y →=→∴-=-λλ,,,()()112211,得x x 12=λ∴+=-=--∴+=--=-=+-()()()1412412116412421222122222222222λλλλx k k x kk k k k k , -<<-∴<-<∴+>12202111422k k ,,()λλ∴+>∴-+>()1421022λλλλ∴λ的取值范围是(0,1)……13分 2.解:(I ) nN ∈* ∴=--+-=+-f n n n n f nn f n ()[()]()()111 ∴--=f n f n n()()1 ……1分 ∴-=-=-=f f f f f f ()()()()()()101212323……fn fn n ()()--=1 将这n 个式子相加,得fnf n n n ()()()-=++++=+012312f f n n n ()()()0012=∴=+∴=+∈a n n n N n()(*)12……3分 (II )S n S n ()()--1为一直角梯形(n =1时为直角三角形)的面积,该梯形的两底边的长分别为fn f n ()()-1,,高为1∴--=-+⨯=+-S n S n f n f n a a n n()()()()112121=-++=12121222[()()]n n n n n……6分(III )设满足条件的正整数N 存在,则n n n nn ()+->⇔>⇔>12100522100520102 又M ={}200020022008201020122998,,,,,,,∴=N 201020122998,,……,均满足条件 它们构成首项为2010,公差为2的等差数列. 设共有m 个满足条件的正整数N ,则2010212998+-=()m ,解得m =495 ∴M 中满足条件的正整数N 存在,共有495个,N m i n =2010 ……9分(IV )设b a nn=1,即b n n n n n =+=-+212111()()则b b b n n n n 122112121313141112111+++=-+-+-++-+=-+ [()()()()]()显然,其极限存在,并且l i m ()l i m []n nn b b b n →∞→∞+++=-+=122112 ……10分 注:b c a n n=(c 为非零常数),b b q q n a n n a n n n ==<<++()(||)12012121,等都能使l i m ()n n b b b →∞+++12 存在. 19.解:(I ) ec a =∴=2422,c a a c 22312=+∴==,, ∴-=双曲线方程为y x 2231,渐近线方程为y x =±33 4分(II )设A x y B x y ()()1122,,,,AB 的中点()Mx y ,[]2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分)(III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[] O P O Q xx y y xx k x x xx k xx x x i →→=∴+=∴+--=∴+-++=·0110101212122121221212()()()()由得则,y k x y x k x k x k x x k k xx k k i i =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222 由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l . 14分3.解:(I )由已知S m m a n n ++=+-1111()()S m m a n n=+-()1 (2) 由()()12-得:a m a m a n n n ++=-11,即()m a m a n n+=+11对任意n N ∈*都成立 {} m m a a m m a n n n 为常数,且即为等比数列分<-∴=++1151(II )当n =1时,a m m a 111=+-() ∴====+∴==+≥∈---a b I q f m mm b f b bb n n N n n n n 11111113112,从而由()知,()()()* ∴=+-=∴⎧⎨⎩⎫⎬⎭∴=+-=+=+∈--1111111131212911b b b b b b n n b n n N n n n n n n n,即为等差数列,分()()*a m m n n =+⎛⎝ ⎫⎭⎪-11∴→∞=→∞-++=+→∞+++=→∞-+-+++-+⎛⎝ ⎫⎭⎪=-l i m (l g )l i m l g l g l i m ()l i m n b a n n n m m mm n bb bb b b n n n n nn n 121133131414151112112231·……由题意知lg mm +=11,∴+=∴=-m m m 110109, 13分4.解:(1)设点),0,(),0,(0c F x Q -其中),0(,22b A b a c -=.由P 分AQ 所成的比为8∶5,得)135,138(0b x P , 2分 ∴a x a x 231)135()138(022202=⇒=+.①, 4分 而AQ FA b x AQ b c FA ⊥-==),,(),,(0,∴0=⋅AQ FA .cb x b cx 2020,0==-∴.②, 5分由①②知0232,32222=-+∴=a ac c ac b .∴21.02322=∴=-+e e e . 6分(2)满足条件的圆心为)0,2(22cc b O -', )0,(,2222222c O c cc c a c c b '∴=--=-, 8分圆半径a ca cb r ==+=22222.10分由圆与直线l :033=++y x 相切得,a c =+2|3|, 又3,2,1,2===∴=b a c c a .∴椭圆方程为13422=+y x . 12分5.(理)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 dn a n nd a d a a a a a y n n n n n n n )21()1()()(11111221+++++=+++++=+++=+++++++d n n a n n 2)1()1(1+++=+ 4分)2)(1()2)(1(1111a a a n nda n n n n -++=++=+++)3(2111a a n n -+=+. 7分又211211,++--≤-∴≥-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-≤-++++,当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+≤-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=,∴y 的最大值为8)49)(1(b n -+. 14分(文)解:设{}n a 公差为d ,则1111,a a nd nd a a n n -=+=++. 3分 )2)(1(2)1()1()21()1()()(1111111221nda n d n n a n d n a n nd a d a a a a a y n n n n n n n n n ++=+++=+++++=++++=+++=+++++++++)3(21)2)(1(11111a a n a a a n n n n -+=-++=+++, 6分又211211,++--=-∴=-n n a b a b a a .∴449449)23(332112111b b a b a a a a n n n n -≤-+--=-+-=-++++.当且仅当231=+n a 时,等号成立. 11分∴8)49)(1()3(2111b n a a n y n -+=-+=+. 13分 当数列{}n a 首项491+=b a ,公差n b d 434+-=时,8)49)(1(b n y -+=.∴y 的最大值为8)49)(1(b n -+. 14分6.解(Ⅰ)证明:)0,2(),0,2(),,(),,(211111A A y x N y x M --- 则设)2(2111++=∴x x y y M A 的方程为直线①直线A 2N 的方程为)2(211---=x x y y ②……4分①×②,得)2(2221212---=x x y y分为定值的交点与是直线即822),(22),2(21,222020210022222121 =+∴=+--=∴=-y x N A M A y x P y x x y y x(Ⅱ)02222),(20020200000=-+=+--=-y y x x y x x x y x y y l 整理得结合的方程为22020201222242y yyx d +=+=+=于是……10分11221122220202020≥+=∴≤+∴≤∴=+y d y y y x 当1,1,1200取最小值时d y y =±=……12分7.解:(Ⅰ)为增函数时当)(,0cos 1)(,),0(x f x x f x ∴>-='∈π分的值域为即求得所以上连续在区间又4],0[)()(0),()()0(],0[)( ππππx f x f f x f fx f ≤≤≤≤(Ⅱ)设)32(3)()(2)(x f x f f x g +-+-=θθ,32sin3sin )(2)(xx f x g +++-=θθ即 )32cos cos (31)(xx x g ++-='θ……6分θπθπθπ=='∈+∴∈∈x x g xx 得由,0)(),0(32),0(],,0[ .)(,0)(,),0(为减函数时当x g x g x <'∈∴θ分为增函数时当8)(,0)(,),( x g x g x >'∈πθ 分因而有对的最小值为则上连续在区间10)32(3)()(20)()(],0[)()(],0[)( x f x f f g x g x x g g x g +≥+=≥∈θθθπθπ (Ⅲ)在题设条件下,当k 为偶数时)32(3)()(2xf x f f +≥+θθ 当k 为奇数时)32(3)()(2xf x f f +≤+θθ……14分 数学压轴题圆锥曲线类二1.解:(1)设切点A 、B 坐标分别为))((,(),(0121120x x x x x x ≠和,∴切线AP 的方程为:;02200=--x y x x切线BP 的方程为:;02211=--x y x x解得P 点的坐标为:1010,2x x y x x x P P=+=所以△APB 的重心G 的坐标为 P PG x x x x x =++=310, ,343)(3321021010212010pP P G y x x x x x x x x x y y y y -=-+=++=++=所以243G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:).24(31,02)43(22+-==-+--x x y x y x 即(2)方法1:因为).41,(),41,2(),41,(2111010200-=-+=-=x x FB x x x x FP x x FA 由于P 点在抛物线外,则.0||≠FP∴||41)1)(1(||||cos 102010010FP x x x x x x x x FA FP FA FP AFP +=--+⋅+==∠同理有||41)1)(1(||||cos 102110110FP x x x x x x x x FB FP BFP +=--+⋅+==∠∴∠AFP=∠PFB. 方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2(1x ,则P 点到直线AF 的距离为:,4141:;2||12111x x x y BF x d -=-=的方程而直线即.041)41(1121=+--x y x x x所以P 点到直线BF 的距离为:2||412||)41()()41(|42)41(|1211212122111212x x x x x x x x x d =++=+-+-=所以d 1=d 2,即得∠AFP=∠PFB.②当001≠x x 时,直线AF 的方程:,041)41(),0(041410020020=+-----=-x y x x x x x x y 即 直线BF 的方程:,041)41(),0(0414********=+-----=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:2||41)41)(2|)41(|41)2)(41(|1020201020220012010201x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P 点到直线BF 的距离2||012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB.(Ⅰ)解法1:依题意,可设直线AB 的方程为λ=++-=223,3)1(y x x k y 代入,整理得.0)3()3(2)3(222=--+--+λk x k k x k ①设212211,),,(),,(x x y x B y x A 则是方程①的两个不同的根, ∴,0])3(3)3([422>--+=∆k k λ ②且,3)3(2221+-=+k k k x x 由N (1,3)是线段AB 的中点,得.3)3(,12221+=-∴=+k k k x x 解得k=-1,代入②得,λλ即,12>的取值范围是(12,+∞). 于是,直线AB 的方程为.04),1(3=-+--=-y x x y 即 解法2:设),,(),,(2211y x B y x A 则有.0))(())((332121212122222121=+-++-⇒⎪⎩⎪⎨⎧=+=+y y y y x x x x y x y x λλ依题意,.)(3,212121y y x x k x x AB ++-=∴≠ ∵N (1,3)是AB 的中点, ∴.1,6,22121-==+=+AB k y y x x 从而又由N (1,3)在椭圆内,∴,1231322=+⨯>λ∴λ的取值范围是(12,+∞).直线AB 的方程为y -3=-(x -1),即x+y -4=0.(Ⅱ)解法1:∵CD 垂直平分AB ,∴直线CD 的方程为y -3=x -1,即x -y+2=0,代入椭圆方程,整理得 .04442=-++λx x又设),,(),,(4433y x D y x C CD 的中点为4300,),,(x x y x C 则是方程③的两根,∴).23,21(,232,21)(21,10043043-=+=-=+=-=+M x y x x x x x 即且于是由弦长公式可得 .)3(2||)1(1||432-=-⋅-+=λx x kCD ④将直线AB 的方程x+y -4=0,代入椭圆方程得016842=-+-λx x ⑤同理可得 .)12(2||1||212-=-⋅+=λx x k AB ⑥∵当12>λ时,||||,)12(2)3(2CD AB <∴->-λλ假设存在λ>12,使得A 、B 、C 、D 四点共圆,则CD 必为圆的直径,点M 为圆心.点M 到直线AB 的距离为 .2232|42321|2|4|00=-+-=-+=y x d ⑦ 于是,由④、⑥、⑦式和勾股定理可得.|2|2321229|2|||||22222CD AB d MB MA =-=-+=+==λλ 故当λ>12时,A 、B 、C 、D 四点匀在以M 为圆心,2||CD 为半径的圆上.(注:上述解法中最后一步可按如下解法获得:)A 、B 、C 、D 共圆⇔△ACD 为直角三角形,A 为直角⇔|AN|2=|CN|·|DN|,即 ).2||)(2||()2||(2d CD d CD AB -+= ⑧ 由⑥式知,⑧式左边,212-=λ由④和⑦知,⑧式右边,2122923)2232)3(2)(2232)3(2(-=--=--+-=λλλλ∴⑧式成立,即A 、B 、C 、D 四点共圆.解法2:由(Ⅱ)解法1及λ>12, ∵CD 垂直平分AB , ∴直线CD 方程为13-=-x y ,代入椭圆方程,整理得.04442=-++λx x ③将直线AB 的方程x+y -4=0,代入椭圆方程,整理得.016842=-+-λx x ⑤解③和⑤式可得 .231,21224,32,1-±-=-±=λλx x 不妨设)233,231(),233,231(),12213,12211(-+-+---------+λλλλλλD C A∴)21233,23123(---+-+-+=λλλλCA)21233,23123(-------+=λλλλDA计算可得0=⋅DA CA ,∴A 在以CD 为直径的圆上.又B 为A 关于CD 的对称点,∴A 、B 、C 、D 四点共圆. (注:也可用勾股定理证明AC ⊥AD )3.本小题主要考查数列、极限及不等式的综合应用以及归纳递推的思想. (Ⅰ)证法1:∵当,111,0,211111na na a n a a n na a nn n n n n n n +=+≥∴+≤<≥-----时即,1111na a n n ≥-- 于是有.111,,3111,211112312na a a a a a n n ≥-≥-≥-- 所有不等式两边相加可得.13121111na a n +++≥- 由已知不等式知,当n ≥3时有,].[log 211121n a a n >- ∵.][log 22.2][log 2][log 2111,2221n b ba b n b n b a b a n n +<+=+>∴= 证法2:设n n f 13121)(+++= ,首先利用数学归纳法证不等式.,5,4,3,)(1 =+≤n bn f ba n(i )当n=3时, 由 .)3(11223313333112223b f ba a a a a a +=++⋅≤+=+≤知不等式成立.(ii )假设当n=k (k ≥3)时,不等式成立,即,)(1bk f ba k+≤则1)(1)1(11)1(1)1()1(1++⋅++≤+++=+++≤+bb k f k k a k k a k a k a k k k k ,)1(1)11)((1)()1()1()1(bk f bbk k f b b b k f k k b k ++=+++=+++++=即当n=k+1时,不等式也成立. 由(i )、(ii )知,.,5,4,3,)(1 =+≤n bn f ba n又由已知不等式得 .,5,4,3,][log 22][log 21122 =+=+<n n b bb n ba n(Ⅱ)有极限,且.0lim =∞→n n a(Ⅲ)∵,51][log 2,][log 2][log 22222<<+n n n b b 令则有,10242,10][log log 1022=>⇒>≥n n n故取N=1024,可使当n>N 时,都有.51<n a4.解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则()2111222222,2242,1 1.43a MA a A F a cca a a c c a abc a b c x y =-=-⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩∴===+=由题意,得 故椭圆方程为 (Ⅱ)()004,,0P y y -≠设001122121102112212000121212350,22tan 115tan y y PF k PF k F PF PF M F PF y k k F PF k k y y y F PF F PF F PF π=-=-<∠<∠<∴∠-∴∠==≤=++=±∠∠∠设直线的斜率,直线的斜率 为锐角。
2023年新高考数学选填压轴题好题汇编(一)一、单选题1.(2022·广东·广州市真光中学高三开学考试)端午佳节,人们有包粽子和吃粽子的习俗,粽子主要分为南北两大派系,地方细分特色鲜明,且形状各异,裹蒸粽是广东肇庆地区最为出名的粽子,是用当地特有的冬叶、水草包裹糯米、绿豆、猪肉、咸蛋黄等蒸制而成的金字塔形的粽子,现将裹蒸粽看作一个正四面体,其内部的咸蛋黄看作一个球体,那么,当咸蛋黄的体积为4π3时,该裹蒸粽的高的最小值为()A.4B.6C.8D.102.(2022·广东惠州·高三阶段练习)甲罐中有5个红球,3个白球,乙罐中有4个红球,2个白球.整个取球过程分两步,先从甲罐中随机取出一球放入乙罐,分别用A1、A2表示由甲罐取出的球是红球、白球的事件;再从乙罐中随机取出两球,分别用B、C表示第二步由乙罐取出的球是“两球都为红球”、“两球为一红一白”的事件,则下列结论中不正确的是( )A.P B A1=1021 B.P C A2=47 C.P B =1942 D.P C =43843.(2022·广东·鹤山市鹤华中学高三开学考试)已知直线ax-2by+14=0平分圆C:x2+y2-4x-2y-11= 0的面积,过圆外一点P a,b向圆做切线,切点为Q,则PQ的最小值为( )A.4B.5C.6D.74.(2022·广东广州·高三开学考试)设a=ln1.1,b=e0.1-1,c=tan0.1,d=0.4π,则()A.a<b<c<dB.a<c<b<dC.a<b<d<cD.a<c<d<b5.(2022·广东广州·高三开学考试)若空间中经过定点O的三个平面α,β,γ两两垂直,过另一定点A作直线l与这三个平面的夹角都相等,过定点A作平面δ和这三个平面所夹的锐二面角都相等.记所作直线l的条数为m,所作平面δ的个数为n,则m+n=( )A.4B.8C.12D.166.(2022·广东·深圳外国语学校高三阶段练习)已知a =e 0.05,b =ln1.12+1,c = 1.1,则( )A.a >b >cB.c >b >aC.b >a >cD.a >c >b7.(2022·广东·深圳外国语学校高三阶段练习)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,O 为坐标原点,点P 为双曲线C 中第一象限上的一点,∠F 1PF 2的平分线与x 轴交于Q ,若OQ=14OF 2 ,则双曲线的离心率范围为( )A.1,2B.1,4C.2,2D.2,48.(2022·广东·高三阶段练习)设a =4-ln4e2,b =ln22,c =1e ,则( )A.a <c <bB.a <b <cC.b <a <cD.b <c <a9.(2022·广东·高三阶段练习)定义在R 上的函数f x 满足f (-x )+f (x )=0,f (x )=f (2-x );且当x ∈[0,1]时,f (x )=x 3-x 2+x .则方程7f (x )-x +2=0所有的根之和为( )A.14B.12C.10D.810.(2022·广东·高三开学考试)设a =12e,b =ln 2,c =4-ln4e 2,则( )A.a <b <cB.c <b <aC.a <c <bD.b <c <a11.(2022·广东·高三开学考试)已知f (x )=2x 2,数列a n 满足a 1=2,且对一切n ∈N *,有a n +1=f a n ,则( )A.a n 是等差数列 B.a n 是等比数列C.log 2a n 是等比数列D.log 2a n +1 是等比数列12.(2022·广东·中山一中高三阶段练习)已知a =log 1.10.9,b =0.91.1,c =1.10.9,则a ,b ,c 的大小关系为( )A.a <b <cB.a <c <bC.b <a <cD.b <c <a13.(2022·广东·中山一中高三阶段练习)已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一零点,则a =()A.-12B.13C.12D.114.(2022·广东·高三阶段练习)已知平面向量a ,b ,c 满足a=b =a ⋅b =2,且b -c ⋅3b -c =0,则c -a最小值为( )A.22+1B.33-3C.7-1D.23-215.(2022·湖南·邵阳市第二中学高三阶段练习)已知f (x )是定义在R 上的函数,且对任意x ∈R 都有f (x +2)=f (2-x )+4f (2),若函数y =f (x +1)的图象关于点(-1,0)对称,且f (1)=3,则f (2021)=( )A.6B.3C.0D.-316.(2022·湖南·邵阳市第二中学高三阶段练习)对于定义在R 上的函数f x ,若存在正常数a 、b ,使得f x +a≤f x +b 对一切x ∈R 均成立,则称f x 是“控制增长函数”.在以下四个函数中:①f x =e x ;②f x试卷第1页,共50页=x ;③f x =sin x 2;④f x =x ⋅sin x .是“控制增长函数”的有( )个A.1 B.2 C.3 D.417.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)《九章算术》是我国古代著名的数学著作,书中记载有几何体“刍甍”.现有一个刍甍如图所示,底面ABCD 为正方形,EF ⎳底面ABCD ,四边形ABFE ,CDEF 为两个全等的等腰梯形,EF =12AB =2,AE =23,则该刍甍的外接球的体积为( )A.642π3 B.32πC.643π3 D.642π18.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)若3x -3y >5-x -5-y ,则( )A.1x>1y B.x 3>y 3C.x >yD.ln x 2+1 >ln y 2+1二、多选题19.(2022·广东·广州市真光中学高三开学考试)已知抛物线C :y 2=2px p >0 的焦点为F ,抛物线C 上的点M 1,m 到点F 的距离是2,P 是抛物线C 的准线与x 轴的交点,A ,B 是抛物线C 上两个不同的动点,O 为坐标原点,则( )A.m =±2B.若直线AB 过点F ,则OA ⋅OB=-3C.若直线AB 过点F ,则PA PB =FAFB D.若直线AB 过点P ,则AF +BF >2PF20.(2022·广东·广州市真光中学高三开学考试)若函数f 2x +2 为偶函数,f x +1 为奇函数,且当x ∈(0,1]时,f x =ln x ,则( )A.f x 为偶函数B.f e =1C.f 4-1e=-1D.当x ∈[1,2)时,f (x )=-ln (2-x )21.(2022·广东惠州·高三阶段练习)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1D 1,C 1C ,A 1A 的中点,则( )A.M ,N ,B ,D 1四点共面B.异面直线PD 1与MN 所成角的余弦值为1010C.平面BMN 截正方体所得截面为等腰梯形D.三棱锥P -MNB 的体积为1322.(2022·广东·鹤山市鹤华中学高三开学考试)已知椭圆C :x 216+y 29=1的左,右焦点为F 1,F 2,点P 为椭圆C上的动点(P 不在x 轴上),则( )A.椭圆C 的焦点在x 轴上B.△PF 1F 2的周长为8+27C.|PF 1|的取值范围为94,4 D.tan ∠F 1PF 2的最大值为3723.(2022·广东广州·高三开学考试)若f x =sin x +cos x ,则下列说法正确的有( )A.f x 的最小正周期是πB.方程x =-π2是f x 的一条对称轴C.f x 的值域为1,2D.∃a ,b >0,对∀x ∈R 都满足f x +a +f a -x =2b ,(a ,b 是实常数)24.(2022·广东广州·高三开学考试)已知抛物线y 2=2px 上的四点A 2,2 ,B ,C ,P ,直线AB ,AC 是圆M :x -22+y 2=1的两条切线,直线PQ 、PR 与圆M 分别切于点Q 、R ,则下列说法正确的有( )A.当劣弧QR 的弧长最短时,cos ∠QPR =-13B.当劣弧QR 的弧长最短时,cos ∠QPR =13C.直线BC 的方程为x +2y +1=0D.直线BC 的方程为3x +6y +4=025.(2022·广东广州·高三开学考试)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x ⋅f y ,则下列说法正确的有( )A.f 0 =1 B.f x 必为奇函数C.f x +f 0 ≥0D.若f 1 =12,则2023n =1f n =12 26.(2022·广东·深圳外国语学校高三阶段练习)已知函数f (x )=cos2πxx 2-2x +3,则下列说法正确的是( )A.f (x )是周期函数B.f (x )满足f (2-x )=f (x )C.f (x )>-12D.f (x )≥k 在R 上有解,则k 的最大值是1227.(2022·广东·深圳外国语学校高三阶段练习)如图,梯形ABCD 中,AB ∥CD ,AB =2DC =23,BC =2,AB ⊥BC ,M ,P ,N ,Q 分别是边AB ,BC ,CD ,DA 的中点,将△ACD 以AC 为轴旋转一周,则在此旋转过程中,下列说法正确的是( )A.MN 和BC 不可能平行B.AB 和CD 有可能垂直C.若AB 和CD 所成角是60∘,则PQ =32D.若面ACD ⊥面ABC ,则三棱锥D -ABC 的外接球的表面积是28π试卷第1页,共50页28.(2022·广东·高三阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >b >0 的左,右顶点分别为A 1,A 2,点P ,Q 是双曲线C 上关于原点对称的两点(异于顶点),直线PA 1,PA 2,QA 1的斜率分别为k PA 1,k PA 2,k QA 1,若k PA 1⋅k PA 2=34,则下列说法正确的是( )A.双曲线C 的渐近线方程为y =±34xB.双曲线C 的离心率为72C.k PA 1⋅k QA 1为定值D.tan ∠A 1PA 2的取值范围为0,+∞29.(2022·广东·高三阶段练习)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点M 为CC 1的中点,点P 为正方形A1B 1C 1D 1上的动点,则( )A.满足MP ⎳平面BDA 1的点P 的轨迹长度为2B.满足MP ⊥AM 的点P 的轨迹长度为223C.不存在点P ,使得平面AMP 经过点BD.存在点P 满足PA +PM =530.(2022·广东·高三开学考试)直六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1中,底面是边长为2的正六边形,侧棱AA 1=2,点O 是底面ABCDEF 的中心,则( )A.OF 1⎳平面A 1CD 1B.OF 1与BC 所成角的余弦值为24C.BO ⊥平面AA 1D 1DD.B 1F 与平面CC 1F 1F 所成角的正弦值为3431.(2022·广东·高三开学考试)已知直线l :y =ax -1,曲线C 1:f (x )=e x +1+1,曲线C 1关于直线y =x +1对称的曲线C 2所对应的函数为y =g (x ),则以下说法正确的是( )A.不论a 为何值,直线l 恒过定点(0,-1);B.g (x )=ln x -1;C.若直线l 与曲线C 2相切,则a =1;D.若直线l 上有两个关于直线y =x +1对称的点在曲线C 1上,则0<a <1.32.(2022·广东·中山一中高三阶段练习)下列命题中正确的是( )A.双曲线x 2-y 2=1与直线x +y -2=0有且只有一个公共点B.平面内满足PA -PB =2a a >0 的动点P 的轨迹为双曲线C.若方程x 24-t +y 2t -1=1表示焦点在y 轴上的双曲线,则t >4D.过给定圆上一定点A 作圆的动弦AB ,则弦AB 的中点P 的轨迹为椭圆33.(2022·广东·中山一中高三阶段练习)达·芬奇的画作《抱银貂的女人》中,女士脖颈上悬挂的黑色珍珠链与主人相互映衬,显现出不一样的美与光泽,达·芬奇提出固定项链的两端,使其在重力的作用下自然下垂项链所形成的曲线称为悬链线.建立适当的平面直角坐标系后,得到悬链线的函数解析式为f (x )=a cosh xa(a >0),双曲余弦函数cosh (x )=e x +e-x 2则以下正确的是( )A.f x 是奇函数B.f x 在-∞,0 上单调递减C.∀x ∈R ,f x ≥aD.∃a ∈0,+∞ ,f x ≥x 234.(2022·广东·高三阶段练习)设a 与b 是两个不共线向量,关于向量a +λb ,λ-1 a +2λb ,-b -2a ,则下列结论中正确的是( )A.当λ>1时,向量a +λb ,λ-1 a+2λb 不可能共线B.当λ>-3时,向量a +λb ,-b -2a可能出现共线情况C.若a ⋅b =0,且a ,b为单位向量,则当λ>-3时,向量λ-1 a +2λb ,-b -2a 可能出现垂直情况D.当λ=2时,向量a-λb 与-22b -a 平行35.(2022·广东·高三阶段练习)已知函数f x =x -2 +1,g x =kx ,若方程f x =g x 有两个不相等的实根,则实数k 的取值可以是( )A.43B.34C.45D.136.(2022·湖南·邵阳市第二中学高三阶段练习)已知函数f x =sin cos x +cos sin x ,下列关于该函数结论正确的是( )A.f x 的图象关于直线x =π2对称B.f x 的一个周期是2πC.f x 的最大值为2D.f x 是区间0,π2上的减函数37.(2022·湖南·邵阳市第二中学高三阶段练习)在现代社会中,信号处理是非常关键的技术,我们通过每天都在使用的电话或者互联网就能感受到.而信号处理背后的“功臣”就是正弦型函数.函数f (x )=4i =1sin [(2i -1)x ]2i -1的图象就可以近似的模拟某种信号的波形,则( )A.函数f (x )为周期函数,且最小正周期为πB.函数f (x )的图象关于点(2π,0)对称C.函数f (x )的图象关于直线x =π2对称D.函数f (x )的导函数f (x )的最大值为438.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)已知函数f (x )是定义在R 上的奇函数,当x >0时,f(x )=e -x (x -1).则下列结论正确的是( )A.当x <0时,f (x )=e x (x +1)试卷第1页,共50页B.函数f(x)有两个零点C.若方程f(x)=m有三个解,则实数m的取值范围是f(-2)<m<f(2)D.∀x1,x2∈R,f x1-f x2max=239.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)2022年北京冬奥会开幕式精彩纷呈,其中雪花造型惊艳全球.有一个同学为了画出漂亮的雪花,将一个边长为1的正六边形进行线性分形.如图,图(n)中每个正六边形的边长是图n-1中每个正六边形的边长的12.记图(n)中所有正六边形的边长之和为a n,则下列说法正确的是( )A.图(4)中共有294个正六边形B.a4=10294C.a n是一个递增的等比数列D.记S n为数列a n的前n项和,则对任意的n∈N*且n≥2,都有a n>S n-1三、填空题40.(2022·广东·广州市真光中学高三开学考试)已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,若椭圆上存在一点P使得∠F1PF2=23π,则该椭圆离心率的取值范围是________.41.(2022·广东广州·高三开学考试)折纸是我国民间的一种传统手工艺术,明德小学在课后延时服务中聘请了民间艺术传人给同学们教授折纸.课堂上,老师给每位同学发了一张长为10cm,宽为8cm的矩形纸片,要求大家将纸片沿一条直线折叠.若折痕(线段)将纸片分为面积比为1:3的两部分,则折痕长度的取值范围是___________cm.42.(2022·广东·深圳外国语学校高三阶段练习)已知函数f(x)的导函数f (x)满足:f (x)-f(x)=e2x,且f(0)=1,当x∈0,+∞时,x(f(x)-a)≥1+ln x恒成立,则实数a的取值范围是______________.43.(2022·广东·高三阶段练习)若不等式a x+1e x-x<0有且仅有一个正整数解,则实数a的取值范围是______.44.(2022·广东·高三阶段练习)已知⊙C:x2+y2-2x-2y-2=0,直线l:x+2y+2=0,M为直线l上的动点,过点M作⊙C的切线MA,MB,切点为A,B,当四边形MACB的面积取最小值时,直线AB的方程为____.45.(2022·广东·高三开学考试)已知双曲线C:x24-y23=1,F1、F2是双曲线C的左、右焦点,M是双曲线C右支上一点,l是∠F1MF2的平分线,过F2作l的垂线,垂足为P,则点P的轨迹方程为_______.46.(2022·广东·中山一中高三阶段练习)在△ABC中,角A,B,C的对边分别为a,B,C,已知sin2A+sin2C=sin2B+sin A sin C,若△ABC的面积为334,则a+c的最小值为__________.47.(2022·广东·高三阶段练习)已知矩形ABCD的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为_____.48.(2022·湖南·邵阳市第二中学高三阶段练习)设f x =ln x,0<x≤2f4-x,2<x<4,若方程f x =m有四个不相等的实根x i i =1,2,3,4 ,则x 1+x 2 2+x 23+x 24的取值范围为___________.49.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)已知F 是双曲线C :x 2a2-y 2b 2=1a >0,b >0 的右焦点,过点F 的直线l 与双曲线C 的一条渐近线垂直,垂足为A ,且直线l 与双曲线C 的左支交于点B ,若3FA =AB ,则双曲线C 的渐近线的方程为______.四、双空题50.(2022·广东惠州·高三阶段练习)已知抛物线方程y 2=8x ,F 为焦点,P 为抛物线准线上一点,Q 为线段PF与抛物线的交点,定义:d P =PFFQ.已知点P -2,82 ,则d P =___________;设点P -2,t t >0 ,若4d P -PF-k >0恒成立,则k 的取值范围为___________.51.(2022·广东·鹤山市鹤华中学高三开学考试)甲射击一次,中靶概率是P 1,乙射击一次,中靶概率是P 2,已知1P 1,1P 2是方程x 2-5x +6=0的根,且P 1满足方程x 2-x +14=0.则甲射击一次,不中靶概率为_____;乙射击一次,不中靶概率为_____.52.(2022·湖南·邵阳市第二中学高三阶段练习)若f x =ln a +11-x+b 是奇函数,则a =_____,b =______.试卷第1页,共50页2023年新高考数学选填压轴题好题汇编(一)一、单选题1.(2022·广东·广州市真光中学高三开学考试)端午佳节,人们有包粽子和吃粽子的习俗,粽子主要分为南北两大派系,地方细分特色鲜明,且形状各异,裹蒸粽是广东肇庆地区最为出名的粽子,是用当地特有的冬叶、水草包裹糯米、绿豆、猪肉、咸蛋黄等蒸制而成的金字塔形的粽子,现将裹蒸粽看作一个正四面体,其内部的咸蛋黄看作一个球体,那么,当咸蛋黄的体积为4π3时,该裹蒸粽的高的最小值为( )A.4B.6C.8D.10【答案】A 【解析】要使正四面体的高最小,当且仅当球与正四面体相内切,设正四面体的棱长为a ,高为h ,内切球的半径为r ,则4π3r 3=4π3,解得r =1,如图正四面体S -ABC 中,令D 为BC 的中点,O 1为底面三角形的中心,则SO 1⊥底面ABC所以V S -ABC =13S △ABC h =13⋅4S △ABC ⋅r ,即h =4r =4.故选:A2.(2022·广东惠州·高三阶段练习)甲罐中有5个红球,3个白球,乙罐中有4个红球,2个白球.整个取球过程分两步,先从甲罐中随机取出一球放入乙罐,分别用A 1、A 2表示由甲罐取出的球是红球、白球的事件;再从乙罐中随机取出两球,分别用B 、C 表示第二步由乙罐取出的球是“两球都为红球”、“两球为一红一白”的事件,则下列结论中不正确的是( )A.P B A 1 =1021B.P C A 2 =47C.P B =1942D.P C =4384【答案】C【解析】在事件A 1发生的条件下,乙罐中有5红2白7个球,则P B ∣A 1 =C 25C 27=1021,A 正确;在事件A 2发生的条件下,乙罐中有4红3白7个球,则P C ∣A 2 =C 14C 13C 27=1221=47,B 正确;因P A 1 =58,P A 2 =38,P B ∣A 1 =1021,P B ∣A 2 =C 24C 27=621,则P B =P A 1 P B ∣A 1 +P A 2 P B ∣A 2 =58×1021+38×621=1742,C 不正确;因P C ∣A 2 =1221,P C ∣A 1 =C 15C 12C 27=1021,则P C =P A 1 P C ∣A 1 +P A 2 P C ∣A 2 =58×1021+38×1221=4384,D 正确.故选:C .3.(2022·广东·鹤山市鹤华中学高三开学考试)已知直线ax -2by +14=0平分圆C :x 2+y 2-4x -2y -11=0的面积,过圆外一点P a ,b 向圆做切线,切点为Q ,则PQ 的最小值为( )A.4 B.5C.6D.7【答案】A【解析】圆C :x 2+y 2-4x -2y -11=0化为标准方程为x -2 2+y -1 2=16,所以圆心C 2,1 ,半径r =4,因为直线ax -2by +14=0平分圆C :x 2+y 2-4x -2y -11=0的面积,所以圆心C 2,1 在直线ax -2by +14=0上,故2a -2b +14=0,即b =a +7,在Rt △PQC 中,PQ2=PC 2-r 2=a -2 2+b -1 2-16=a -2 2+a +6 2-16=2a 2+8a +24=2a +2 2+16,当a =-2时,PQ 2最小为16,PQ 最小为4.故选:A .4.(2022·广东广州·高三开学考试)设a =ln1.1,b =e 0.1-1,c =tan0.1,d =0.4π,则( )A.a <b <c <d B.a <c <b <dC.a <b <d <cD.a <c <d <b【答案】B【解析】设a x =ln x +1 ,b x =e x -1,c x =tan x ,d x =4πx ,易得a 0 =b 0 =c 0 =d 0 .设y =d x -b x =4πx -e x +1,则令y =4π-e x =0有x =ln 4π,故y =d x -b x 在-∞,ln 4π上单调递增.①因为4π 10>43.2 10=54 10=2516 5>2416 5=32 5>e ,即4π 10>e ,故10ln 4π>1,即ln 4π>0.1,故d 0.1 -b 0.1 >d 0 -b 0 =0,即d >b .②设y =b x -c x =e x -1-tan x ,则y =e x-1cos 2x =e x cos 2x -1cos 2x,设f x =e x cos 2x -1,则f x =e x cos 2x -2sin x =e x -sin 2x -2sin x +1 .设g x =x -sin x ,则g x =1-cos x ≥0,故g x =x -sin x 为增函数,故g x ≥g 0 =0,即x ≥sin x .故f x ≥e x -x 2-2x +1 =e x -x +1 2+2 ,当x ∈0,0.1 时f x >0, f x =e x cos 2x -1为增函数,故f x ≥e 0cos 20-1=0,故当x ∈0,0.1 时y =b x -c x 为增函数,故b 0.1 -c 0.1 >b 0 -c 0 =0,故b >c .③设y =c x -a x =tan x -ln x +1 ,y =1cos 2x -1x +1=x +sin 2xx +1 cos 2x,易得当x ∈0,0.1 时y >0,故c 0.1 -a 0.1 >c 0 -a 0 =0,即c >a .综上d >b >c >a故选:B5.(2022·广东广州·高三开学考试)若空间中经过定点O 的三个平面α,β,γ两两垂直,过另一定点A 作直线l 与这三个平面的夹角都相等,过定点A 作平面δ和这三个平面所夹的锐二面角都相等.记所作直线l 的条数为m ,所作平面δ的个数为n ,则m +n =( )A.4 B.8C.12D.16【答案】B【解析】将α,β,γ放入正方体OBCD -A 1B 1C 1D 1,根据对称性可知,对角线OC 1分别与三个平面α,β,γ所成角都相等,对角线BD 1分别与三个平面α,β,γ所成角都相等,因为平面BC 1⎳平面α,所以对角线BD 1分别与三个平面α,β,γ所成角都相等,同理对角线B 1D ,A 1C 分别与三个平面α,β,γ所成角都相等,过点A 分别作BD 1,B 1D ,A 1C ,OC 1的平行线,则所作四条平行线分别与三个平面α,β,γ所成角都相等,所以m =4.试卷第1页,共50页如下图,正方体的内接正四面体O -B 1CD 1的四个平面与α,β,γ所夹的锐二面角都相等,所以过A 分别作与正四面体O -B 1CD 1四个面平行的平面即可,所以n =4.故选:B .6.(2022·广东·深圳外国语学校高三阶段练习)已知a =e 0.05,b =ln1.12+1,c = 1.1,则( )A.a >b >c B.c >b >a C.b >a >cD.a >c >b【答案】D【解析】令f x =e x -x -1x >0 ,则f x =e x -1>0,∴f x 在0,+∞ 上单调递增,∴f x >f 0 =0,即e x >x +1,∴e 0.1>1.1,∴e 0.05> 1.1,即a >c ;令g x =ln x -x +1,则g x =1x -1=1-xx,∴当x ∈0,1 时,g x >0;当x ∈1,+∞ 时,g x <0;∴g x 在0,1 上单调递增,在1,+∞ 上单调递减,∴g x ≤g 1 =0,∴ln x ≤x -1(当且仅当x =1时取等号),∴ln x ≤x -1,即ln x2+1≤x (当且仅当x =1时取等号),∴ln1.12+1< 1.1,即b <c ;综上所述:a >c >b .故选:D .7.(2022·广东·深圳外国语学校高三阶段练习)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,O 为坐标原点,点P 为双曲线C 中第一象限上的一点,∠F 1PF 2的平分线与x 轴交于Q ,若OQ=14OF 2 ,则双曲线的离心率范围为( )A.1,2 B.1,4 C.2,2 D.2,4【答案】B【解析】设双曲线的半焦距为c c >0 , 离心率为e ,由OQ =14OF 2 ,则QF 1 =54c ,QF 2 =34c ,因为PQ 是∠F 1PF 2的平分线,所以PF 1 :PF 2 =5:3,又因为PF 1 -PF 2 =2a ,所以PF 1 =5a ,PF 2 =3a ,所以5a +3a >2c 2a <2c,解得1<ca<4,即1<e <4,所以双曲线的离心率取值范围为(1,4).故选:B8.(2022·广东·高三阶段练习)设a =4-ln4e2,b =ln22,c =1e ,则( )A.a <c <b B.a <b <cC.b <a <cD.b <c <a【答案】C 【解析】设f x =ln x x ,则f x =1-ln xx 2,当x >e 时,f x <0,函数单调递减,当0<x <e 时,f x >0,函数单调递增,故当x =e 时,函数取得最大值f e =1e,因为a =22-ln2 e 2=ln e 22e 22=f e 22 ,b =ln22=ln44=f 4 ,c =1e =f e ,∵e <e 22<4,当x >e 时,fx <0,函数单调递减,可得f 4 <f e 22<f e ,即b <a <c .故选:C9.(2022·广东·高三阶段练习)定义在R 上的函数f x 满足f (-x )+f (x )=0,f (x )=f (2-x );且当x ∈[0,1]时,f (x )=x 3-x 2+x .则方程7f (x )-x +2=0所有的根之和为( )A.14 B.12C.10D.8【答案】A【解析】由f (-x )+f (x )=0,f (x )=f (2-x )可得f x 为奇函数,且关于x =1对称.又由题意f (-x )=-f (x ),故f x =f 2-x =-f 2+x ,所以f x 关于2,0 对称,且f x =-f 2+x =f 4+x ,故f x 的周期为4.又当x ∈[0,1]时,f (x )=x 3-x 2+x ,此时f x =3x 2-2x +1=3x -13 2+23>0,故f (x )=x 3-x 2+x 在x ∈[0,1]为增函数.综上可画出y =f (x )的函数部分图象.又方程7f (x )-x +2=0的根即y =f (x )与y =17x -2 的交点,易得在区间-5,2 ,2,9 上均有3个交点,且关于2,0 对称,加上2,0 共7个交点,其根之和为3×2×2+2=14故选:A 10.(2022·广东·高三开学考试)设a =12e,b =ln 2,c =4-ln4e 2,则( )A.a <b <c B.c <b <a C.a <c <bD.b <c <a【答案】A 【解析】设f (x )=ln xx ,x ∈(0,+∞),因为f (x )=1-ln xx2,令f (x )>0,得0<x <e ;令f (x )<0,得x >e .所以f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,而a =12e =f (e ),b =ln212=ln22=f (2)=ln44=f (4),试卷第1页,共50页c =4-ln4e 2=2-ln2e 22=ln e22e 22=f e 22 ,因为0<e <2<e <e 22<4,所以a <b <c .故选:A .11.(2022·广东·高三开学考试)已知f (x )=2x 2,数列a n 满足a 1=2,且对一切n ∈N *,有a n +1=f a n ,则( )A.a n 是等差数列 B.a n 是等比数列C.log 2a n 是等比数列 D.log 2a n +1 是等比数列【答案】D【解析】由题意知a n +1=2a 2n ,所以log 2a n +1=1+2log 2a n ,所以log 2a n +1+1=2log 2a n +1 ,n ∈N *,所以log 2a n +1 是等比数列,且log 2a n +1=2n ,所以log 2a n =2n -1,选项A ,B ,C 错误,选项D 正确.故选:D .12.(2022·广东·中山一中高三阶段练习)已知a =log 1.10.9,b =0.91.1,c =1.10.9,则a ,b ,c 的大小关系为( )A.a <b <c B.a <c <bC.b <a <cD.b <c <a【答案】A【解析】由函数y =log 1.1x 在0,+∞ 上单调递增,所以a =log 1.10.9<log 1.11=0,由于函数y =0.9x 在R 上单调递减,所以0<0.91.1=b <0.90=1,由于函数y =1.1x 在0,+∞ 上单调递增,所以1.10.9>1.10=1,故a <b <c .故选:A .13.(2022·广东·中山一中高三阶段练习)已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一零点,则a =()A.-12B.13C.12D.1【答案】C【解析】因为f (x )=x 2-2x +a (e x -1+e -x +1)=x -1 2+a (e x -1+e -x +1)-1,设t =x -1,则f x =g t =t 2+a e t +e -t -1,因为g t =g -t ,所以函数g t 为偶函数,若函数f (x )有唯一零点,则函数g t 有唯一零点,根据偶函数的性质可知,只有当t =0时,g t =0才满足题意,即x =1是函数f (x )的唯一零点,所以2a -1=0,解得a =12.故选:C .14.(2022·广东·高三阶段练习)已知平面向量a ,b ,c 满足a=b =a ⋅b =2,且b -c ⋅3b -c =0,则c -a最小值为( )A.22+1B.33-3C.7-1D.23-2【答案】D【解析】因为a=b =a ⋅b =2,所以cos a ,b =a ⋅ba ⋅b=12,又a ,b ∈0,π ,所以a ,b =π3,如图所示:不妨设A 1,3 ,B 2,0 ,C x ,y ,则a =OA=1,3 ,b =OB =2,0 ,c =OC =x ,y ,所以b -c =2-x ,-y ,3b -c=6-x ,-y ,因为b -c ⋅3b -c=0,所以2-x 6-x +y 2=0,即x -4 2+y 2=4,表示点C 在以M 4,0 为圆心,以2为半径的圆上,所以c -a最小值为AM -r =1-4 2+3 2-2=23-2,故选:D15.(2022·湖南·邵阳市第二中学高三阶段练习)已知f (x )是定义在R 上的函数,且对任意x ∈R 都有f (x +2)=f (2-x )+4f (2),若函数y =f (x +1)的图象关于点(-1,0)对称,且f (1)=3,则f (2021)=( )A.6 B.3 C.0 D.-3【答案】D【解析】令x =0,得f (2)=f (2)+4f (2),即f (2)=0,所以f (x +2)=f (2-x ),因为函数y =f (x +1)的图象关于点(-1,0)对称,所以函数y =f (x )的图象关于点(0,0)对称,即f (-x )=-f (x ),所以f (x +2)=f (2-x )=-f (x -2),即f (x +4)=-f (x ),可得f (x +8)=f (x ),则f (2021)=f (253×8-3)=f (-3)=-f (1)=-3,故选:D .16.(2022·湖南·邵阳市第二中学高三阶段练习)对于定义在R 上的函数f x ,若存在正常数a 、b ,使得f x +a≤f x +b 对一切x ∈R 均成立,则称f x 是“控制增长函数”.在以下四个函数中:①f x =e x ;②f x =x ;③f x =sin x 2;④f x =x ⋅sin x .是“控制增长函数”的有( )个A.1 B.2 C.3 D.4【答案】C【解析】对于①,f x +a ≤f x +b 可化为e x +a ≤e x +b ,即e x ≤be a-1对一切x ∈R 恒成立,由函数y =f x 的定义域为R 可知,不存在满足条件的正常数a 、b ,所以,函数f x =e x 不是“控制增长函数”;对于②,若函数f x =x为“控制增长函数”,则f x +a ≤f x +b 可化为x +a≤x +b ,∴x +a ≤x +b 2+2bx对一切x ∈R 恒成立,又x +a ≤x +a ,若x +a ≤x +b 2+2bx 成立,则x ≥a -b 22a,显然,当a <b 2时,不等式恒成立,试卷第1页,共50页所以,函数f x =x 为“控制增长函数”;对于③,∵-1≤sin x 2 ≤1,∴f x +a -f x ≤2,当b ≥2且a 为任意正实数时,f x +a ≤f x +b 恒成立,所以,函数f x =sin x 2 是“控制增长函数”;对于④,若函数f x =x ⋅sin x 是“控制增长函数”,则x +a ⋅sin x +a ≤x sin x +b 恒成立,∵x +a ⋅sin x +a ≤x +a ,若x +a ≤x sin x +b ≤x +b ,即a ≤b ,所以,函数f x =x ⋅sin x 是“控制增长函数”.因此,是“控制增长函数”的序号是②③④.故选:C17.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)《九章算术》是我国古代著名的数学著作,书中记载有几何体“刍甍”.现有一个刍甍如图所示,底面ABCD 为正方形,EF ⎳底面ABCD ,四边形ABFE ,CDEF为两个全等的等腰梯形,EF =12AB =2,AE =23,则该刍甍的外接球的体积为( )A.642π3B.32πC.643π3D.642π【答案】A【解析】取AD ,BC 中点N ,M ,正方形ABCD 中心O ,EF 中点O 2,连接EN ,MN ,FM ,OO 2,如图,依题意,OO 2⊥平面ABCD ,EF ⎳AB ⎳MN ,点O 是MN 的中点,MN =AB =4,等腰△AED 中,AD ⊥EN ,EN =AE 2-AN 2=22,同理FM =22,因此,等腰梯形EFMN 的高OO 2=EN 2-MN -EF 22=7,由几何体的结构特征知,刍甍的外接球球心O 1在直线OO 2上,连O 1E ,O 1A ,OA ,正方形ABCD 外接圆半径OA =22,则有O 1A 2=OA 2+OO 21O 1E 2=O 2E 2+O 2O 21 ,而O 1A =O 1E ,O 2E =12EF =1,当点O 1在线段O 2O 的延长线(含点O )时,视OO 1为非负数,若点O 1在线段O 2O (不含点O )上,视OO 1为负数,即有O 2O 1=O 2O +OO 1=7+OO 1,即(22)2+OO 21=1+(7+OO 1)2,解得OO 1=0,因此刍甍的外接球球心为O ,半径为OA =22,所以刍甍的外接球的体积为4π3×(22)3=642π3.故选:A18.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)若3x -3y >5-x -5-y ,则( )A.1x >1yB.x 3>y 3C.x >yD.ln x 2+1 >ln y 2+1【答案】B【解析】由3x -3y >5-x -5-y 得3x -5-x >3y -5-y ,设f (x )=3x -5-x ,易知f (x )是增函数,所以由3x -5-x >3y -5-y 得x >y ,当x <0时,C 不存在,错误,A 错误,0>x >y ,则0<x 2<y 2,0<x 2+1<y 2+1,从而ln (x 2+1)<ln (y 2+1),D 错误.由不等式性质,B 正确.故选:B .二、多选题19.(2022·广东·广州市真光中学高三开学考试)已知抛物线C :y 2=2px p >0 的焦点为F ,抛物线C 上的点M 1,m 到点F 的距离是2,P 是抛物线C 的准线与x 轴的交点,A ,B 是抛物线C 上两个不同的动点,O 为坐标原点,则( )A.m =±2B.若直线AB 过点F ,则OA ⋅OB=-3C.若直线AB 过点F ,则PA PB =FAFB D.若直线AB 过点P ,则AF +BF >2PF 【答案】BCD 【解析】由题意得1+p2=2,则p =2,故抛物线C 的方程为y 2=4x ,将M 1,m 代入抛物线的方程,得m 2=4,解得m =±2,所以A 不正确;设A x 1,y 1 ,B x 2,y 2 ,易知直线AB 的斜率不为零,当直线AB 过点F 1,0 时,可设直线AB 的方程为x =ty +1,与抛物线方程联立,得y 2=4xx =ty +1 ,化简得:y 2-4ty -4=0,则y 1y 2=-4,y 1+y 2=4t ,所以x 1x 2=y 21y 2216=1,所以OA ⋅OB =x 1x 2+y 1y 2=1-4=-3,所以B 正确;易知P -1,0 ,则由选项B 得k PA +k PB =y 1x 1+1+y 2x 2+1=y 1ty 2+2 +y 2ty 1+2 x 1+1 x 2+1 =2ty 1y 2+2y 2+y 1 x 1+1 x 2+1 =-8t +8t x 1+1 x 2+1=0,所以直线PF 平分∠APB ,所以PA PB =FAFB,选项C 正确;因为直线AB 过点P -1,0 ,且斜率不为零,所以设直线AB 的方程为x =ty -1,与抛物线方程联立,易得y 1y 2=4,所以x 1x 2=1.因为x 1>0,x 2>0,且x 1≠x 2,所以AF +BF =x 1+1+x 2+1>2x 1x 2+2=4,又PF =2,所以AF +BF >2PF ,所以D 正确.故选:BCD .20.(2022·广东·广州市真光中学高三开学考试)若函数f 2x +2 为偶函数,f x +1 为奇函数,且当x ∈(0,1]时,f x =ln x ,则( )A.f x 为偶函数B.f e =1C.f 4-1e =-1D.当x ∈[1,2)时,f (x )=-ln (2-x )【答案】ACD试卷第1页,共50页【解析】对A ,因为函数f 2x +2 为偶函数,故f 2x +2 =f -2x +2 ,故f x 关于x =2对称.又f x +1 为奇函数,关于原点对称,故f x 关于1,0 对称.综上,f x 关于x =2与1,0 对称. 关于x =2对称有f x =f 4-x ,关于1,0 对称有f 4-x =-f x -2 ,f x =-f 2-x ,故-f x -2 =-f 2-x ,即f x =f -x ,所以f x 为偶函数,故A 正确;对B ,由A ,因为e ∈2,3 ,f e =-f 2-e =-f e -2 =-ln e -2 ,故B 错误;对C ,由A ,f 4-1e =f 1e =ln 1e=-1,故C 正确;对D ,当x ∈[1,2)时,2-x ∈0,1 ,故f x =-f 2-x =-ln 2-x ,故D 正确;故选:ACD21.(2022·广东惠州·高三阶段练习)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1D 1,C 1C ,A 1A 的中点,则( )A.M ,N ,B ,D 1四点共面B.异面直线PD 1与MN 所成角的余弦值为1010C.平面BMN 截正方体所得截面为等腰梯形D.三棱锥P -MNB 的体积为13【答案】BCD【解析】对于A ,易知MN 与BD 1为异面直线,所以M ,N ,B ,D 1不可能四点共面,故A 错误;对于B ,连接CD 1,CP ,易得MN ⎳CD 1,所以∠PD 1C 为异面直线PD 1与MN 所成角,设AB =2,则CD 1=22,D 1P =5,PC =3,所以cos ∠PD 1C =(22)2+(5)2-322×22×5=1010,所以异面直线PD 1与MN 所成角的余弦值为1010,故B 正确;对于C ,连接A 1B ,A 1M ,易得A 1B ⎳MN ,所以平面BMN 截正方体所得截面为梯形MNBA 1,故C 正确;对于D ,易得D 1P ⎳BN ,因为D 1P ⊄平面MNB ,MN ⊂平面MNB ,所以D 1P ⎳平面MNB ,所以V P -MNB =V D 1-MNB =V B -MND 1=13×12×1×1×2=13,故D 正确.故选:BCD22.(2022·广东·鹤山市鹤华中学高三开学考试)已知椭圆C :x 216+y 29=1的左,右焦点为F 1,F 2,点P 为椭圆C 上的动点(P 不在x 轴上),则( )A.椭圆C 的焦点在x 轴上B.△PF 1F 2的周长为8+27C.|PF 1|的取值范围为94,4 D.tan ∠F 1PF 2的最大值为37【答案】ABD【解析】对于A ,由椭圆的方程可知,椭圆焦点在x 轴上,故A 正确;对于B ,因为c =16-9=7,而△PF 1F 2的周长为2a +2c =8+27,故B 正确;对于C ,因为P 不在x 轴上,所以a -c <PF 1 <a +c ,所以PF 1 的取值范围为4-7,4+7 ,故C 不正确;对于D ,设椭圆的上顶点为B ,则0≤∠F 1PF 2≤∠F 1BF 2<π2,所以tan ∠F 1PF 2的最大值为tan ∠F 1BF 2.设∠OBF 2=α,则tan α=73,且∠F 1BF 2=2α,而tan2α=2tan α1-tan 2α=37,所以tan ∠F 1PF 2的最大值为37,故D 正确.故选:ABD .23.(2022·广东广州·高三开学考试)若f x =sin x +cos x ,则下列说法正确的有( )A.f x 的最小正周期是πB.方程x =-π2是f x 的一条对称轴C.f x 的值域为1,2D.∃a ,b >0,对∀x ∈R 都满足f x +a +f a -x =2b ,(a ,b 是实常数)【答案】BC【解析】对A ,因为f x =sin x +cos x ,所以f x +π2 =sin x +π2 +cos x +π2=cos x +sin x =f x ,故π2是f x 的一个周期,故最小正周期是π是错误的,对B ,因为f x -π =sin x -π +cos x -π =sin x +cos x =f x ,故x =-π2是f x 的一条对称轴是正确的,对C ,当x ∈0,π2 时,f x =sin x +cos x =sin x +cos x =2sin x +π4 ,由x ∈0,π2 ,则x +π4∈π4,3π4 ,故sin x +π4 ∈22,1 ,因此f (x )∈1,2 ,由A 知π2是f x 的周期,故f x 的值域为1,2 ,C 正确,对D ,因为当x ∈0,π2时,f x =sin x +cos x =sin x +cos x =2sin x +π4 ,且π2是f x 的周期,故画出f (x )的图象如图:由图可知,f (x )没有对称中心,故不存在a ,b ,使得f x +a +f a -x =2b ,故D 错误.故选:BC24.(2022·广东广州·高三开学考试)已知抛物线y 2=2px 上的四点A 2,2 ,B ,C ,P ,直线AB ,AC 是圆M :x -22+y 2=1的两条切线,直线PQ 、PR 与圆M 分别切于点Q 、R ,则下列说法正确的有( )A.当劣弧QR 的弧长最短时,cos ∠QPR =-13B.当劣弧QR 的弧长最短时,cos ∠QPR =13C.直线BC 的方程为x +2y +1=0D.直线BC 的方程为3x +6y +4=0试卷第1页,共50页【答案】BD【解析】由已知得抛物线y 2=2px 过点A 2,2 ,即22=2p ×2,所以p =1,即抛物线为y 2=2x ,对于AB 选项,如图所示,设点P y 202,y 0当劣弧QR 的弧长最短时,∠QMR 最小,又∠QMR +∠QOR =π,所以∠QPR 最大,即cos ∠QPR 最小,又cos ∠QPR =cos2∠QPM =1-2sin 2∠QPM =1-2⋅MQ 2PM 2,又圆M :x -2 2+y 2=1,所以圆心M 2,0 ,半径r =QM =1,cos ∠QPR =1-2PM2,又PM 2=y 202-22+y 20=14y 20-2 2+3,所以当y 20=2时,PM 2取最小值为3,此时cos ∠QPR 最小为1-23=13,所以A 选项错误,B 选项正确;对于CD 选项,设过点A 作圆M 切线的方程为y -2=k x -2 ,即kx -y -2k +2=0,所以d =2k -0-2k +21+k2=r =1,解得k =±3,则直线AB 的方程为:y -2=3x -2 ,即y =3x -23+2,直线AC 的方程为:y -2=-3x -2 ,即y =-3x +23+2,联立直线AB 与抛物线y =3x -23+2y 2=2x ,得y 2-233y +433-4=0,故2y B =433-4,y B =233-2,B 83-433,233-2 ,同理可得C 83+433,-233-2 ,所以k BC =233-2 --233-2 83-433 -83+433=-12,直线BC 的方程为y -233-2 =-12x -83-433,即3x +6y +4=0,所以C 选项错误,D 选项正确;故选:BD .25.(2022·广东广州·高三开学考试)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x ⋅f y ,则下列说法正确的有( )A.f 0 =1 B.f x 必为奇函数C.f x +f 0 ≥0D.若f 1 =12,则2023n =1f n =12 【答案】BCD【解析】对于A ,令x =y =0,则由f x +y +f x -y =2f x ⋅f y 可得2f 0 =2f 20 ,故f (0)=0或f 0 =1,故A 错误;对于B ,当f (0)=0时,令y =0,则f x +f x =2f x ⋅f 0 =0,则f (x )=0 ,故f (x )=0,函数f x 既是奇函数又是偶函数;。
【压轴题】高中必修一数学上期末试题带答案一、选择题1.已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 A .-2B .2C .-98D .982.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞3.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<4.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦5.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ). A .b a c << B .c b a << C .c a b <<D .a b c <<6.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]7.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .68.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.99.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}10.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C .(34D .)34,211.已知函数f (x )=x (e x +ae ﹣x )(x ∈R ),若函数f (x )是偶函数,记a=m ,若函数f (x )为奇函数,记a=n ,则m+2n 的值为( ) A .0B .1C .2D .﹣112.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.已知幂函数(2)my m x =-在(0,)+∞上是减函数,则m =__________.14.已知()f x 是定义域为R 的单调函数,且对任意实数x 都有21()213xf f x ⎡⎤+=⎢⎥+⎣⎦,则52(log )f =__________.15.已知()y f x =是定义在R 上的奇函数,且当0x …时,11()42x xf x =-+,则此函数的值域为__________.16.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 17.函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()g x 的图象,则其中一个函数的解析式可以为__________.18.已知函数1()41x f x a =+-是奇函数,则的值为________. 19.已知35m n k ==,且112m n+=,则k =__________ 20.2()2f x x x =+(0x ≥)的反函数1()f x -=________三、解答题21.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为32mg/m ,首次改良后所排放的废气中含有的污染物数量为31.94mg/m .设改良工艺前所排放的废气中含有的污染物数量为0r ,首次改良工艺后所排放的废气中含有的污染物数量为1r ,则第n 次改良后所排放的废气中的污染物数量n r ,可由函数模型()0.5001)*(5n p n r r r r p R n N +-∈⋅=-∈,给出,其中n 是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过30.08mg/m ,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. (参考数据:取lg 20.3=)22.某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳含量达到了危险状态,经抢修,排气扇恢复正常.排气4min 后,测得车库内的一氧化碳浓度为64L /L μ,继续排气4min ,又测得浓度为32L /L μ,经检测知该地下车库一氧化碳浓度(L /L)y μ与排气时间(min)t 存在函数关系:12mty c ⎛⎫= ⎪⎝⎭(c ,m 为常数)。
2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。
高中数学导数压轴题专题训练(总54页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除高中数学导数尖子生辅导(填选压轴)一.选择题(共30小题)1.(2013•文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是()A.B.C.D.考点:利用导数研究函数的极值;函数的图象与图象变化.专题:计算题;压轴题;数形结合.分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x,x2是原函数的极值点,1求出x1+x2=,,即可求得结论.解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,∴f'(x)=3x2﹣2x﹣2∵x1,x2是原函数的极值点所以有x1+x2=,,故x12+x22=(x1+x2)2﹣2x1x2==.故选 D.点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题.2.(2013•乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为()A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α考点:导数的运算.专题:压轴题;新定义.分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可.解答:解:∵g′(x)=1,h′(x)=,φ′(x)=3x2,由题意得:α=1,ln(β+1)=,γ3﹣1=3γ2,①∵ln(β+1)=,∴(β+1)β+1=e,当β≥1时,β+1≥2,∴β+1≤<2,∴β<1,这与β≥1矛盾,∴0<β<1;②∵γ3﹣1=3γ2,且γ=0时等式不成立,∴3γ2>0∴γ3>1,∴γ>1.∴γ>α>β.故选C.点评:函数、导数、不等式密不可分,此题就是一个典型的代表,其中对对数方程和三次方程根的范围的讨论是一个难点.3.(2013•山东)抛物线C1:的焦点与双曲线C2:的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=()A.B.C.D.考点:利用导数研究曲线上某点切线方程;双曲线的简单性质.专题:压轴题;圆锥曲线的定义、性质与方程.分析:由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值.解答:解:由,得x2=2py(p>0),所以抛物线的焦点坐标为F().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M(),则C1在点M处的切线的斜率为.由题意可知,得,代入M点得M()把M点代入①得:.解得p=.故选D.点评:本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.4.(2013•安徽)已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程3(f (x))2+2af(x)+b=0的不同实根个数为()A.3B.4C.5D.6考点:利用导数研究函数的极值;根的存在性及根的个数判断.专题:压轴题;导数的综合应用.分析:由函数f(x)=x3+ax2+bx+c有两个极值点x,x2,可得f′(x)=3x2+2ax+b=0有两个不相等的实数根,必1有△=4a2﹣12b>0.而方程3(f(x))2+2af(x)+b=0的△1=△>0,可知此方程有两解且f(x)=x1或x2.再分别讨论利用平移变换即可解出方程f(x)=x1或f(x)=x2解得个数.解答:解:∵函数f(x)=x3+ax2+bx+c有两个极值点x,x2,1∴f′(x)=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得=.∵x1<x2,∴,.而方程3(f(x))2+2af(x)+b=0的△1=△>0,∴此方程有两解且f(x)=x1或x2.不妨取0<x1<x2,f(x1)>0.①把y=f(x)向下平移x1个单位即可得到y=f(x)﹣x1的图象,∵f(x1)=x1,可知方程f(x)=x1有两解.②把y=f(x)向下平移x2个单位即可得到y=f(x)﹣x2的图象,∵f(x1)=x1,∴f(x1)﹣x2<0,可知方程f(x)=x2只有一解.综上①②可知:方程f(x)=x1或f(x)=x2.只有3个实数解.即关于x的方程3(f(x))2+2af(x)+b=0的只有3不同实根.故选A.点评:本题综合考查了利用导数研究函数得单调性、极值及方程解得个数、平移变换等基础知识,考查了数形结合的思想方法、推理能力、分类讨论的思想方法、计算能力、分析问题和解决问题的能力.5.(2013•湖北)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A.B.C.D.考点:利用导数研究函数的极值;函数在某点取得极值的条件.专题:压轴题;导数的综合应用.分析:先求出f′(x),令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x,x2⇔函数g(x)=lnx+1﹣2ax有1且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0.利用导数与函数极值的关系即可得出.解答:解:∵=lnx+1﹣2ax,(x>0)令f′(x)=0,由题意可得lnx=2ax﹣1有两个解x1,x2⇔函数g(x)=lnx+1﹣2ax有且只有两个零点⇔g′(x)在(0,+∞)上的唯一的极值不等于0..①当a≤0时,g′(x)>0,f′(x)单调递增,因此g(x)=f′(x)至多有一个零点,不符合题意,应舍去.②当a>0时,令g′(x)=0,解得x=,∵x,g′(x)>0,函数g(x)单调递增;时,g′(x)<0,函数g (x)单调递减.∴x=是函数g(x)的极大值点,则>0,即>0,∴ln(2a)<0,∴0<2a<1,即.∵,f′(x1)=lnx1+1﹣2ax1=0,f′(x2)=lnx2+1﹣2ax2=0.且f(x1)=x1(lnx1﹣ax1)=x1(2ax1﹣1﹣ax1)=x1(ax1﹣1)<x1(﹣ax1)=<0,f(x2)=x2(lnx2﹣ax2)=x2(ax2﹣1)>=﹣.().故选D.点评:熟练掌握利用导数研究函数极值的方法是解题的关键.6.(2013•辽宁)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()A.有极大值,无极小值B.有极小值,无极大值C.既有极大值又有极小值D.既无极大值也无极小值考点:函数在某点取得极值的条件;导数的运算.专题:压轴题;导数的综合应用.分析:先利用导数的运算法则,确定f(x)的解析式,再构造新函数,确定函数的单调性,即可求得结论.解答:解:∵函数f(x)满足,∴∴x>0时,dx∴∴令g(x)=,则令g′(x)=0,则x=2,∴x∈(0,2)时,g′(x)<0,函数单调递减,x∈(2,+∞)时,g′(x)>0,函数单调递增∴g(x)在x=2时取得最小值∵f(2)=,∴g(2)==0∴g(x)≥g(2)=0∴≥0即x>0时,f(x)单调递增∴f(x)既无极大值也无极小值故选D.点评:本题考查导数知识的运用,考查函数的单调性与极值,考查学生分析解决问题的能力,难度较大.7.(2013•安徽)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af (x)+b=0的不同实根个数是()A.3B.4C.5D.6考点:函数在某点取得极值的条件;根的存在性及根的个数判断.专题:综合题;压轴题;导数的综合应用.分析:求导数f′(x),由题意知x,x2是方程3x2+2ax+b=0的两根,从而关于f(x)的方程3(f(x))2+2af1(x)+b=0有两个根,作出草图,由图象可得答案.解答:解:f′(x)=3x2+2ax+b,x1,x2是方程3x2+2ax+b=0的两根,不妨设x2>x1,由3(f(x))2+2af(x)+b=0,则有两个f(x)使等式成立,x1=f(x1),x2>x1=f(x1),如下示意图象:如图有三个交点,故选A.点评:考查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想.8.(2014•海口二模)设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有恒成立,则不等式x2f(x)>0的解集是()A.(﹣2,0)∪(2,+∞)B.(﹣2,0)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣2)∪(0,2)考点:函数的单调性与导数的关系;奇偶函数图象的对称性;其他不等式的解法.专题:综合题;压轴题.分析:首先根据商函数求导法则,把化为[]′<0;然后利用导函数的正负性,可判断函数y=在(0,+∞)内单调递减;再由f(2)=0,易得f(x)在(0,+∞)内的正负性;最后结合奇函数的图象特征,可得f(x)在(﹣∞,0)内的正负性.则x2f(x)>0⇔f(x)>0的解集即可求得.解答:解:因为当x>0时,有恒成立,即[]′<0恒成立,所以在(0,+∞)内单调递减.因为f(2)=0,所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.又因为f(x)是定义在R上的奇函数,所以在(﹣∞,﹣2)内恒有f(x)>0;在(﹣2,0)内恒有f(x)<0.又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.所以答案为(﹣∞,﹣2)∪(0,2).故选D.点评:本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征.9.(2014•重庆三模)对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f′′(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=,则g()+=()A.2011B.2012C.2013D.2014考点:导数的运算;函数的值;数列的求和.专题:压轴题;导数的概念及应用.分析:正确求出对称中心,利用对称中心的性质即可求出.解答:解:由题意,g′(x)=x2﹣x+3,∴g″(x)=2x﹣1,令g″(x)=0,解得,又,∴函数g(x)的对称中心为.∴,,…∴g()+=2012.故选B.点评:正确求出对称中心并掌握对称中心的性质是解题的关键.10.(2014•上海二模)已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有>2恒成立,则a的取值范围是()A.(0,1]B.(1,+∞)C.(0,1)D.[1,+∞)考点:导数的几何意义;利用导数研究函数的单调性.专题:计算题;压轴题.分析:先将条件“对任意两个不等的正实数x1,x2,都有>2恒成立”转换成当x>0时,f'(x)≥2恒成立,然后利用参变量分离的方法求出a的范围即可.解答:解:对任意两个不等的正实数x1,x2,都有>2恒成立则当x>0时,f'(x)≥2恒成立f'(x)=+x≥2在(0,+∞)上恒成立则a≥(2x﹣x2)max=1故选D.点评:本题主要考查了导数的几何意义,以及函数恒成立问题,同时考查了转化与划归的数学思想,属于基础题.11.(2012•桂林模拟)已知在(﹣∞,+∞)上是增函数,则实数a的取值范围是()A.(﹣∞,1]B.[﹣1,4]C.[﹣1,1]D.(﹣∞,1)考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:要是一个分段函数在实数上是一个增函数,需要两段都是增函数且两个函数的交点处要满足递增,当x小于0时,要使的函数是一个减函数,求导以后导函数横小于0,注意两个端点处的大小关系.解答:解:∵要是一个分段函数在实数上是一个增函数.需要两段都是增函数且两个函数的交点处要满足递增,当x<0时,y′=3x2﹣(a﹣1)>0恒成立,∴a﹣1<3x2∴a﹣1≤0∴a≤1,当x=0时,a2﹣3a﹣4≤0∴﹣1≤a≤4,综上可知﹣1≤a≤1故选C.点评:本题考查函数的单调性,分段函数的单调性,解题的关键是在两个函数的分界处,两个函数的大小关系一定要写清楚.12.(2012•河北模拟)定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1﹣(x﹣3)2,若函数f(x)的图象上所有极大值对应的点均落在同一条直线上,则c等于()A.1B.2C.1或2D.4或2考点:利用导数研究函数的极值;抽象函数及其应用.专题:计算题;压轴题.分析:由已知可得分段函数f(x)的解析式,进而求出三个函数的极值点坐标,根据三点共线,则任取两点确定的直线斜率相等,可以构造关于c的方程,解方程可得答案.解答:解:∵当2≤x≤4时,f(x)=1﹣(x﹣3)2当1≤x<2时,2≤2x<4,则f(x)=f(2x)=[1﹣(2x﹣3)2]此时当x=时,函数取极大值当2≤x≤4时,f(x)=1﹣(x﹣3)2此时当x=3时,函数取极大值1当4<x≤8时,2<x≤4则f(x)=cf(x)=c(1﹣(x﹣3)2,此时当x=6时,函数取极大值c∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴解得c=1或2.故选C点评:本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.13.(2012•桂林模拟)设a∈R,函数f(x)=e x+a•e﹣x的导函数是f′(x),且f′(x)是奇函数.若曲线y=f (x)的一条切线的斜率是,则切点的横坐标为()A.l n2B.﹣ln2C.D.考点:简单复合函数的导数.专题:压轴题.分析:已知切线的斜率,要求切点的横坐标必须先求出切线的方程,我们可从奇函数入手求出切线的方程.解答:解:对f(x)=e x+a•e﹣x求导得f′(x)=e x﹣ae﹣x又f′(x)是奇函数,故f′(0)=1﹣a=0解得a=1,故有f′(x)=e x﹣e﹣x,设切点为(x0,y0),则,得或(舍去),得x0=ln2.点评:熟悉奇函数的性质是求解此题的关键,奇函数定义域若包含x=0,则一定过原点.14.(2012•太原模拟)已知定义在R上的函数y=f(x﹣1)的图象关于点(1,0)对称,且x∈(﹣∞,0)时,f(x)+xf′(x)<0成立,(其中f′(x)是f(x)的导函数),a=()f(),b=(logπ3).f(logπ3),则a,b,c的大小关系是()A.a>b>c B.c>b>a C.c>a>b D.a>c>b考点:利用导数研究函数的单调性;函数单调性的性质;导数的乘法与除法法则.专题:计算题;压轴题.分析:由“当x∈(﹣∞,0)时不等式f(x)+xf′(x)<0成立”知xf(x)是减函数,要得到a,b,c的大小关系,只要比较的大小即可.解答:解:∵当x∈(﹣∞,0)时不等式f(x)+xf′(x)<0成立即:(xf(x))′<0,∴xf(x)在(﹣∞,0)上是减函数.又∵函数y=f(x﹣1)的图象关于点(1,0)对称,∴函数y=f(x)的图象关于点(0,0)对称,∴函数y=f(x)是定义在R上的奇函数∴xf(x)是定义在R上的偶函数∴xf(x)在(0,+∞)上是增函数.又∵=﹣2,2=.∴>•f()>(logπ3)•f(logπ3)即>•f()>(logπ3)•f(logπ3)即:c>a>b故选C.点评:本题考查的考点与方法有:1)所有的基本函数的奇偶性;2)抽象问题具体化的思想方法,构造函数的思想;3)导数的运算法则:(uv)′=u′v+uv′;4)指对数函数的图象;5)奇偶函数在对称区间上的单调性:奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.本题结合已知构造出h (x)是正确解答的关键所在.15.(2012•广东模拟)已知f(x)为定义在(﹣∞,+∞)上的可导函数,且f(x)<f′(x)对于x∈R恒成立,且e为自然对数的底,则()A.f(1)>e•f(0),f(2012)>e2012•f(0)B.f(1)<e•f(0),f(2012)>e2012•f(0)C.f(1)>e•f(0),f(2012)<e2012•f(0)D.f(1)<e•f(0),f(2012)<e2012•f(0)考点:导数的运算.专题:计算题;压轴题.分析:构造函数y=的导数形式,并判断增减性,从而得到答案.解答:解:∵f(x)<f'(x)从而 f'(x)﹣f(x)>0 从而>0即>0,所以函数y=单调递增,故当x>0时,=f(0),整理得出f(x)>e x f(0)当x=1时f(1)>e•f(0),当x=2012时f(2012)>e2012•f(0).故选A.点评:本题主要考查函数的单调性与其导函数的关系,函数单调性的关系,考查转化、构造、计算能力.16.(2012•无为县模拟)已知定义在R上的函数f(x)、g(x)满足,且f′(x)g(x)<f(x)g′(x),,若有穷数列(n∈N*)的前n项和等于,则n等于()A.4B.5C.6D.7考点:导数的运算;数列的求和.专题:压轴题.分析:利用导数研究函数的单调性得到a的范围,再利用等比数列前n项和公式即可得出.解答:解:∵=,f′(x)g(x)<f(x)g′(x),∴=<0,即函数单调递减,∴0<a<1.又,即,即,解得a=2(舍去)或.∴,即数列是首项为,公比的等比数列,∴==,由解得n=5,故选B.点评:熟练掌握导数研究函数的单调性、等比数列前n项和公式是解题的关键.17.(2012•福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]其中真命题的序号是()A.①②B.①③C.②④D.③④考点:利用导数求闭区间上函数的最值;抽象函数及其应用;函数的连续性.专题:压轴题;新定义.分析:根据题设条件,分别举出反例,说明①和②都是错误的;同时证明③和④是正确的.解答:解:在①中,反例:f(x)=在[1,3]上满足性质P,但f(x)在[1,3]上不是连续函数,故①不成立;在②中,反例:f(x)=﹣x在[1,3]上满足性质P,但f(x2)=﹣x2在[1,]上不满足性质P,故②不成立;在③中:在[1,3]上,f(2)=f()≤,∴,故f(x)=1,∴对任意的x1,x2∈[1,3],f(x)=1,故③成立;在④中,对任意x1,x2,x3,x4∈[1,3],有=≤≤=[f(x1)+f(x2)+f(x3)+f(x4)],∴[f(x1)+f(x2)+f(x3)+f(x4)],故④成立.故选D.点评:本题考查的知识点为函数定义的理解,说明一个结论错误时,只需举出反例即可.说明一个结论正确时,要证明对所有的情况都成立.18.(2013•文昌模拟)设动直线x=m与函数f(x)=x3,g(x)=lnx的图象分别交于点M、N,则|MN|的最小值为()A.B.C.D.l n3﹣1考点:利用导数求闭区间上函数的最值.专题:计算题;压轴题.分析:构造函数F(x)=f(x)﹣g(x),求出导函数,令导函数大于0求出函数的单调递增区间,令导函数小于0求出函数的单调递减区间,求出函数的极小值即最小值.解答:解:画图可以看到|MN|就是两条曲线间的垂直距离.设F(x)=f(x)﹣g(x)=x3﹣lnx,求导得:F'(x)=.令F′(x)>0得x>;令F′(x)<0得0<x<,所以当x=时,F(x)有最小值为F()=+ln3=(1+ln3),故选A点评:求函数的最值时,先利用导数求出函数的极值和区间的端点值,比较在它们中求出最值.19.(2011•枣庄二模)设f′(x)是函数f(x)的导函数,有下列命题:①存在函数f(x),使函数y=f(x)﹣f′(x)为偶函数;②存在函数f(x)f′(x)≠0,使y=f(x)与y=f′(x)的图象相同;③存在函数f(x)f′(x)≠0使得y=f(x)与y=f′(x)的图象关于x轴对称.其中真命题的个数为()A.0B.1C.2D.3考点:导数的运算;函数奇偶性的判断.专题:计算题;压轴题.分析:对于三个命题分别寻找满足条件的函数,三个函数分别是f(x)=0,f(x)=e x,f(x)=e﹣x,从而得到结论.解答:解:存在函数f(x)=0,使函数y=f(x)﹣f′(x)=0为偶函数,故①正确存在函数f(x)=e x,使y=f(x)与y=f′(x)的图象相同,故②正确存在函数f(x)=e﹣x使得y=f(x)与y=f′(x)的图象关于x轴对称,故③正确.故选D.点评:本题主要考查了函数的奇偶性以及函数图象的对称性,解题的关键就是寻找满足条件的函数,属于基础题.20.(2011•武昌区模拟)已知f(x)是定义域为R的奇函数,f(﹣4)=﹣1,f(x)的导函数f′(x)的图象如图所示.若两正数a,b满足f(a+2b)<1,则的取值范围是()A.B.C.(﹣1,10)D.(﹣∞,﹣1)考点:函数的单调性与导数的关系;斜率的计算公式.专题:计算题;压轴题;数形结合.分析:先由导函数f′(x)是过原点的二次函数入手,再结合f(x)是定义域为R的奇函数求出f(x);然后根据a、b的约束条件画出可行域,最后利用的几何意义解决问题.解答:解:由f(x)的导函数f′(x)的图象,设f′(x)=mx2,则f(x)=+n.∵f(x)是定义域为R的奇函数,∴f(0)=0,即n=0.又f(﹣4)=m×(﹣64)=﹣1,∴f(x)=x3=.且f(a+2b)=<1,∴<1,即a+2b<4.又a>0,b>0,则画出点(b,a)的可行域如下图所示.而可视为可行域内的点(b,a)与点M(﹣2,﹣2)连线的斜率.又因为k AM=3,k BM=,所以<<3.故选B.点评:数形结合是数学的基本思想方法:遇到二元一次不定式组要考虑线性规划,遇到的代数式要考虑点(x,y)与点(a,b)连线的斜率.这都是由数到形的转化策略.21.(2011•雅安三模)下列命题中:①函数,f(x)=sinx+(x∈(0,π))的最小值是2;②在△ABC中,若sin2A=sin2B,则△ABC是等腰或直角三角形;③如果正实数a,b,c满足a + b>c则+>;④如果y=f(x)是可导函数,则f′(x0)=0是函数y=f(x)在x=x0处取到极值的必要不充分条件.其中正确的命题是()A.①②③④B.①④C.②③④D.②③考点:函数在某点取得极值的条件;不等关系与不等式;三角函数中的恒等变换应用.专题:常规题型;压轴题.分析:根据基本不等式和三角函数的有界性可知真假,利用题设等式,根据和差化积公式整理求得cos(A+B)=0或sin(A﹣B)=0,推断出A+B=或A=B,则三角形形状可判断出.构造函数y=,根据函数的单调性可证得结论;由函数极值点与导数的关系,我们易判断对错.解答:解:①f(x)=sinx+≥2,当sinx=时取等号,而sinx的最大值是1,故不正确;②∵sin2A=sin2B∴sin2A﹣sin2B=cos(A+B)sin(A﹣B)=0∴cos(A+B)=0或sin(A﹣B)=0∴A+B=或A=B∴三角形为直角三角形或等腰三角形,故正确;③可构造函数y=,该函数在(0.+∞)上单调递增,a+b>c则+>,故正确;④∵f(x)是定义在R上的可导函数,当f′(x0)=0时,x0可能f(x)极值点,也可能不是f(x)极值点,当x0为f(x)极值点时,f′(x0)=0一定成立,故f′(x0)=0是x0为f(x)极值点的必要不充分条件,故④正确;故选C.点评:考查学生会利用基本不等式解题,注意等号成立的条件,同时考查了极值的有关问题,属于综合题.22.(2011•万州区一模)已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是()A.﹣37B.﹣29C.﹣5D.以上都不对考点:利用导数求闭区间上函数的最值.专题:常规题型;压轴题.分析:先求导数,根据单调性研究函数的极值点,在开区间(﹣2,2)上只有一极大值则就是最大值,从而求出m,通过比较两个端点﹣2和2的函数值的大小从而确定出最小值,得到结论.解答:解:∵f′(x)=6x2﹣12x=6x(x﹣2),∵f(x)在(﹣2,0)上为增函数,在(0,2)上为减函数,∴当x=0时,f(x)=m最大,∴m=3,从而f(﹣2)=﹣37,f(2)=﹣5.∴最小值为﹣37.故选:A点评:本题考查了利用导数求闭区间上函数的最值,求函数在闭区间[a,b]上的最大值与最小值是通过比较函数在(a,b)内所有极值与端点函数f(a),f(b)比较而得到的,属于基础题.23.(2010•河东区一模)已知定义在R上的函数f(x)是奇函数,且f(2)=0,当x>0时有,则不等式x2•f(x)>0的解集是()A.(﹣2,0)∪(2,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣2,2)∪(2,+∞)考点:函数的单调性与导数的关系;函数单调性的性质.专题:计算题;压轴题.分析:首先根据商函数求导法则,把化为[]′<0;然后利用导函数的正负性,可判断函数y=在(0,+∞)内单调递减;再由f(2)=0,易得f(x)在(0,+∞)内的正负性;最后结合奇函数的图象特征,可得f(x)在(﹣∞,0)内的正负性.则x2f(x)>0⇔f(x)>0的解集即可求得.解答:解:因为当x>0时,有恒成立,即[]′<0恒成立,所以在(0,+∞)内单调递减.因为f(2)=0,所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.又因为f(x)是定义在R上的奇函数,所以在(﹣∞,﹣2)内恒有f(x)>0;在(﹣2,0)内恒有f(x)<0.又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.所以答案为(﹣∞,﹣2)∪(0,2).故选B.点评:本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征.24.(2010•惠州模拟)给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,则称f (x)在D上为凸函数.以下四个函数在上不是凸函数的是()A.f(x)=sinx+cosx B.f(x)=lnx﹣2x C.f(x)=﹣x3+2x﹣1D.f(x)=﹣xe﹣x考点:利用导数研究函数的单调性.专题:压轴题.分析:对ABCD分别求二次导数,逐一排除可得答案.解答:解:对于f(x)=sinx+cosx,f′(x)=cosx﹣sinx,f″(x)=﹣sinx﹣cosx,当x∈时,f″(x)<0,故为凸函数,排除A;对于f(x)=lnx﹣2x,f′(x)=,f″(x)=﹣,当x∈时,f″(x)<0,故为凸函数,排除B;对于f(x)=﹣x3+2x﹣1,f′(x)=﹣3x2+2,f″(x)=﹣6x,当x∈时,f″(x)<0,故为凸函数,排除C;故选D.点评:本题主要考查函数的求导公式.属基础题.25.(2010•黄冈模拟)已知f(x)为定义在(﹣∞,+∞)上的可导函数,且f(x)<f′(x)对于x∈R恒成立,则()A.f(2)>e2f(0),f(2010)>e2010f(0)B.f(2)<e2f(0),f(2010)>e2010f(0)C.f(2)>e2f(0),f(2010)<e2010f(0)D.f(2)<e2f(0),f(2010)<e2010f(0)考点:利用导数研究函数的单调性.专题:压轴题.分析:先转化为函数y=的导数形式,再判断增减性,从而得到答案.解答:解:∵f(x)<f'(x)从而 f'(x)﹣f(x)>0 从而>0从而>0 从而函数y=单调递增,故 x=2时函数的值大于x=0时函数的值,即所以f(2)>e2f(0).同理f(2010)>e2010f(0);故选A.点评:本题主要考查函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.26.(2010•龙岩二模)已知f(x)、g(x)都是定义在R上的函数,f′(x)g(x)+f(x)g′(x)<0,f(x)g(x)=a x,f(1)g(1)+f(﹣1)g(﹣1)=.在区间[﹣3,0]上随机取一个数x,f(x)g(x)的值介于4到8之间的概率是()A.B.C.D.考点:利用导数研究函数的单调性;几何概型.专题:计算题;压轴题.分析:根据函数积的导数公式,可知函数f(x)g(x)在R上是减函数,根据f(x)g(x)=a x,f(1)g(1)+f(﹣1)g(﹣1)=.我们可以求出函数解析式,从而可求出f(x)g(x)的值介于4到8之间时,变量的范围,利用几何概型的概率公式即可求得.解答:解:由题意,∵f'(x)g(x)+f(x)g'(x)<0,∴[f(x)g(x)]'<0,∴函数f(x)g(x)在R上是减函数∵f(x)g(x)=a x,∴0<a<1∵f(1)g(1)+f(﹣1)g(﹣1)=.∴∴∵f(x)g(x)的值介于4到8∴x∈[﹣3,﹣2]∴在区间[﹣3,0]上随机取一个数x,f(x)g(x)的值介于4到8之间的概率是故选A.点评:本题的考点是利用导数确定函数的单调性,主要考查积的导数的运算公式,考查几何概型,解题的关键是确定函数的解析式,利用几何概型求解.27.(2010•成都一模)已知函数在区间(1,2)内是增函数,则实数m的取值范围是()A.B.C.(0,1]D.考点:利用导数研究函数的单调性.专题:压轴题.分析:首先求出函数的导数,然后根据导数与函数增减性的关系求出m的范围.解答:解:由题得f′(x)=x2﹣2mx﹣3m2=(x﹣3m)(x+m),∵函数在区间(1,2)内是增函数,∴f′(x)>0,当m≥0时,3m≤1,∴0≤m≤,当m<0时,﹣m≤1,∴﹣1≤m<0,∴m∈[﹣1,].故选D.点评:掌握函数的导数与单调性的关系.28.(2009•安徽)设函数f(x)=x3+x2+tanθ,其中θ∈[0,],则导数f′(1)的取值范围是()A.[﹣2,2]B.[,]C.[,2]D.[,2]考点:导数的运算.专题:压轴题.分析:利用基本求导公式先求出f′(x),然后令x=1,求出f′(1)的表达式,从而转化为三角函数求值域问题,求解即可.解答:解:∵f′(x)=sinθ•x2+cosθ•x,∴f′(1)=sinθ+cosθ=2sin(θ+).∵θ∈[0,],∴θ+∈[,].∴sin(θ+)∈[,1].∴2sin(θ+)∈[,2].故选D.点评:本题综合考查了导数的运算和三角函数求值域问题,熟记公式是解题的关键.29.(2009•天津)设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,下面的不等式在R内恒成立的是()A.f(x)>0B.f(x)<0C.f(x)>x D.f(x)<x考点:导数的运算.专题:压轴题.分析:对于这类参数取值问题,针对这些没有固定套路解决的选择题,最好的办法就是排除法.解答:解:∵2f(x)+xf′(x)>x2,令x=0,则f(x)>0,故可排除B,D.如果 f(x)=x2+,时已知条件 2f(x)+xf′(x)>x2成立,但f(x)>x 未必成立,所以C也是错的,故选 A故选A.点评:本题考查了运用导数来解决函数单调性的问题.通过分析解析式的特点,考查了分析问题和解决问题的能力.30.(2009•陕西)设曲线y=x n+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为x n,则x1•x2•…•x n的值为()A.B.C.D.1考点:利用导数研究曲线上某点切线方程;直线的斜率.专题:计算题;压轴题.分析:欲判x•x2•…•x n的值,只须求出切线与x轴的交点的横坐标即可,故先利用导数求出在x=1处的导函数1值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.解答:解:对y=x n+1(n∈N*)求导得y′=(n+1)x n,令x=1得在点(1,1)处的切线的斜率k=n+1,在点(1,1)处的切线方程为y﹣1=k(x n﹣1)=(n+1)(x n﹣1),不妨设y=0,则x1•x2•x3…•x n=××,故选B.点评:本小题主要考查直线的斜率、利用导数研究曲线上某点切线方程、数列等基础知识,考查运算求解能力、化归与转化思想.属于基础题.高中数学导数尖子生辅导(解答题)一.解答题(共30小题)1.(2014•遵义二模)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.考点:利用导数研究函数的极值;利用导数研究函数的单调性;不等式的证明.专题:计算题;证明题;压轴题.分析:(1)先确定函数的定义域然后求导数fˊ(x),令g(x)=2x2+2x+a,由题意知x、x2是方程g(x)=01的两个均大于﹣1的不相等的实根,建立不等关系解之即可,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间;(2)x2是方程g(x)=0的根,将a用x2表示,消去a得到关于x2的函数,研究函数的单调性求出函数的最大值,即可证得不等式.解答:解:(I)令g(x)=2x2+2x+a,其对称轴为.由题意知x1、x2是方程g(x)=0的两个均大于﹣1的不相等的实根,其充要条件为,得(1)当x∈(﹣1,x1)时,f'(x)>0,∴f(x)在(﹣1,x1)内为增函数;(2)当x∈(x1,x2)时,f'(x)<0,∴f(x)在(x1,x2)内为减函数;(3)当x∈(x2,+∞)时,f'(x)>0,∴f(x)在(x2,+∞)内为增函数;(II)由(I)g(0)=a>0,∴,a=﹣(2x22+2x2)∴f(x2)=x22+aln(1+x2)=x22﹣(2x22+2x2)ln(1+x2)设,则h'(x)=2x﹣2(2x+1)ln(1+x)﹣2x=﹣2(2x+1)ln(1+x)(1)当时,h'(x)>0,∴h(x)在单调递增;(2)当x∈(0,+∞)时,h'(x)<0,h(x)在(0,+∞)单调递减.∴故.点评:本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于基础题.2.(2014•武汉模拟)己知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.考点:利用导数研究函数的极值;根据实际问题选择函数类型;利用导数研究曲线上某点切线方程.专题:综合题;压轴题;转化思想;导数的综合应用.分析:(Ⅰ)利用导数的运算法则即可得出f′(x),利用导数与函数单调性的关系及函数的极值点的定义,即可求出函数的极值;(Ⅱ)利用导数的几何意义即可得到切线的斜率,得出切线的方程,利用方程求出与x轴交点的横坐标,再利用导数研究函数的单调性、极值、最值即可.解答:解:(Ⅰ)∵f(x)=x2e﹣x,∴f′(x)=2xe﹣x﹣x2e﹣x=e﹣x(2x﹣x2),令f′(x)=0,解得x=0或x=2,令f′(x)>0,可解得0<x<2;令f′(x)<0,可解得x<0或x>2,故函数在区间(﹣∞,0)与(2,+∞)上是减函数,在区间(0,2)上是增函数.∴x=0是极小值点,x=2极大值点,又f(0)=0,f(2)=.故f(x)的极小值和极大值分别为0,.(II)设切点为(),则切线方程为y﹣=(x﹣x0),令y=0,解得x==,因为曲线y=f(x)的切线l的斜率为负数,∴(<0,∴x0<0或x0>2,令,。
高中数学数列练习题一.解答题(共40小题)1.若无穷数列{a n}满足:a1是正实数,当n≥2时,|a n﹣a n﹣1|=max{a1,a2,…,a n﹣1},则称{a n}是“Y﹣数列”.(Ⅰ)若{a n}是“Y﹣数列”且a1=1,写出a4的所有可能值;(Ⅱ)设{a n}是“Y﹣数列”,证明:{a n}是等差数列当且仅当{a n}单调递减;{a n}是等比数列当且仅当{a n}单调递增;(Ⅲ)若{a n}是“Y﹣数列”且是周期数列(即存在正整数T,使得对任意正整数n,都有a T+n=a n),求集合{1≤i ≤2018|a i=a1}的元素个数的所有可能值的个数.2.若无穷数列{a n}和无穷数列{b n}满足:存在正常数A,使得对任意的n∈N*,均有|a n﹣b n|≤A,则称数列{a n}与{b n}具有关系P(A).(1)设无穷数列{a n}和{b n}均是等差数列,且,问:数列{a n}与{b n}是否具有关系P(1)?说明理由;(2)设无穷数列{a n}是首项为1,公比为的等比数列,,证明:数列{a n}与{b n}具有关系P(A);并求A的最小值;(3)设无穷数列{a n}是首项为1,公差为d(d∈R)的等差数列,无穷数列{b n}是首项为2,公比为q(q∈N*)的等比数列,试求数列{a n}与{b n}具有关系P(A)的充要条件.3.对于数列{x n},若存在m∈N*,使得x2m﹣k=x k对任意1≤k≤2m﹣1(k∈N*)都成立,则称数列{x n}为“m﹣折叠数列”.(1)若a n=C(n≤2021,n∈N*),b n=n2﹣2019n﹣1(n∈N*),判断数列{a n},{b n}是否是“m﹣折叠数列”,如果是,指出m的值;如果不是,请说明理由;(2)若x n=q n(n∈N*),求所有的实数q,使得数列{x n}是3﹣折叠数列;(3)给定常数p∈N*,是否存在数列{x n},使得对所有m∈N*,{x n}都是pm﹣折叠数列,且{x n}的各项中恰有p+1个不同的值,证明你的结论.4.若存在常数m∈R,使对任意的n∈N*,都有a n+1≥ma n,则称数列{a n}为Z(m)数列.(1)已知{a n}是公差为2的等差数列,其前n项和为S n.若S n是Z(1)数列,求a1的取值范围;(2)已知数列{b n}的各项均为正数,记数列{b n}的前n项和为R n,数列{b n2}的前n项和为T n,且3T n=R n2+4R n,n∈N*.①求证:数列{b n}是等比数列;②设c n=b n+,试证明:存在常数m∈R,对于任意的λ∈[2,3],数列{c n}都是Z(m)数列,并求出m的最大值.5.在孟德尔遗传理论中,称遗传性状依赖的特定携带者为遗传因子,遗传因子总是成对出现.例如,豌豆携带这样一对遗传因子:A使之开红花,a使之开白花,两个因子的相互组合可以构成三种不同的遗传性状:AA为开红花,Aa 和aA一样不加区分为开粉色花,aa为开白色花.生物在繁衍后代的过程中,后代的每一对遗传因子都包含一个父系的遗传因子和一个母系的遗传因子,而因为生殖细胞是由分裂过程产生的,每一个上一代的遗传因子以的概率传给下一代,而且各代的遗传过程都是相互独立的.可以把第n代的遗传设想为第n次实验的结果,每一次实验就如同抛一枚均匀的硬币,比如对具有性状Aa的父系来说,如果抛出正面就选择因子A,如果抛出反面就选择因子a,概率都是;对母系也一样.父系、母系各自随机选择得到的遗传因子再配对形成子代的遗传性状.假设三种遗传性状AA,Aa(或aA),aa在父系和母系中以同样的比例u:v:ω(u+v+ω=1)出现,则在随机杂交实验中,遗传因子A被选中的概率是p=u+,遗传因子a被选中的概率是q=ω+,称p,q分别为父系和母系中遗传因子A 和a的频率,p:q实际上是父系和母系中两个遗传因子的个数之比.基于以上常识回答以下问题:(1)如果植物的,上一代父系、母系的遗传性状都是Aa,后代遗传性状为AA,Aa(或aA),aa的概率各是多少?(2)对某一植物,经过实验观察发现遗传性状aa具有重大缺陷,可人工剔除,从而使得父系和母系中仅有遗传性状为AA和Aa(或aA)的个体,在进行第一代杂交实验时,假设遗传因子A被选中的概率为p,a被选中的概率为q,p+q=1.求杂交所得子代的三种遗传性状AA,Aa(或aA),aa所占的比例u1,v1,ω1.(3)继续对(2)中的植物进行杂交实验,每次杂交前都需要剔除性状为aa的个体.假设得到的第n代总体中3种遗传性状AA,Aa(或aA),aa所占比例分别为u n,v n,ωn(u n+v n+ωn=1).设第n代遗传因子A和a的频率分别为p n和q n,已知有以下公式p n=,q n=,n=1,2,……,证明{}是等差数列.(4)求u n,v n,ωn的通项公式,如果这种剔除某种遗传性状的随机杂交实验长期进行下去,会有什么现象发生?6.给定n(n≥3,n∈N*)个不同的数1,2,3,……,n,它的某一个排列P的前k(k∈N*,1≤k≤n)项和为S k,该排列P中满足2S k≤S n的k的最大值为k p.记这n个不同数的所有排列对应的k p之和为T n.(1)若n=3,求T3;(2)若n=4l+1,l∈N*,(i)证明:对任意的排列P,都不存在k(k∈N*,1≤k≤n)使得2S k=S n;(ii)求T n(用n表示).7.已知数列{a n}的前n项和为S n,满足S n=.(Ⅰ)求证:{a n}是等差数列;(Ⅱ)已知{b n}是公比为q的等比数列,a1=b1,a2=b2≠a1,记T n为数列{b n}的前n项和.(1)若b k=a m(m,k是大于2的正整数),求证:T k﹣1=(m﹣1)a1;(2)若b3=a i(i是某个正整数),求证:q是整数,且数列{b n}中的每一项都是数列{a n}中的项.8.对给定的正整数n,令Ωn={a=(a1,a2,…,a n)|a i∈{0,1},i=1,2,3,…,n}.对任意的x=(x1,x2,…,x n),y=(y1,y2,…,y n)∈Ωn,定义x与y的距离d(x,y)=|x1﹣y1|+|x2﹣y2|+…+|x n﹣y n|.设A是Ωn的含有至少两个元素的子集,集合D={d(x,y)|x≠y,x,y∈A}中的最小值称为A的特征,记作χ(A).(Ⅰ)当n=3时,直接写出下述集合的特征:A={(0,0,0),(1,1,1)},B={(0,0,0),(0,1,1),(1,0,1),(1,1,0)},C={(0,0,0),(0,0,1),(0,1,1),(1,1,1)}.(Ⅱ)当n=2020时,设A⊆Ω2020且χ(A)=2,求A中元素个数的最大值;(Ⅲ)当n=2020时,设A⊆Ω2020且χ(A)=3,求证:A中的元素个数小于.9.设集合A的元素均为实数,若对任意a∈A,存在b∈B,c∈C.使得b+c=a且b﹣c=1,则称元素最少的B和C为A 的“孪生集”;称A的“孪生集”的“孪生集”为A的“2级孪生集”;称A的“2级孪生集”的“孪生集”为A的“3级孪生集”,依此类推…(1)设A={3,5,7},直接写出集合A的“孪生集”;(2)设元素个数为n的集合A的“孪生集”分别为B和C,若使集合∁B∪C(B∩C)中元素个数最少且所有元素之和为3,证明:A中所有元素之和为3n;(3)若A={a k|a k=a1+2(k﹣1),1≤k≤n,k∈N*},请直接写出A的“n级孪生集”的个数,设A的所有”n级孪生集”的并集为Ω,若Ω=M1∪M2∪M3;求有序集合组(M1,M2,M3)的个数.10.非空集合A⊆R+,满足∀x∈A,总有∉A,记集合T(A)={(x,y)|x∈A,y∈A,∈A}.(Ⅰ)求证:∀x∈A,(x,x)∉T(A);(Ⅱ)若T(A)中只有1个元素(a,b),求证:a=b2;(Ⅲ)若集合A={a,b,c,d,e},且a<b<c<d<e,T(A)中恰有10个元素,求证:c2=ae.11.一农妇原有a0∈N*个鸡蛋,现分9次售卖鸡蛋,设每次卖出后剩下的鸡蛋个数依次为a1,a2,…,a9个.(Ⅰ)如果农妇第一次卖去全部鸡蛋的一半又半个,第二次卖去剩下的一半又半个,第三次又卖去剩下的一半又半个,…,第九次仍然卖去剩下的一半又半个,而且这次恰好全部卖完,求a9,a8,a7,给出数列{a n}的递公式并据此求出a0;(Ⅱ)鸡蛋无法分割出售,如果农妇原有鸡蛋a0=511个,是否存在p,q∈N*,(p>2),使得农妇按如下方式卖鸡蛋:第一次卖去全部的又个,第二次卖去剩下的又个,第三次又卖去剩下的又个,…,第九次仍然卖去剩下的又个,而且这次恰好全部卖完?如果存在,求出可能的p,q的值,如果不存在,请说明理由.12.对于无穷数列{a n}的某一项a k,若存在m∈N*,有a k<a k+m(k∈N*)成立,则称a k具有性质P(m).(1)设a n=|n﹣3|(n∈N*),若对任意的k∈N*,a k都具有性质P(m),求m的最小值;(2)设等差数列{a n}的首项a1=﹣2,公差为d,前n项和为S n(n∈N*),若对任意的k∈N*,数列{S n}中的项S k 都具有性质P(7),求实数d的取值范围;(3)设数列{a n}的首项a1=2,当n≥2(n∈N*)时,存在i(1≤i≤n﹣1,i∈N*)满足a n=2a i,且此数列中恰有一项a t(2≤t≤99,t∈N*)不具有性质P(1),求此数列的前100项和的最大值和最小值以及取得最值时对应的t的值.13.已知m为正整数,各项均为正整数的数列{a n}满足:a n+1=,记数列{a n}的前n项和为S n.(1)若a1=8,m=2,求S7的值;(2)若m=5,S3=25,求a1的值;(3)若a1=1,m为奇数,求证:“a n+1>m”的充要条件是“a n为奇数”.14.已知数列{a n}是由正整数组成的无穷数列.若存在常数k∈N*,使得a2n﹣1+a2n=ka n对任意的n∈N*成立,则称数列{a n}具有性质Ψ(k).(Ⅰ)分别判断下列数列{a n}是否具有性质Ψ(2);(直接写出结论)①a n=1;②a n=2n.(Ⅱ)若数列{a n}满足a n+1≥a n(n=1,2,3,…),求证:“数列{a n}具有性质Ψ(2)”是“数列{a n}为常数列”的充分必要条件;(Ⅲ)已知数列{a n}中a1=1,且a n+1>a n(n=1,2,3,…).若数列{a n}具有性质Ψ(4),求数列{a n}的通项公式.15.用[x]表示一个小于或等于x的最大整数.如:[2]=2,[4.1]=4,[﹣3.1]=﹣4.已知实数列a0,a1,…对于所有非负整数i满足a i+1=[a i]•(a i﹣[a i]),其中a0是任意一个非零实数.(Ⅰ)若a0=﹣2.6,写出a1,a2,a3;(Ⅱ)若a0>0,求数列{[a i]}的最小值;(Ⅲ)证明:存在非负整数k,使得当i≥k时,a i=a i+2.16.在无穷数列{a n}中,a1,a2是给定的正整数,a n+2=|a n+1﹣a n|,n∈N*.(Ⅰ)若a1=5,a2=3,写出a2019,a2020,a2021的值;(Ⅱ)证明:存在m∈N*,当n>m时,数列{a n}中的项呈周期变化;(Ⅲ)若a1,a2的最大公约数是k,证明数列{a n}中必有无穷多项为k.17.设等差数列{a n}的首项为0,公差为a,a∈N*;等差数列{b n}的首项为0,公差为b,b∈N*.由数列{a n}和{b n}构造数表M,与数表M*:记数表M中位于第i行第j列的元素为c i,j,其中c i,j=a i+b j(i,j=1,2,3,…).记数表M*中位于第i行第j列的元素为d i,j,其中d i,j=a i﹣b j+1.(1≤i≤b,i∈N*,j∈N*).如:c1,2=a1+b2,d l,2=a1﹣b3.(I)设a=5,b=9,请计算c2,6,c396,6,d2,6;(Ⅱ)设a=6.b=7,试求c i,j,d i,j的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表M*;(Ⅲ)设a=6,b=7,对于整数t,t不属于数表M,求t的最大值.18.已知数列{a n}是等比数列,a1=2,且a2,a3+2,a4成等差数列.数列{b n}满足:b1+++……+=(n∈N*).(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)求证:+++……+<.19.记无穷数列{a n}的前n项中最大值为M n,最小值为m n,令,则称{b n}是{a n}“极差数列”.(Ⅰ)若a n=3n﹣2,{b n}的前n项和;(Ⅱ)证明:{b n}的“极差数列”是{}20.已知数列{a n}的首项a1=3,对任意的n∈N*,都有a n+1=ka n﹣1(k≠0),数列{a n﹣1}是公比不为1的等比数列.(1)求实数k的值;(2)设数列{b n}的前n项和为S n,求所有正整数m的值,使得恰好为数列{b n}中的项.21.给定整数n(n≥2),数列A2n+1:x1,x2,…,x2n+1每项均为整数,在A2n+1中去掉一项x k,并将剩下的数分成个数相同的两组,其中一组数的和与另外一组数的和之差的最大值记为m k(k=1,2,…,2n+1).将m1,m2,…,m2n+1中的最小值称为数列A2n+1的特征值.(Ⅰ)已知数列A5:1,2,3,3,3,写出m1,m2,m3的值及A5的特征值;(Ⅱ)若x1≤x2≤…≤x2n+1,当[i﹣(n+1)][j﹣(n+1)]≥0,其中i,j∈{1,2,…,2n+1}且i≠j时,判断|m i﹣m j|与|x i﹣x j|的大小关系,并说明理由;(Ⅲ)已知数列A2n+1的特征值为n﹣1,求的最小值.22.斐波那契数列(Fibonaccisequence),又称黄金分割数列、因数学家列昂纳多•斐波那契(Leonardodalibonace)以免子繁殖为例子而引入,故又称为“兔子数列”.记斐波那契数列为{a n},数列{a n}满足a1=1,a2=1,a n+1=a n+a n(n≥2,n∈N*).﹣1(1)若{a n+1﹣pa n)(p<0)是等比数列,求实数p的值;(2)求斐波那契数列{a n}的通项公式;(3)求证:从第二项起,每个偶数项的平方都比其前后两项之积少1.23.已知数列{a n}满足:①a n∈N(n∈N*);②当n=2k(k∈N*)时,;③当n≠2k(k∈N*)时,a n<a n+1,记数列{a n}的前n项和为S n.(1)求a1,a3,a9的值;(2)若S n=2020,求n的最小值;(3)求证:S 2n=4S n﹣n+2的充要条件是(n∈N*).24.已知集合M⊆N*,且M中的元素个数n大于等于5.若集合M中存在四个不同的元素a,b,c,d,使得a+b=c+d,则称集合M是“关联的”,并称集合{a,b,c,d}是集合M的“关联子集”;若集合M不存在“关联子集”,则称集合M是“独立的”.(Ⅰ)分别判断集合{2,4,6,8,10}和集合{1,2,3,5,8}是“关联的”还是“独立的”?若是“关联的”,写出其所有的关联子集;(Ⅱ)已知集合{a1,a2,a3,a4,a5}是“关联的”,且任取集合{a i,a j}⊆M,总存在M的关联子集A,使得{a i,a j}⊆A.若a1<a2<a3<a4<a5,求证:a1,a2,a3,a4,a5是等差数列;(Ⅲ)集合M是“独立的”,求证:存在x∈M,使得.25.无穷数列{a n}满足:a1为正整数,且对任意正整数n,a n+1为前n项a1,a2,…,a n中等于a n的项的个数.(Ⅰ)若a1=2,请写出数列{a n}的前7项;(Ⅱ)求证:对于任意正整数M,必存在k∈N*,使得a k>M;(Ⅲ)求证:“a1=1”是“存在m∈N*,当n≥m时,恒有a n+2≥a n成立”的充要条件.26.已知数列{a n}的前n项和为S n,a1=0,S n+n=a n+1,n∈N*(Ⅰ)求证:数列{a n+1}是等比数列,(Ⅱ)设数列{b n}的首项b1=1,其前n项和为T n,且点(T n+1,T n)在直线﹣=上,求数列{}的前n项和R n.27.已知数列{a n}的前n项和为S n,且满足S n=n2﹣4n,数列{b n}中,b1=对任意正整数.(1)求数列{a n}的通项公式;(2)是否存在实数μ,使得数列{3n•b n+μ}是等比数列?若存在,请求出实数μ及公比q的值,若不存在,请说明理由;(3)求证:﹣.28.各项均为非负整数的数列{a n}同时满足下列条件:①a1=m(m∈N*);②a n≤n﹣1(n≥2);③n是a1+a2+…+a n的因数(n≥1).(Ⅰ)当m=5时,写出数列{a n}的前五项;(Ⅱ)若数列{a n}的前三项互不相等,且n≥3时,a n为常数,求m的值;(Ⅲ)求证:对任意正整数m,存在正整数M,使得n≥M时,a n为常数.29..已知数列{a n},{b n}满足:a n+b n=1,b n+1=,且a1,b1是函数f(x)=16x2﹣16x+3的零点(a1<b1).(1)求a1,b1,b2;(2)设c n=,求证:数列{c n}是等差数列,并求b n的通项公式;(3)设S n=a1a2+a2a3+a3a4+…+a n a n+1,不等式4aS n<b n恒成立时,求实数a的取值范围.30.已知正项数列{a n}的前n项和为S n,数列{a n}满足,2S n=a n(a n+1).(1)求数列{a n}的通项公式;(2)设数列{}的前n项和为A n,求证:对任意正整数n,都有A n<成立;(3)数列{b n}满足b n=()n a n,它的前n项和为T n,若存在正整数n,使得不等式(﹣2)n﹣1λ<T n+﹣2n﹣1成立,求实数λ的取值范围.31.给定数列{a n},记该数列前i项a1,a2,…,a i中的最大项为A i,即A i=max{a1,a2,…,a i};该数列后n﹣i项a i+1,a i+2,…,a n中的最小项为B i,即B i=min{a i+1,a i+2,…,a n};d i=A i﹣B i(i=1,2,3,…,n﹣1)(1)对于数列:3,4,7,1,求出相应的d1,d2,d3;(2)若S n是数列{a n}的前n项和,且对任意n∈N*,有,其中λ为实数,λ>0且.①设,证明数列{b n}是等比数列;②若数列{a n}对应的d i满足d i+1>d i对任意的正整数i=1,2,3,…,n﹣2恒成立,求实数λ的取值范围.32.设各项均为正数的等比数列{a n}中,a1+a3=10,a3+a5=40.设b n=log2a n.(1)求数列{b n}的通项公式;(2)若c1=1,c n+1=c n+,求证:c n<3.(3)是否存在正整数k,使得++…+>对任意正整数n均成立?若存在,求出k的最大值,若不存在,说明理由.33.已知数列{a n}的前n项和为S n,设数列{b n}满足b n=2(S n+1﹣S n)S n﹣n(S n+1+S n)(n∈N*).(1)若数列{a n}为等差数列,且b n=0,求数列{a n}的通项公式;(2)若a1=1,a2=3,且数列{a2n﹣1}的,{a2n}都是以2为公比的等比数列,求满足不等式b2n<b2n﹣1的所有正整数的n集合.34.已知数列{a n}的首项,a n+1a n+a n+1=2a n.(1)证明:数列是等比数列;(2)数列的前n项和S n.35.设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(Ⅰ)求数列{a n}的通项公式(Ⅱ)设数列{b n}的前n项和为T n,且(λ为常数).令c n=b2n,(n∈N*),求数列{c n}的前n项和R n.36.已知正项数列{a n}的前n项和为S n,且a n和S n满足:4S n=(a n+1)2(n=1,2,3…),(1)求{a n}的通项公式;(2)设b n=,求{b n}的前n项和T n;(3)在(2)的条件下,对任意n∈N*,T n>都成立,求整数m的最大值.37.设数列{a n},对任意n∈N*都有(kn+b)(a1+a n)+p=2(a1+a2…+a n),(其中k、b、p是常数).(1)当k=0,b=3,p=﹣4时,求a1+a2+a3+…+a n;(2)当k=1,b=0,p=0时,若a3=3,a9=15,求数列{a n}的通项公式;(3)若数列{a n}中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当k=1,b=0,p=0时,设S n是数列{a n}的前n项和,a2﹣a1=2,试问:是否存在这样的“封闭数列”{a n},使得对任意n∈N*,都有S n≠0,且.若存在,求数列{a n}的首项a1的所有取值;若不存在,说明理由.38.设正整数数列{a n}满足.(1)若a5=1,请写出所有可能的a1的取值;(2)求证:{a n}中一定有一项的值为1或3;(3)若正整数m满足当a1=m时,{a n}中存在一项值为1,则称m为“归一数”,是否存在正整数m,使得m与m+1都不是“归一数”?若存在,请求出m的最小值;若不存在,请说明理由.39.已知数列{a n}满足若a1>0,a n+1=.(1)若a6=,求a4的值;(2)是否存在n∈N*,使得若a n+a n+1=a n+2成立?若存在,求出n的值;若不存在,说明理由;(3)求证:若a1∈Q,则存在k∈N*,a k=1.40.对于无穷数列{a n},“若存在a m﹣a k=t(m,k∈N*,m>k),必有a m+1﹣a k+1=t”,则称数列{a n}具有P(t)性质.(1)若数列{a n}满足,判断数列{a n}是否具有P(1)性质?是否具有P(4)性质?(2)对于无穷数列{a n},设T={x|x=a j﹣a i,i<j},求证:若数列{a n}具有P(0)性质,则T必为有限集;(3)已知{a n}是各项均为正整数的数列,且{a n}既具有P(2)性质,又具有P(3)性质,是否存在正整数N、k,使得a N、a N+1、a N+2、…、a N+k、…成等差数列,若存在,请加以证明,若不存在,说明理由.参考答案与试题解析一.解答题(共40小题)1.【解答】解:(Ⅰ)由题,所有可能的情况有a2=2,0,a3=4,0,1,﹣1,a4=8,0,2,﹣2,2,0,0,﹣2,故a4的所有可能值为﹣2,0,2,8.(Ⅱ)证明:①因为|a2﹣a1|=a1,所以a2=0或2a1.当{a n}是等差数列时,假设a2=2a1,则a3=2a2﹣a1=3a1.此时,|a3﹣a2|=a1,而max{a1,a2}=2a1,矛盾!所以a2=0.于是公差d=a2﹣a1=﹣a1<0,所以{a n}单调递减,当{a n}单调递减时,对任意n≥2,max{a1,a2,…,a n﹣1}=a1.又|a n﹣a n﹣1|=a n﹣1﹣a n,所以a n﹣a n﹣1=﹣a1,从而{a n}是等差数列,②当{a n}是等比数列时,a2≠0,所以a2=2a1,于是公比q=2>1.又a1>0,所以{a n}单调递增.当{a n}单调递增时,对任意n≥2,max{a1,a2,…,a n﹣1}=a n﹣1.又|a n﹣a n﹣1|=a n﹣a n﹣1,所以a n﹣a n﹣1=a n﹣1,即a n=2a n﹣1.因为a1≠0,所以{a n}是等比数列(Ⅲ)解:先证明a1是数列{a n}中的最大项.事实上,如果i是第一个大于a1的项的脚标,则由|a i+1﹣a i|=max{a1,a2,…,a i}=a i知,a i+1是a i的倍数.假设a i+1,a i+2,L,a i+k﹣1都是a i的倍数,则由|a i+k﹣a i+k﹣1|=max{a1,a2,…,a i+k﹣1}=max{a i,a i+1,…,a i+k﹣1}知,a i+k也是a i的倍数.所以由归纳法知,对任意n≥i,a n都是a i的倍数.但a1不是a i的倍数,这与{a n}是周期数列矛盾!所以a1是数列{a n}中的最大项,从而当n≥2时,|a n﹣a n﹣1|=a1.再证明当n是奇数时,a n是a1的奇数倍;当n是偶数时,a n是a1的偶数倍事实上,当n=1时结论成立,假设n=k时成立,当n=k+1时,由|a k+1﹣a k|=a1知,结论也成立,所以,若a i=a1,i的值只可能为奇数,所以集合{1≤i≤2018|a i=a1}的元素个数最多有1009个.下证集合{1≤i≤2018|a i=a1}的元素个数可以是1~1009的所有整数.事实上,对于i=2019,可取数列为:也即:所有的奇数项均等于a1,所有的偶数项均等于0,此时,数列为Y数列,且T=2.对于任意整数1≤t<1009,构造数列的前2018项如下:由于数列是无穷数列,故可取T=2018,显然满足数列是Y数列.综上,集合{1≤i≤2018|a i=a1}的元素个数的所有可能值的个数为1009.2.【解答】解:(1)因为,若数列{a n}与{b n}具有关系P(1),则对任意的n∈N*,均有|a n﹣b n|≤1,即|2n﹣(n+2)|≤1,亦即|n﹣2|≤1,但n=4时,|n﹣2|=2>1,所以数列{a n}与{b n}不具有关系P(1),(2)证明:因为无穷数列{a n}是首项为1,公比为的等比数列,所以,因为b n=a n+1+1,所以,所以,所以数列{a n}与{b n}具有关系P(A).设A的最小值为A0,|a n﹣b n|≤A0,因为|a n﹣b n|<1,所以A0≤1.若0<A0<1,则当时,,则,这与“对任意的n∈N*,均有|a n﹣b n|≤A0”矛盾,所以A0=1,即A的最小值为1.(3)因为数列{a n}是首项为1,公差为d(d∈R)的等差数列,无穷数列{b n}是首项为2,公比为q(q∈N*)的等比数列,所以,设,则.数列{a n}与{b n}具有关系P(A),即存在正常数A,使得对任意的n∈N*,均有|a n﹣b n|≤A.(Ⅰ)当d=0,q=1时,|a n﹣b n|=|1﹣2|=1≤1,取A=1,则|a n﹣b n|≤A,数列{a n}与{b n}具有关系P(A)(Ⅱ)当d=0,q≥2时,假设数列{a n}与{b n}具有关系P(A),则存在正常数A,使得对任意的n∈N*,均有|a n﹣b n|≤A.因为|b n|﹣|a n|≤|a n﹣b n,所以,对任意的n∈N*,|b n|﹣|a n|≤A,即bq n≤1+A,,所以,这与“对任意的n∈N*,均有|b n|﹣|a n|≤A”矛盾,不合;(Ⅲ)当d≠0,q=1时,假设数列{a n}与{b n}具有性质P(A),则存在正常数A,使得对任意的n∈N*,均有|a n﹣b n|≤A.因为|a n|﹣|b n|≤|a n﹣b n|,所以,对任意的n∈N*,|a n|﹣|b n|≤A,即|a n|≤2+A,即|dn+a|≤2+A,所以|dn|﹣|a|≤2+A,,这与“对任意的n∈N*,均有|a n|﹣|b n|≤A”矛盾,不合;(Ⅳ)当d≠0,q≥2时,假设数列{a n}与{b n}具有性质P(A),则存在正常数A,使得对任意的n∈N*,均有|a n﹣b n|≤A.因为|b n|﹣|a n|≤|a n﹣b n,所以,对任意的n∈N*,|b n|﹣|a n|≤A,所以bq n≤|dn+a|+A≤|d|n+|a|+A,所以,设,则对任意的n∈N*,q n≤λn+μ.因为q n≥2n所以,对任意的n∈N*,2n≤λn+μ,下面先证明:存在N>1,当n>N时,2n>n2.即证nln2﹣2lnn>0.设,则,所以x∈(0,4)时,f′(x)>0,f(x)在区间(0,4)上递增,同理f(x)在区间(4,+∞)上递减,所以f(x)max=f(4)=ln4﹣2<0,所以.因此,,所以,当时,xln2﹣2lnx>0,设,则当x>N时,xln2﹣2lnx>0,即当n>N时,2n>n2,又2n≤λn+μ,所n2<λn+μ,即n2﹣λn﹣μ<0,解得,这与对任意的n∈N*,2n≤λn+μ矛盾,不合.综上所述,数列{a n}与{b n}具有关系P(A)的充要条件为d=0,q=1.3.【解答】解:(1)若数列{a n} 为“m﹣折叠数列“,则a2m﹣k=a k,所以,所以2m﹣k﹣1+k﹣1=2020,得m=1011,所以{a n} 为“m﹣折叠数列”,m=1011,若数列{b n} 是“m﹣折叠数列,则b2m﹣k=b k,所以,得,所以数列{b n} 不是“m﹣折叠数列.(2)要使通项公式为的数列{x n} 是3﹣折叠数列,只需要,当q=0 时,x n=0,显然成立,当q≠0 时,由q6﹣k=q k,得q6﹣2k=1,q2(3﹣k)=1,(k∈{1,2,3,4,5}),所以q=1 或q=﹣1,综上q=0,q=1 或q=﹣1.(3)对给定的p∈N*,{x n} 都是pm﹣折叠数列,故x n有多条对称轴,其中x=pm都是数列{x n} 的对称轴,设,由得对称轴为x=pm,且x n的周期为2p,满足给定常数p∈N*,使得对所有m∈N*,{x n}都是pm﹣折叠数列,x n是周期函数,周期为2p,在(1,2p]这个周期内,x=p为对称轴,故x n∈(1,2p]对应函数值的个数与x n∈[p,2p]对应的函数值个数相等,即x n∈[p,2p]时,,所以{x n} 在x n∈[p,2p]上单调递增,因为p∈N*,所以x n各项中共有p+1 个不同的值,综上,给定常数p∈N*,存在数列{x n},使得对所有m∈N*,{x n} 都是pm﹣折叠数列,且{x n} 的各项中恰有p+1 个不同的值.4.【解答】解:(1)由题可得:是Z(1)数列,S n+1≥S n恒成立,对任意的n∈N*恒成立,a1≥﹣2n对任意的n∈N*恒成立,所以a1≥﹣2.(2)①由题:,,两式相减得,3b2=(R n+R n﹣1)b n+4b n,n≥2,数列{b n} 的各项均为正数,所以3b n=R n+R n﹣1+4,n≥2,3b n﹣1=R n﹣1+R n﹣2+4,n≥3,两式相减得:3b n﹣3b n﹣1=b n+b n﹣1,n≥3,b n=2b n﹣1,n≥3,当n=1 时可得,数列{b n} 的各项均为正数,所以b1=2,当n=2 时,3b n=R n+R n﹣1+4,n≥2 可得3b2=R2+R1+4,3b2=b2+2+2+4,所以b2=4,综上可得:数列{b n} 是以2为首项,2为公比的等比数列.②由①可得,c n+1≥m c n,λ∈[2,3]对任意的n∈N*恒成立,(*),取m=0 知,c n+1≥0 对任意的λ∈[2,3],n∈N*恒成立,存在常数m∈R,使{∁n} 是数列Z(m),下求m的最大值,由(*)得==,所以,因为,令,则==,当n=1时,G(2)﹣G(1)<0,G(2)<G(1);当n≥2时,(27n﹣27)•22n﹣9≥27×8﹣9>0,∴G(n+1)>G(n)∴G(2)<G(3)<…<G(n),∴,∴,∴.5.【解答】解:(1)即Aa与Aa是父亲和母亲的性状,每个因子被选择的概率都是,故AA出现的概率是或aA出现的概率是,aa出现的概率是,所以:AA,Aa(或aA),aa的概率分别是.(2).(3)由(2)知,于是,,,∴是等差数列,公差为1.(4),其中,(由(2)的结论得),所以,于是,,,,很明显越大,w n+1越小,所以这种实验长期进行下去,w n越来越小,而w n是子代中aa所占的比例,也即性状aa会渐渐消失.6.【解答】解:(1)1,2,3 的所有排列为1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1.因为S3=6,所以对应的k P分别为2,1,2,1,1,1,所以T3=8.(2)(i)设n个不同数的某一个排列P为a1,a2,……,a n,因为n=4l+1,l∈N*,所以为奇数,而2S k为偶数,所以不存在k(k∈N*,1≤k≤n)使得2S k=S n.(ii)因为2S k≤S n,即a1+a2+…+a k⩽a k+1+a k+2+…+a n,又由(i)知不存在k(k∈N*,1≤k≤n)使得2S k=S n,所以a1+a2+…+a k<a k+1+a k+2+…+a n,所以满足2S k≤S n的最大下标k即满足a1+a2+…+a k<a k+1+a k+2+…+a n①,且a1+a2+…+a k+a k+1>a k+2+…+a n②,考虑排列P的对应倒序排列P′:a n,a n﹣1,……,a1,①②即a n+…+a k+2<a k+1+a k+…+a2+a1,a n+…+a k+2+a k+1>a k+…+a2+a1,由题意知k P′=n﹣k﹣1,则k P+k P′=n﹣1;因为1,2,3,,n这n个不同数可形成个对应组合(P,P′),且每组(P,P′)中k P+k P′=n﹣1,所以.7.【解答】解:(Ⅰ)由已知得,,又,所以,所以a1=na n+2a n+1﹣(n+1)a n+1=na n﹣(n﹣1)a n+1,①又因为,,所以,所以a1=(n﹣1)a n﹣1+(2﹣n)a n,②由①②得(n﹣1)a n﹣1+(2﹣n)a n=na n﹣(n﹣1)a n+1,所以(n﹣1)(a n+1+a n﹣1)=2(n﹣1)a n(n⩾2),即a n+1+a n﹣1=2a n,所以{a n} 是等差数列.(Ⅱ)(1)设a1=a,d=a2﹣a1,由已知,a+d=aq,即d=a(q﹣1),由b k=a m得aq k﹣1=a+(m﹣1)d,即a(q k﹣1﹣1)=(m﹣1)d,所以.(2)当i=2时,b3=a2=b2,从而q=1,b2=b1=a1,与题意不符;当i=1时,b3=b1,从而q2=1,q=﹣1 (上面已证q≠1),{b n} 成为a,﹣a,a,﹣a,a,﹣a,…,每一项都是数列{a n}中的项(a=a1,﹣a=a2);当i≥3时,由aq2=a+(i﹣1)d=a+(i﹣1)•a(q﹣1),得q2=1+(i﹣1)(q﹣1),即q2﹣(i﹣1)q+(i﹣2)=0,所以q=1(舍去),q=i﹣2.于是i>3,q为正整数i﹣2.设已有b k=a j,则因为aq=a+d,=a j′(其中j′=j+q k﹣1),因此数列{b n}中的每一项都是数列{a n}中的项.8.【解答】解:(Ⅰ)χ(A)=3,χ(B)=2,χ(C)=1;(Ⅱ)(a)一方面:对任意的a=(a1,a2,a3,…,a2019,a2020)∈A,令f(a)=(a1,a2,a3,…,a2019,a2020),则d(a,f(a))=|1﹣2a2020|=1<2,故f(a)∉A,令集合B={f(a)|a∈A},则A∩B=∅,(A∪B)⊆Ω2020且A和B的元素个数相同,但Ω2020中共有22020个元素,其中至多一半属于A,故A中至多有2 2019个元素.(b)另一方面:设A={(a1,a2,…,a2020)∈Ω2020|a1+a2+…+a2020是偶数},则A中的元素个数为对任意的x=(x1,x2,…,x2020),y=(y1,y2,…,y2020)∈A,x≠y,易得d(x,y)=|x1﹣y1|+|x2﹣y2|+…+|x n﹣y n|与x1+y1+x2+y2+…+x2020+y2020奇偶性相同,故d(x,y)为偶数,由x≠y,得d(x,y)>0,故d(x,y)⩾2,注意到(0,0,0,0,…,0,0),(1,1,0,0,…0,0)∈A且它们的距离为2,故此时A满足题意,综上,A中元素个数的最大值为2 2019.(Ⅲ)当n=2020 时,设A⊆Ω2020且χ(A)=3,设A={x1,x2,…x m},任意的x i∈A,定义x的邻域N(x i)={a∈Ω2020|d(a,x i)⩽1},(a)对任意的1≤i⩽m,N(x i)中恰有2021 个元素,事实上①若d(a,x i)=0,则a=x i,恰有一种可能;,②若d(a,x i)=1,则a与x i,恰有一个分量不同,共2020种可能;综上,N(x i)中恰有2021个元素,(b)对任意的1⩽i⩽j⩽m,N(x i)∩N(x j)=∅,事实上,若N(x i)∩N(x j)≠∅,不妨设a∈N(x i)∩N(x j),x j=(x1′,x2′,…,x2020′),则=,这与χ(A)=3,矛盾,由(a)和(b),N(x1)∪N(x2)∪…∪N(x m)中共有2021m个元素,但Ω2020中共有22020个元素,所以,注意到m是正整数,但不是正整数,上述等号无法取到,所以,集合A中的元素个数m小于.9.【解答】解:(1)B={2,3,4},C={1,2,3};(2)将集合A中元素从小到大排列:a1<a2<…<a n,则其“孪生集“,,设集合D=∁(B∪C)(B∩C),由于,因此集合D中元素个数card(D)≥2,若card(D)=2,则有,即a k+1﹣a k=2(1≤k≤n﹣1),因此a1,a2,…,a n构成公差为2 的等差数列,,所以,进而.(3)A的“n级奕生集”的个数为2n,A所有“n级奕生集”的并集的元素个数为2n+n﹣1,每个元素至少属于M1,M2,M3中的一个,所以有序集合组(M1,M2,M3)的个数为.【说明】由(2)知,A所有“ 1 级奕生集”为,它们的并集有n+1=21+n﹣1 个元素;A所有“2 级奕生集“为,,它们的并集,有n+3=22+n﹣1 个元素;A所有“3 级奕生集“为,,,,它们的并集,有n+7=23+n﹣1个元素;A所有“n级奕生集“的并集,其中第2 个元素的分子和最大元素的分子和恰为2a1+2n,即所有元素从小打到大构成首项为,公差为的等差数列,所以共有项,也即A所有“n级奕生集”的并集的元素个数为2n+n﹣1.10.【解答】解:(Ⅰ)反证法,假设不然,∃x0∈A,(x0,x0)∈T(A),则由定义,,由条件,,取x=1∈A,得1=,矛盾,所以假设不成立,结论得证.(Ⅱ)由于(a,b)∈T(A),则,显然,,由定义,但T(A)只有一个元素,必有,即,∴a=b2.(Ⅲ)由条件,因此1∉A,同时,若(p,q)∈T(A),则,必有(q,p)∉T(A),A的二元子集有10个:{a,b},{a,c},{a,d},{a,e},{b,c},{b,d},{b,e},{c,d},{c,e},{d,e},每个二元子集中元素作为坐标,最多贡献出T(A)中一个元素,而T(A)恰有10个元素,说明A的每个二元子集都贡献了T(A)中的一个元素,换言之,∀p,q∈A,p≠q,则(p,q)∈T(A)或(q,p)∈T(A),即或,若a<1<e,则,与上述性质矛盾,所以要么0<a<e<1,要么1<a<e,先考虑0<a<e<1 的情况,此时A中所有元素都小于1,于是∀p,q∈A,p>q>0,则,必有,此时,是A中五个不同的元素,所以,解得e2=d,e3=c,e4=b,e5=a,因此c2=e6=ae,然后考虑1<a<e的情况,此时A中所有元素都大于1,于是∀p,q∈A,p>q>0,则,必有,此时,是A中五个不同的元素,所以,解得a2=b,a3=c,a4=d,a5=e,因此c2=a6=ae,综上所述,c2=ae.11.【解答】(1)由题可知:可直接得到a9=0,a8=1,a7=3 且,由,所以数列{a n+1} 是以a1+1 为首项,公比为的等比数列,则,又,所以,又a9=0,所以,则a0=511.(2)由题可知:,即,令,则,所以,则,所以,则数列是以为首项,为公比的等比数列,则,又,所以,又a9=0,a0=511,代入上式化简可得(p+1)9=p8(511q+p)(*),由p,q∈N*,所以(p+1)9能整除p8,所以(p+1)9能整除p,又因为(p,p+1)=1,故p只能是p=1,又p>2,所以p,q不存在.12.【解答】解:(1)由题意知,a1<a6<a7<…,此时m≥5;a2<a5<a6<…,此时m≥3;当k≥3时,a k<a k+1<a k+2<…,此时m≥1;综上知,m≥5,即对任意的k∈N*,a k都具有性质P(m)时m的最小值为5;(2)由题意可知,等差数列{a n}的前n项和为S n=﹣2n+d,若对任意的k∈N*,数列{S n}中的项S k都具有性质P(7),则S k<S k+7对任意的k∈N*恒成立,即﹣2k+d<﹣2(k+7)+d,解得d>;又因为k≥1,所以实数d的取值范围是d>;(3)对于2≤t≤99,t∈N*,因为a1,a2,…,a t﹣1都具有性质P(1),所以a1<a2<…<a t﹣1<a t,当n≥2(n∈N*)时,存在i(1≤i≤n﹣1,i∈N*)满足a n=2a1,所以a1,a2,…,a t依次为:2,22,23,…,2t;由已知a1不具有性质P(1),所以a t+1的可能取值为22,23,…,2t;又因为a t+1,a t+2,…,a100都具有性质P(1),所以a t+1<a t+2<…<a100,欲使此数列的前100项和最大,a i+1,a i+2,...,a100依次为:2t,2t+1, (299)欲使此数列的前100项和最小,a i+1,a i+2,…,a100依次为:22,23,…,2101﹣t;下面分别计算前100项和:(a1+a2+…+a t)+(a t+1+a t+2+…+a100)=(2+22+23+…+2t)+(22+23+…+2101﹣t)=2t+2100﹣2;当t=99时,此数列的前100项和最大,最大值为299+2100﹣2=3×299﹣2;(a1+a2+…+a t)+(a t+1+a t+2+…+a100)=(2+22+23+…+2t)+(22+23+…+2101﹣t)=2(2t+)﹣6≥4﹣6=252﹣6;当且仅当2t=时,即t=时等号成立,但t=∉N*;这时取t=50或t=51时,此数列的前100项和最小,最小值为2(250+251)﹣6=6•250﹣6.13.【解答】解:(1)a1=8,m=2,则前7项为8,4,2,1,3,5,7,故S7=30.(2)设k是整数.①若a1=2k﹣1,a2=2k+4,a3=k+2.则a1+a2+a3=5k+5=25⇒k=4,此时a1=7.②若a1=4k,a2=2k,a3=k,则a1+a2+a3=7k=25,此时k不存在.③若a1=4k﹣2,a2=2k﹣1,a3=2k+4,则a1+a2+a3=8k+1=25⇒k=3,此时a1=10.故a1=7或a1=10.(3)证明:充分性:若a n为奇数,则a n+1=a n+m>m;必要性:先利用数学归纳法证:a n≤m(a n为奇数);a n≤2m(a n为偶数).①a1=1≤m,a2=1+m≤2m,成立;②假设n=k时,a k≤m(a k为奇数);a k≤2m(a k为偶数).③当n=k+1时,当a k是偶数,;当a k是奇数,a k+1=a k+m≤2m,此时a k+1是偶数.综上,由数学归纳法得a n≤m(a n为奇数);a n≤2m(a n为偶数).从而若a n+1>m时,必有a n+1是偶数.进而若a n是偶数,则a n=2a n+1>2m矛盾,故a n只能为奇数.14.【解答】解:(Ⅰ)①数列{a n}具有“性质Ψ(2)”;②数列{a n}不具有“性质Ψ(2)”.(Ⅱ)证明:先证“充分性”:当数列{a n}具有“性质Ψ(2)”时,有a2n﹣1+a2n=2a n,又因为a n+1≥a n,所以0≤a2n﹣a n=a n﹣a2n﹣1≤0,进而有a n=a2n结合a n+1≥a n有a n=a n+1=…=a2n,即“数列{a n}为常数列”;再证“必要性”:若“数列{a n}为常数列”,则有a2n﹣1+a2n=2a1=2a n,即“数列{a n}具有“性质Ψ(2)”.(Ⅲ)首先证明:a n+1﹣a n≥2.因为{a n}具有“性质Ψ(4)”,所以a2n﹣1+a2n=4a n.当n=1时,有a2=3a1=3.又因为,且a2n>a2n﹣1,所以有a2n≥2a n+1,a2n﹣1≤2a n﹣1,进而有2a n+1≤a2n≤a2n+1﹣1≤2a n+1﹣2,所以2(a n+1﹣a n)≥3,结合可得:a n+1﹣a n≥2.然后利用反证法证明:a n+1﹣a n≤2.假设数列{a n}中存在相邻的两项之差大于3,即存在k∈N*满足:a2k+1﹣a2k≥3或a2k+2﹣a2k+1≥3,进而有4(a k+1﹣a k)=(a2k+2+a2k+1)﹣(a2k+a2k﹣1)=(a2k+2﹣a2k)+(a2k+1﹣a2k﹣1)=[(a2k+2﹣a2k+1)+(a2k+1﹣a2k)]+[(a2k+1﹣a2k)+(a2k﹣a2k﹣1)]≥12.又因为,所以a k+1﹣a k≥3依此类推可得:a2﹣a1≥3,矛盾,所以有a n+1﹣a n≤2.综上有:a n+1﹣a n=2,结合a1=1可得a n=2n﹣1,经验证,该通项公式满足a2n﹣1+a2n=4a n,所以:a n=2n﹣1.15.【解答】解:(Ⅰ)∵a0=﹣2.6,∴a1=[a0]•(a0﹣[a0])=﹣3×(﹣2.6+3)=﹣1.2,同理可得:a2=﹣1.6、a3=﹣0.8.………………(3分)(Ⅱ)因a0>0,则[a0]≥0,所以a1=[a0](a0﹣[a0])≥0,设[a i]≥0,i≥1,则a i+1=[a i](a i﹣[a i])≥0,所以[a i]≥0,∀i≥0.又因0≤a i﹣[a i]<1,则a i+1=[a i](a i﹣[a i])≤[a i],则[a i+1]≤[a i],∀i≥0.………………(4分)假设∀i≥0,都有[a i]>0成立,则a i+1=[a i](a i﹣[a i])<[a i],则[a i+1]<[a i],∀i≥0,即[a i+1]≤[a i]﹣1,∀i≥0,………………(5分)则[a n]≤[a0]﹣n,∀n≥1,则当n≥[a0]时,[a n]≤0,这与假设矛盾,所以[a i]>0,∀i≥0不成立,………………(6分)即存在k∈N,[a k]=0.从而{[a i]}的最小值为0.………………(7分)(Ⅲ)证明:当a0>0时,由(2)知,存在k∈N,[a k]=0,所以a k+1=0,所以[a k+1]=0,所以a i=0,∀i≥k,成立.………………(8分)当a0<0时,若存在k∈N,a k=0,则a i=0,∀i≥k,得证;………………(9分)若a i<0,∀i≥0,则[a i]≤﹣1,则a i+1=[a i](a i﹣[a i])>[a i],则[a i+1]≥[a i],∀i≥0,所以数列{[a i]}单调不减.由于[a i]是负整数,所以存在整数m和负整数c,使得当i≥m时,[a i]=c.所以,当i≥m时,a i+1=c(a i﹣c),则,令,即b i+1=cb i,i≥m.当b m=0时,则b i=0,i≥m,则,得证.………………(11分)当b m≠0时,b i≠0,i≥m,,因当i≥m时,[a i]=c,则a i∈[c,c+1),则{b i}有界,所以|c|≤1,所以负整数c=﹣1.………………(12分)∴,则………………(13分)令k=m,满足当i≥k时,a i=a i+2.综上,存在非负整数k,使得当i≥k时,a i=a i+2.………………(14分)16.【解答】解:(Ⅰ)解:由a1=5,a2=3,a n+2=|a n+1﹣a n|,n∈N*.得a3=|3﹣5|=2,a4=|2﹣3|=1,a5=|1﹣2|=1,a6=|1﹣1|=0,a7=|0﹣1|=1,a8=|1﹣0|=1,a9=|1﹣1|=0,a10=|0﹣1|=1,……从第四项开始满足,故a2019=0,a2020=a2021=1;(Ⅱ)证明:反证法:假设∀i∈N*,a i≠0,由于a n+2=|a n+1﹣a n|,记m=max{a1,a2},则a1≤m,a2≤m.则0<a3=|a2﹣a1|≤m﹣1,0<a4=|a3﹣a2|≤m﹣1,0<a5=|a4﹣a3|=m﹣2,0<a6=|a5﹣a4|=m﹣2,…,依次递推,有0<a7=|a6﹣a5|≤m﹣3,0<a8=|a7﹣a6|≤m﹣3…,则由数学归纳法易得a2n+1≤m﹣n,n∈N*.当n>m时,a2n+1<0,与a2n+1>0矛盾.故存在i,使a i=0.∴数列{a n}必在有限项后出现值为0的项;故存在m∈N*,当n>m时,数列{a n}中的项呈周期变化;(Ⅲ)证明:①先证数列{a n}中必有“k”(反证法):假设数列{a n}中没有“k”,由(Ⅱ)知数列{a n}中必有“0”项,设第一个“0”项是a m(m≥3),令a m﹣1=p,p>k,p∈N*,则必有a m﹣2=p,于是由p=a m﹣1=|a m﹣2﹣a m﹣3|=|p﹣a m﹣3|,则a m﹣3=2p,因此p是a m﹣3的因数,由p=a m﹣2=|a m﹣3﹣a m﹣4|=|2p﹣a m﹣4|,则a m﹣4=p或3p,因此p是a m﹣4的因数,依次递推,可得p是a1,a2的因数,因为p>k,所以这与a1,a2的最大公约数是k矛盾,所以数列{a n}中必有“k”;②再证数列{a n}中必有无穷多项为k:假设数列{a n}中第一个“k”项为是a t,令a t﹣1=q,q>k,q∈N*,则a t+1=|a t﹣a t﹣1|=q﹣k,若a t+1=q﹣k=k,则数列中的项从a t开始依次为“k,k,0“的无限循环,故有无穷多项为k;若a t+1=q﹣k>k,则a t+2=|a t+1﹣a t|=q﹣2k,a t+3=|a t+2﹣a t+1|=k;若a t+2=q﹣2k=k,则进入“k,k,0“的无限循环,故有无穷多项为k;若a t+2=q﹣2k>k,则从a t开始的项依次为k,q﹣k,q﹣2k,k,q﹣3k,q﹣4k,k,必出现连续两个“k”,从而进入“k,k,0“的无限循环,故有无穷多项为k;综合①②知:数列{a n}中必有无穷多项为k.17.【解答】解:(1)由题意知等差数列{a n}的通项公式为:a n=5n﹣5;等差数列{b n}的通项公式为:b n=9n﹣9,得c i,j=a i+b j=(5i﹣5)+(9i﹣9)=5i+9j﹣14,则c2,6=50,c396,6=2020,得d i,j=a i﹣b j+1=(5i﹣5)﹣[9(j+1)﹣9]=5i﹣9j﹣5,故d2,6=﹣49.(2)证明:已知a=6.b=7,由题意知等差数列{a n}的通项公式为:a n=6n﹣6;等差数列{b n}的通项公式为:b n=7n﹣7,得c i,j=a i+b j=(6i﹣6)+(7i﹣7)=6i+7j﹣13,i∈N*,j∈N*).得d i,j=a i﹣b j+1=(6i﹣6)﹣[7(j+1)﹣7]=6i﹣7j﹣6,1≤i≤7,i∈N*,j∈N*).。
【压轴题】高中必修二数学下期末试题带答案一、选择题1.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3 D .丁地:总体均值为2,总体方差为3 2.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是 ( )A .若l m ⊥,m α⊂,则l α⊥B .若l α⊥,//l m ,则m α⊥C .若//l α,m α⊂,则//l mD .若//l α,//m α,则//l m3.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x =f +x -,若(1)2f =,则(1)(2)f +f (3)(2020)f f +++=L ( )A .50B .2C .0D .50-4.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 25.已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b> 6.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .20B .10C .30D .607.设函数,则()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则( ) A .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线4x π=对称 B .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线2x π=对称C .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线4x π=对称 D .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线2x π=对称8.函数()lg ||f x x x =的图象可能是( )A .B .C .D .9.(2018年天津卷文)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为 A .6B .19C .21D .4510.若tan()24πα+=,则sin cos sin cos αααα-=+( )A .12B .2C .2-D .12-11.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭UB .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭12.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( ) A .a c b >>B .a b c >>C .c a b >>D .c b a >>二、填空题13.已知函数()sin 03y x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,若将该函数的图像向左平移()0m m >个单位后,所得图像关于原点对称,则m 的最小值为________. 14.奇函数()f x 对任意实数x 都有(2)()f x f x +=-成立,且01x 剟时,()21x f x =-,则()2log 11f =______.15.对于函数()f x ,()g x ,设(){}0m x f x ∈=,(){}0n x g x ∈=,若存在m ,n 使得1m n -<,则称()f x 与()g x 互为“近邻函数”.已知函数()()13log 2exf x x -=+-与()1422x x g x a +=⋅-+互为“近邻函数”,则实数a 的取值范围是______.(e 是自然对数的底数)16.关于函数()sin sin f x x x =+有如下四个结论:①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递增;③()f x 最大值为2;④()f x 在[],ππ-上有四个零点,其中正确命题的序号是_______.17.已知点()M a b ,在直线3415x y +=_______. 18.若圆x 2+y 2=4和圆x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程为____________.19.在△ABC 中,85a b ==,,面积为12,则cos 2C =______.20.函数f(x)为奇函数,且x>0时,f(x)+1,则当x<0时,f(x)=________.三、解答题21.某市为了考核甲,乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲,乙两部门评分的中位数; (2)分别估计该市的市民对甲,乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲,乙两部门的评价.22.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且()()3a b c a b c ab +++-=. (1)求角C 的值;(2)若2c =,且ABC ∆为锐角三角形,求+a b 的取值范围.23.从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下: 甲 8 9 7 9 7 6 10 10 8 6 乙10986879788(1)计算甲、乙两人射箭命中环数的平均数和标准差; (2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.24.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;25.如图所示,一座小岛A 距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一城镇B .一年青人从小岛A 出发,先驾驶小船到海岸线上的某点C 处,再沿海岸线步行到城镇B .若PAC θ∠=,假设该年青人驾驶小船的平均速度为2/km h ,步行速度为4/km h .(1)试将该年青人从小岛A 到城镇B 的时间t 表示成角θ的函数; (2)该年青人欲使从小岛A 到城镇B 的时间t 最小,请你告诉他角θ的值. 26.已知函数2()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差2.B解析:B 【解析】 【分析】利用,l α可能平行判断A ,利用线面平行的性质判断B ,利用//l m 或l 与m 异面判断C ,l 与m 可能平行、相交、异面,判断D . 【详解】l m ⊥,m α⊂,则,l α可能平行,A 错;l α⊥,//l m ,由线面平行的性质可得m α⊥,B 正确;//l α,m α⊂,则//l m , l 与m 异面;C 错,//l α,//m α,l 与m 可能平行、相交、异面,D 错,.故选B. 【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.3.C解析:C 【解析】 【分析】利用()f x 是定义域为(,)-∞+∞的奇函数可得:()()f x f x -=-且()00f =,结合(1)(1)f x =f +x -可得:函数()f x 的周期为4;再利用赋值法可求得:()20f =,()32f =-,()40f =,问题得解.【详解】因为()f x 是定义域为(,)-∞+∞的奇函数, 所以()()f x f x -=-且()00f = 又(1)(1)f x =f +x -所以()()()()()21111f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=-=-⎣⎦⎣⎦ 所以()()()()()4222f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=--=⎣⎦⎣⎦ 所以函数()f x 的周期为4,在(1)(1)f x =f +x -中,令1x =,可得:()()200f f ==在(1)(1)f x =f +x -中,令2x =,可得:()()()3112f f f =-=-=- 在(1)(1)f x =f +x -中,令3x =,可得:()()()4220f f f =-=-= 所以(1)(2)f +f ()()()()2020(3)(2020)12344f f f f f f ⎡⎤+++=⨯+++⎣⎦L 50500=⨯=故选C 【点睛】本题主要考查了奇函数的性质及函数的周期性应用,还考查了赋值法及计算能力、分析能力,属于中档题.4.D解析:D 【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x +π12)=cos (2x +π6)=sin (2x +2π3)的图象,即曲线C 2, 故选D .点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数sin()()y A x x R ωϕ=+∈是奇函数π()k k Z ϕ⇔=∈;函数sin()()y A x x R ωϕ=+∈是偶函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是奇函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是偶函数π()k k Z ϕ⇔=∈.5.B解析:B 【解析】 【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项. 【详解】依题意01a b <<<,由于12xy ⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b >,故A 选项不等式成立.由于ln y x =为定义域上的增函数,故ln ln 0a b <<,则11ln ln a b>,所以B 选项不等式不成立,D 选项不等式成立.由于01a b <<<,故11a b>,所以C 选项不等式成立.综上所述,本小题选B. 【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.6.B解析:B 【解析】 【分析】根据三视图还原几何体,根据棱锥体积公式可求得结果. 【详解】由三视图可得几何体直观图如下图所示:可知三棱锥高:4h =;底面面积:1155322S =⨯⨯= ∴三棱锥体积:1115410332V Sh ==⨯⨯=本题正确选项:B 【点睛】本题考查棱锥体积的求解,关键是能够通过三视图还原几何体,从而准确求解出三棱锥的高和底面面积.7.D解析:D 【解析】()sin(2)cos(2)2)22442f x x x x x πππ=+++=+=, 由02,x π<<得02x π<<,再由2,x k k Z ππ=+∈,所以,22k x k Z ππ=+∈. 所以y=f(x)在()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称,故选D.8.D解析:D 【解析】 【分析】分析函数()y f x =的定义域、奇偶性及其在()0,1上的函数值符号,可得出结论. 【详解】函数()lg f x x x =的定义域为{}0x x ≠,定义域关于原点对称,()()lg lg f x x x x x f x -=--=-=-,函数()y f x =为奇函数,排除A 、C 选项;当01x <<时,lg 0x <,此时()lg 0f x x x =<,排除B 选项. 故选:D. 【点睛】本题考查由函数的解析式选择函数图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查推理能力,属于中等题.9.C【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:51x y x y +=⎧⎨-+=⎩,可得点A 的坐标为:()2,3A ,据此可知目标函数的最大值为:max 35325321z x y =+=⨯+⨯=.本题选择C 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.10.D解析:D 【解析】 由tan()24πα+=有tan 112,tan 1tan 3ααα+==-,所以11sin cos tan 1131sin cos tan 1213αααααα---===-+++,选D.点睛:本题主要考查两角和的正切公式以及同角三角函数的基本关系式,属于中档题。
决胜3.已知函数,曲线在处的切线方程为.()2e xf x ax =-()y f x =()()1,1f 1y bx =+(1)求的值:,a b (2)求在上的最值;()f x []0,1(3)证明:当时,.0x >()e 1e ln 0x x x x +--≥4.已知函数,.()()ln 1f x x x a x =-++R a ∈(1)若,求函数的单调区间;1a =()f x (2)若关于的不等式在上恒成立,求的取值范围;x ()2f x a≤[)2,+∞a (3)若实数满足且,证明.b 21a b <-+1b >()212ln f x b <-5.椭圆的离心率是,点是椭圆上一点,过点2222:1(0)x y E a b a b +=>>22()2,1M E 的动直线与椭圆相交于两点.()0,1P l ,A B (1)求椭圆的方程;E (2)求面积的最大值;AOB (3)在平面直角坐标系中,是否存在与点不同的定点,使恒成立?存在,xOy P Q QA PAQB PB=求出点的坐标;若不存在,请说明理由.Q 6.已知函数,.()21ln 2f x a x x⎛⎫=-+ ⎪⎝⎭()()()2R g x f x ax a =-∈(1)当时,0a =(i )求曲线在点处的切线方程;()y f x =()()22f ,(ii )求的单调区间及在区间上的最值;()f x 1,e e ⎡⎤⎢⎥⎣⎦(2)若对,恒成立,求a 的取值范围.()1,x ∀∈+∞()0g x <(1)求抛物线的表达式和的值;,t k (2)如图1,连接AC ,AP ,PC ,若△APC 是以(3)如图2,若点P 在直线BC 上方的抛物线上,过点的最大值.12CQ PQ +(1)【基础训练】请分别直接写出抛物线的焦点坐标和准线l 的方程;22y x =(2)【技能训练】如图2所示,已知抛物线上一点P 到准线l 的距离为6,求点P 的坐218y x =标;(3)【能力提升】如图3所示,已知过抛物线的焦点F 的直线依次交抛物线及准()20y ax a =>线l 于点,若求a 的值;、、A B C 24BC BF AF ==,(4)【拓展升华】古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点C 将一条线段分为两段和,使得其中较长一段是全线段与另一AB AC CB AC AB 段的比例中项,即满足:,后人把这个数称为“黄金分割”,把CB 512AC BC AB AC -==512-点C 称为线段的黄金分割点.如图4所示,抛物线的焦点,准线l 与y 轴AB 214y x=(0,1)F 交于点,E 为线段的黄金分割点,点M 为y 轴左侧的抛物线上一点.当(0,1)H -HF 时,求出的面积值.2MH MF=HME 10.已知双曲线的一条渐近线方程的倾斜角为,焦距为4.2222:1(0,0)x y C a b a b -=>>60︒(1)求双曲线的标准方程;C (2)A 为双曲线的右顶点,为双曲线上异于点A 的两点,且.C ,M N C AM AN ⊥①证明:直线过定点;MN ②若在双曲线的同一支上,求的面积的最小值.,M N AMN(1)试用解析几何的方法证明:(2)如果将圆分别变为椭圆、双曲线或抛物线,你能得到类似的结论吗?13.对于数集(为给定的正整数),其中,如果{}121,,,,n X x x x =-2n ≥120n x x x <<<< 对任意,都存在,使得,则称X 具有性质P .,a b X ∈,c d X ∈0ac bd +=(1)若,且集合具有性质P ,求x 的值;102x <<11,,,12x ⎧⎫-⎨⎬⎩⎭(2)若X 具有性质P ,求证:;且若成立,则;1X ∈1n x >11x =(3)若X 具有性质P ,且,求数列的通项公式.2023n x =12,,,n x x x 14.已知,是的导函数,其中.()2e xf x ax =-()f x '()f x R a ∈(1)讨论函数的单调性;()f x '(2)设,与x 轴负半轴的交点为点P ,在点P()()()2e 11x g x f x x ax =+-+-()y g x =()y g x =处的切线方程为.()y h x =①求证:对于任意的实数x ,都有;()()g x h x ≥②若关于x 的方程有两个实数根,且,证明:()()0g x t t =>12,x x 12x x <.()2112e 11e t x x --≤+-15.在平面直角坐标系中,一动圆经过点且与直线相切,设该动圆圆心xOy 1,02A ⎛⎫ ⎪⎝⎭12x =-的轨迹为曲线K ,P 是曲线K 上一点.(1)求曲线K 的方程;(2)过点A 且斜率为k 的直线l 与曲线K 交于B 、C 两点,若且直线OP 与直线交//l OP 1x =于Q 点.求的值;||||AB ACOP OQ ⋅⋅(3)若点D 、E 在y 轴上,的内切圆的方程为,求面积的最小值.PDE △()2211x y -+=PDE △16.已知椭圆C :,四点中恰有三()222210x y a b a b +=>>()()1234331,1,0,1,1,,1,22P P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点,若直线与直线的斜率的和为,2P A 2P B 1-证明:l 过定点.18.给定正整数k ,m ,其中,如果有限数列同时满足下列两个条件.则称2m k ≤≤{}n a 为数列.记数列的项数的最小值为.{}n a (,)k m -(,)k m -(,)G k m 条件①:的每一项都属于集合;{}n a {}1,2,,k 条件②:从集合中任取m 个不同的数排成一列,得到的数列都是的子列.{}1,2,,k {}n a 注:从中选取第项、第项、…、第项()形成的新数列{}n a 1i 2i 5i 125i i i <<<…称为的一个子列.325,,,i i i a a a ⋯{}n a (1)分别判断下面两个数列,是否为数列.并说明理由!(33)-,数列;1:1,2,3,1,2,3,1,2,3A 数列.2:1,2,3,2,1,3,1A (2)求的值;(),2G k (3)求证.234(,)2k k G k k +-≥答案:1.(1)极大值为,无极小值2e (2)证明见解析【分析】(1)求导,根据导函数的符号结合极值的定义即可得解;(2)构造函数,利用导数求出函数的最小值,再()21()()()2ln 12F x f x g x x x x x x =+=+->证明即可或者转换不等式为,通过构造函数可得证.()min0F x >()112ln 012x x x +->>【详解】(1)的定义域为,,()f x (0,)+∞()2(1ln )f x x '=-+当时,,当时,,10e x <<()0f x '>1e x >()0f x '<所以函数在上单调递增,在上单调递减,()f x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭故在处取得极大值,()f x 1e x =12e e f ⎛⎫= ⎪⎝⎭所以的极大值为,无极小值;()f x 2e (2)设,()21()()()2ln 12F x f x g x x x x x x =+=+->解法一:则,()2ln 1F x x x '=--令,,()()2ln 11h x x x x =-->22()1x h x x x -'=-=当时,,单调递减,当时,,单调递增,12x <<()0h x '<()h x 2x >()0h x '>()h x 又,,,(2)1ln 40h =-<(1)0h =(4)32ln 40h =->所以存在,使得,即.0(2,4)x ∈0()0h x =002ln 10x x --=当时,,即,单调递减,01x x <<()0h x <()0F x '<()F x 当时,,即,单调递增,0x x >()0h x >()0F x '>()F x 所以当时,在处取得极小值,即为最小值,1x >()F x 0x x =故,22000000(11()()12ln )222F x F x x x x x x ≥=+-=-+设,因为,2000122()p x x x =-+0(2,4)x ∈由二次函数的性质得函数在上单调递减,2000122()p x x x =-+(2,4)故,0()(4)0p x p >=所以当时,,即.1x >()0F x >()()0f x g x +>解法二:要证,即证,()0F x >()1()12ln 012p x x x x =+->>因为,所以当时,,单调递减,()124()122x p x x x x -'=-=>()1,4x ∈()0p x '<()p x 当时,,单调递增,()4,x ∞∈+()0p x '>()p x 所以,所以,即.()()4212ln 434ln 20p x p ≥=+-=->()0F x >()()0f x g x +>方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.2.(1)0(2)证明详见解析(3)2a ≤【分析】(1)利用导数求得的最小值.()g x (2)根据(1)的结论得到,利用放缩法以及裂项求和法证得不等式成立.2211ln 1n n ⎛⎫+≤ ⎪⎝⎭(3)由不等式分离参数,利用构造函数法,结合导数求得的取ln (2)10xx x x a x -+--≥a a 值范围.【详解】(1)依题意,,()21ln (,0)2f x x x x t t x =-+∈>R 所以,()()()()ln 1ln 10g x f x x x x x x '==-+=-->,所以在区间上单调递减;()111x g x x x -'=-=()g x ()0,1()()0,g x g x '<在区间上单调递增,()1,+∞()()0,g x g x '>所以当时取得最小值为.1x =()g x ()11ln110g =--=(2)要证明:对任意正整数,都有,(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 即证明,22221111ln 1111ln e234n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 即证明,222111ln 1ln 1ln 1123n ⎛⎫⎛⎫⎛⎫++++++< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由(1)得,即()()()10f xg x g '=≥=ln 10,ln 1x x x x --≥≤-令,所以, *211,2,N x n n n =+≥∈222111ln 111n n n ⎛⎫+≤+-= ⎪⎝⎭所以222222111111ln 1ln 1ln 12323n n ⎛⎫⎛⎫⎛⎫++++++≤+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,()111111111122312231n n n n <+++=-+-++-⨯⨯-- 111n=-<所以对任意正整数,都有.(2)n n ≥222211111111e 234n ⎛⎫⎛⎫⎛⎫⎛⎫+⋅+⋅++< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (3)若不等式恒成立,此时,ln (2)10xx x x a x -+--≥0x >则恒成立,ln 21x x x x x a x -+-≤令,()ln 21xx x x x h x x -+-=令,()()()e 10,e 10x x u x x x u x '=--≥=-≥所以在区间上单调递增,()u x[)0,∞+所以,当时等号成立,()0e 010,e 10,e 1x x u x x x ≥--=--≥≥+0x =所以,()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当时等号成立,所以.ln 0,1x x x ==2a ≤利用导数求函数的最值的步骤:求导:对函数进行求导,得到它的导函数.导函数()f x ()f x '表示了原函数在不同点处的斜率或变化率.找出导数为零的点:解方程,找到使得导()0f x '=数为零的点,这些点被称为临界点,可能是函数的极值点(包括最大值和最小值),检查每个临界点以及区间的端点,并确认它们是否对应于函数的最值.3.(1),1a =e 2b =-(2);()max e 1f x =-()min 1f x =(3)证明见解析【分析】(1)利用切点和斜率列方程组,由此求得.,a b (2)利用多次求导的方法求得在区间上的单调性,由此求得在上的最值.()f x []0,1()f x []0,1(3)先证明时,,再结合(2)转化为,从0x >()()e 21f x x ≥-+()21e ln e x x x x x+--≥+而证得不等式成立.【详解】(1),()e 2x f x ax'=-∴,解得:,;()()1e 21e 1f a b f a b ⎧=-=⎪⎨=-=+'⎪⎩1a =e 2b =-(2)由(1)得:,()2e xf x x =-,令,则,()e 2x f x x '=-()e 2x h x x=-()e 2x h x '=-是增函数,令解得.()h x ()0h x '=ln 2x =∴,也即在上单调递减,()h x ()f x '()0,ln2()()0,h x h x '<在上单调递增,()ln2,+∞()()0,h x h x '>∴,∴在递增,()()ln 2ln222ln20h f ==->'()f x []0,1∴;;()()max 1e 1f x f ==-()()min 01f x f ==(3)∵,由(2)得过,()01f =()f x ()1,e 1-且在处的切线方程是,()y f x =1x =()e 21y x =-+故可猜测且时,的图象恒在切线的上方,0x >1x ≠()f x ()e 21y x =-+下面证明时,,设,,0x >()()e 21f x x ≥-+()()()e 21g x f x x =---()0x >∴,∴令,()()e 2e 2x g x x =---'()()()e 2e 2x x x g m x '--==-,()e 2x m x '=-由(2)得:在递减,在递增,()g x '()0,ln2()ln2,+∞∵,,,∴,()03e 0g '=->()10g '=0ln21<<()ln20g '<∴存在,使得,()00,1x ∈()0g x '=∴时,,时,,()()00,1,x x ∈⋃+∞()0g x '>()0,l x x ∈()0g x '<故在递增,在递减,在递增.()g x ()00,x ()0,1x ()1,+∞又,∴当且仅当时取“”,()()010g g ==()0g x ≥1x ==()()2e e 210x g x x x =----≥故,,由(2)得:,故,()e e 21x x xx+--≥0x >e 1x x ≥+()ln 1x x ≥+∴,当且仅当时取“=”,∴,1ln x x -≥1x =()e e 21ln 1x x x x x+--≥≥+即,∴,()21ln 1e e x x x x+--≥+()21e ln e x x x x x+--≥+即成立,当且仅当时“=”成立.()1ln 10e e x x x x +---≥1x =求解切线的有关的问题,关键点就是把握住切点和斜率.利用导数研究函数的单调性,如果一次求导无法求得函数的单调性时,可以考虑利用多次求导来进行求解.利用导数证明不等式恒成立,如果无法一步到位的证明,可以先证明一个中间不等式,然后再证得原不等式成立.4.(1)单调增区间为,单调减区间为;()0,1()1,+∞(2)(],2ln 2-∞(3)证明见解析【分析】(1)求导,再根据导函数的符号即可得解;(2)分离参数可得,构造函数,利用导数求出函数的最小ln 1x x a x ≤-ln (),21x xg x x x =≥-()g x 值即可得解;(3)由,得,则,要证21a b <-+21a b -<-2112()(e )e e 1a a b f x f a b ---≤=+<-+,即证,即证,构造函数()212ln f x b<-222e112ln bb b --+<-22212ln 0eb b b +-<,证明即可.()()()12ln e x h x x x x =>-()1h x <-【详解】(1)当时,,1a =()ln 1,0f x x x x x =-++>,由,得,由,得,()ln f x x '=-()0f x '>01x <<()0f x '<1x >故的单调增区间为,单调减区间为;()f x ()0,1()1,+∞(2),()ln 2,1x xf x a a x ≤∴≤- 令,ln (),21x x g x x x =≥-则,21ln ()(1)x xg x x --'=-令,则,()ln 1t x x x =-+11()1xt x x x -'=-=由,得,由,得,()0t x '>01x <<()0t x '<1x >故在递增,在递减,,()t x ()0,1()1,+∞max ()(1)0t x t ==,所以,()0t x ∴≤ln 1≤-x x 在上单调递增,,()0,()g x g x '≥∴[)2,+∞()min ()2g x g ∴=,(2)2ln 2a g ∴≤=的取值范围;a ∴(],2ln 2-∞(3),221,1b a b a <-+∴-<- 又,在上递增,11()(e )e a a f x f a --≤=+1e a y a -=+ R a ∈所以,2112()(e )e e 1a a b f x f a b ---≤=+<-+下面证明:,222e 112ln b b b --+<-即证,22212ln 0ebb b +-<令,则,21x b =>12ln 0e x x x +-<即,(2ln )e 1xx x -⋅<-令,则,()()()12ln e xh x x x x =>-()22ln 1e xh x x x x '⎛⎫=-+-⋅ ⎪⎝⎭令,则,()2()2ln 11x x x x x ϕ=-+->()()2221122()101x x x x x x ϕ---=--=<>∴函数在上单调递减,()x ϕ()1,+∞,()(1)0x ϕϕ∴<=在递减,()()0,h x h x '∴<(1,)+∞,()()1e 1h x h ∴<=-<-所以.()212ln f x b <-方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明()()f xg x >()()f xg x <(或),进而构造辅助函数;()()0f xg x ->()()0f xg x -<()()()h x f x g x =-(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.5.(1)22142x y +=(2)2(3)存在,.()0,2Q 【分析】(1)由离心率及过点列方程组求解.()2,1M,a b (2)设直线为与椭圆方程联立,将表达为的函数,由基本不l 1y kx =+1212AOB S x x =⋅- k 等式求最大值即可.(3)先讨论直线水平与竖直情况,求出,设点关于轴的对称点,证得()0,2Q B y B '三点共线得到成立.,,Q A B 'QA PAQB PB=【详解】(1)根据题意,得,解得,椭圆C 的方程为.2222222211c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩222422a b c ⎧=⎪=⎨⎪=⎩22142x y +=(2)依题意,设,直线的斜率显然存在,()()1122,,,A x y B x y l 故设直线为,联立,消去,得,l 1y kx =+221142y kx x y =+⎧⎪⎨+=⎪⎩y ()2212420k x kx ++-=因为直线恒过椭圆内定点,故恒成立,,l ()0,1P 0∆>12122242,1212k x x x x k k +=-=-++故,()2221212221224212111214414222122AOBk S x x x x x x k k k k ⋅+⎛⎫⎛⎫=⋅=⨯-=⨯-⨯= ⎪ ⎪+⎝-+-⎝++⎭⎭- 令,所以,当且仅当,即时取得214,1t k t =+≥22222211AOB t S t t t=×=×£++1t =0k =等号,综上可知:面积的最大值为.AOB 2(3)当平行于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,C D Q 则有,即,所以点在轴上,可设的坐标为;||||1||||QC PC QD PD ==QC QD =Q y Q ()00,y 当垂直于轴时,设直线与椭圆相交于两点,如果存在点满足条件,l x ,M N Q 则有,即,解得或,||||||||QM PM QN PN =00221212y y --=++01y =02y =所以若存在不同于点的定点满足条件,则点的坐标为;P Q Q ()0,2当不平行于轴且不垂直于轴时,设直线方程为,l x x l 1y kx =+由(2)知,12122242,1212k x x x x k k --+==++又因为点关于轴的对称点的坐标为,B y B '()22,x y -又,,11111211QA y kx k k x x x --===-22222211QB y kx k k x x x '--===-+--.方法点睛:直线与椭圆0Ax By C ++=时,取得最大值2222220a A b B C +-=MON S 6.(1)(i );(322ln 220x y +--=(2)11,22⎡⎤-⎢⎥⎣⎦故曲线在点处的切线方程为,()y f x =()()22f ,()()32ln 222y x --+=--即;322ln 220x y +--=(ii ),,()21ln 2f x x x =-+()0,x ∈+∞,()211x f x x x x -'=-+=令,解得,令,解得,()0f x ¢>()0,1x ∈()0f x '<()1,x ∈+∞当时,,1,e e x ⎡⎤∈⎢⎥⎣⎦()()max 112f x f ==-又,,221111ln 1e 2e e 2e f ⎛⎫=-+=-- ⎪⎝⎭()2211e e ln e e 122f =-+=-+其中,()222211111e 1e 1e 20e 2e 222ef f ⎛⎫⎛⎫-=----+=--> ⎪ ⎪⎝⎭⎝⎭故,()()2min 1e e 12f x f ==-+故的单调递增区间为,单调递减区间为;()f x ()0,1()1,+∞在区间上的最大值为,最小值为;()f x 1,e e ⎡⎤⎢⎥⎣⎦12-21e 12-+(2),()21ln 22xg x a x x a ⎭-+⎛=⎪-⎫ ⎝对,恒成立,()1,x ∀∈+∞21ln 202a x x ax ⎛⎫-+-< ⎪⎝⎭变形为对恒成立,ln 122x a xa x<--⎛⎫ ⎪⎝⎭()1,x ∀∈+∞令,则,()(),1,ln x h x x x ∈=+∞()21ln xh x x -'=当时,,单调递增,()1,e x ∈()0h x '>()ln xh x x =当时,,单调递减,()e,+x ∈∞()0h x '<()ln xh x x =其中,,当时,恒成立,()10h =()ln e 1e e e h ==1x >()ln 0x h x x =>故画出的图象如下:()ln x h x x =其中恒过点122y xa a ⎛⎫ ⎪⎝=⎭--(2,1A 又,故在()210111h -'==()ln x h x x =又在上,()2,1A 1y x =-()对于2111644y x x =-+-∴点,即()0,6C -6OC =∵2114,14P m m m ⎛-+- ⎝∴点,3,64N m m ⎛⎫- ⎪⎝⎭∴,22111316624444PN m m m m m⎛⎫=-+---=-+ ⎪⎝⎭∵轴,PN x ⊥∴,//PN OC ∴,PNQ OCB ∠=∠∴,Rt Rt PQN BOC ∴,PN NQ PQ BC OC OB ==∵,8,6,10OB OC BC ===∴,34,55QN PN PQ PN==∵轴,NE y ⊥∴轴,//NE x ∴,CNE CBO ∴,5544CN EN m ==∴,2215111316922444216CQ PQ m m m m ⎛⎫+=-+=--+⎪⎝⎭当时,取得最大值.132m =12CQ PQ+16916关键点点睛:熟练的掌握三角形相似的判断及性质是解决本题的关键.8.(1)详见解析;(2)①具有性质;理由见解析;②P 1346【分析】(1)当时,先求得集合,由题中所给新定义直接判断即可;10n =A (2)当时,先求得集合, 1010n =A ①根据,任取,其中,可得,{}2021|T x x S =-∈02021t x T =-∈0x S ∈0120212020x ≤-≤利用性质的定义加以验证,即可说明集合具有性质;P T P ②设集合有个元素,由(1)可知,任给,,则与中必有个S k x S ∈12020x ≤≤x 2021x -1不超过,从而得到集合与中必有一个集合中至少存在一半元素不超过,然后利1010S T 1010用性质的定义列不等式,由此求得的最大值.P k【详解】(1)当时,,10n ={}1,2,,19,20A = 不具有性质,{}{}|910,11,12,,19,20B x A x =∈>= P 因为对任意不大于的正整数,10m 都可以找到该集合中的两个元素与,使得成立,110b =210b m =+12||b b m -=集合具有性质,{}*|31,N C x A x k k =∈=-∈P 因为可取,对于该集合中任一元素,110m =<,(),都有.112231,31c k c k =-=-*12,N k k ∈121231c c k k -=-≠(2)当时,集合,1010n ={}()*1,2,3,,2019,2020,1010N A m m =≤∈ ①若集合具有性质,那么集合一定具有性质.S P {}2021|T x x S =-∈P 首先因为,任取,其中.{}2021|T x x S =-∈02021t x T =-∈0x S ∈因为,所以.S A ⊆{}01,2,3,,2020x ∈ 从而,即,所以.0120212020x ≤-≤t A ∈T A ⊆由具有性质,可知存在不大于的正整数,S P 1010m 使得对中的任意一对元素,都有.s 12,s s 12s s m -≠对于上述正整数,从集合中任取一对元素,m {}2021|T x x S =-∈112021t x -=,其中,则有.222021t x =-12,x x S ∈1212t t s s m --≠=所以,集合具有性质P ;{}2021|T x x S =-∈②设集合有个元素,由(1)可知,若集合具有性质,S k S P 那么集合一定具有性质.{}2021|T x x S =-∈P 任给,,则与中必有一个不超过.x S ∈12020x ≤≤x 2021x -1010所以集合与中必有一个集合中至少存在一半元素不超过.S T 1010不妨设中有个元素不超过.S 2k t t ⎛⎫≥ ⎪⎝⎭12,,,t b b b 1010由集合具有性质,可知存在正整数.S P 1010m ≤使得对中任意两个元素,都有.S 12,s s 12s s m -≠所以一定有.12,,,t b m b m b m S +++∉ 又,故.100010002000i b m +≤+=121,,,b m b m b m A +++∈ 即集合中至少有个元素不在子集中,A t S 因此,所以,得.20202k k k t +≤+≤20202k k +≤1346k ≤当时,取,{}1,2,,672,673,,1347,,2019,2020S = 673m =则易知对集合中的任意两个元素,都有,即集合具有性质.S 12,y y 12673y y -≠S P 而此时集合S 中有个元素,因此,集合元素个数的最大值为.1346S 1346解新定义题型的步骤:(1)理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.9.(1),10,8⎛⎫ ⎪⎝⎭18y =-(2)或()42,4()42,4-(3)14a =(4)或51-35-【分析】(1)根据焦点和准线方程的定义求解即可;(2)先求出点P 的纵坐标为4,然后代入到抛物线解析式中求解即可;(3)如图所示,过点B 作轴于D ,过点A 作轴于E ,证明,推BD y ⊥AE y ⊥FDB FHC ∽出,则,点B 的纵坐标为,从而求出,证明16FD a =112OD OF DF a =-=112a 36BD a =,即可求出点A 的坐标为,再把点A 的坐标代入抛物线解析式AEF BDF ∽123,24a ⎛⎫ ⎪⎝+⎭-中求解即可;(4)如图,当E 为靠近点F 的黄金分割点的时候,过点M 作于N ,则,MN l ⊥MN MF=先证明是等腰直角三角形,得到,设点M 的坐标为,则MNH △NH MN=21,4m m ⎛⎫⎪⎝⎭过点B 作轴于D ,过点BD y ⊥由题意得点F 的坐标为F ⎛ ⎝1FH =当E 为靠近点F 的黄金分割点的时候,过点∵在中,Rt MNH △sin MHN ∠∴,∴是等腰直角三角形,45MHN ︒=MNH △双曲线方程联立,利用韦达定理及题目条件可得,后由题意可得AM AN ⋅= ()()222131t t m -+=-所过定点坐标;②结合①及图形可得都在左支上,则可得,后由图象可得,M N 213m <,后通过令,结合单调性229113m S m +=-223113m λλ⎛⎫+=≤< ⎪⎝⎭()423313f x x x x ⎛⎫=-≤< ⎪⎝⎭可得答案.【详解】(1)设双曲线的焦距为,C 2c 由题意有解得.2223,24,,ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩1,3,2a b c ===故双曲线的标准方程为;C 2213y x -=(2)①证明:设直线的方程为,点的坐标分别为,MN my x t =+,M N ()()1122,,,x y x y 由(1)可知点A 的坐标为,()1,0联立方程消去后整理为,2213y x my x t ⎧-=⎪⎨⎪=+⎩x ()222316330m y mty t --+-=可得,2121222633,3131mt t y y y y m m -+==--,()212122262223131m t tx x m y y t t m m +=+-=-=--,()()()()222222222121212122223363313131m t m t m t x x my t my t m y y mt y y t t m m m -+=--=-++=-+=----由,()()11111,,1,AM x y AN x y =-=-有()()()1212121212111AM AN x x y y x x x x y y ⋅=--+=-+++,()()()()22222222222222222132331313131313131t t t t t t m t t t m m m m m m -----++-=--++===------由,可得,有或,AM AN ⊥0AM AN ⋅=1t =-2t =当时,直线的方程为,过点,不合题意,舍去;1t =-MN 1my x =-()1,0当时,直线的方程为,过点,符合题意,2t =MN 2my x =+()2,0-②由①,设所过定点为121224,31x x x x m +==-若在双曲线的同一支上,可知,M N 有12240,31x x x m +=<-关键点睛:求直线所过定点常采取先猜后证或类似于本题处理方式,设出直线方程,通过题一方面:由以上分析可知,设椭圆方程为一方面:同理设双曲线方程为()22221y m x a b +-=,()2222221b x a k x m a b -+=化简并整理得()(2222222112ba k x a mk x a m ---+一方面:同理设抛物线方程为(22x p y =,()212x p k x n =+化简并整理得,由韦达定理可得12220pk x x pn --=2,2x x pk x x pn +=⋅=-(2)构造,故转化为等价于“对任()()()()()13131931x x xx f x k k g x f x +--==+++()()()123g x g x g x +>意,,恒成立”,换元后得到(),分,和1x 2x 3R x ∈()()11k g x q t t -==+3t ≥1k >1k =三种情况,求出实数k 的取值范围.1k <【详解】(1)由条件①知,当时,有,即在R 上单调递增.12x x <()()12f x f x <()f x 再结合条件②,可知存在唯一的,使得,从而有.0R x ∈()013f x =()093x x f x x --=又上式对成立,所以,R x ∀∈()00093x x f x x --=所以,即.0001393x x x --=0009313x x x ++=设,因为,所以单调递增.()93x x x xϕ=++()9ln 93ln 310x x x ϕ'=++>()x ϕ又,所以.()113ϕ=01x =所以;()931x x f x =++(2)构造函数,()()()()()13131931x x xx f x k k g x f x +--==+++由题意“对任意的,,,1x 2x 3R x ∈均存在以,,为三边长的三角形”()()()11113x f x k f x +-()()()22213x f x k f x +-()()()33313x f x k f x +-等价于“对任意,,恒成立”.()()()123g x g x g x +>1x 2x 3R x ∈又,令,()111313x x k g x -=+++1131231333x x x x t ⋅=++≥+=当且仅当时,即时取等号,91x=0x =则(),()()11k g x q t t -==+3t ≥当时,,因为且,1k >()21,3k g x +⎛⎤∈ ⎥⎝⎦()()122423k g x g x +<+≤()3213k g x +<≤所以,解得,223k +≤4k ≤即;14k <≤当时,,满足条件;1k =()()()1231g x g x g x ===当时,,因为且,1k <()2,13k g x +⎡⎫∈⎪⎢⎣⎭()()122423k g x g x ++<≤()3213k g x +<≤所以,即.2413k +≤112k -≤<综上,实数k 的取值范围是.1,42⎡⎤-⎢⎥⎣⎦复合函数零点个数问题处理思路:①利用换元思想,设出内层函数;②分别作出内层函数与外层函数的图象,分别探讨内外函数的零点个数或范围;③内外层函数相结合确定函数交点个数,即可得到复合函数在不同范围下的零点个数.13.(1)14x =(2)证明过程见解析(3),()112023k n k x --=1k n≤≤【分析】(1)由题意转化为对于,都存在,使得,其中(),m a b =(),n c d =0m n ⋅= ,选取,,通过分析求出;,,,a b c d X ∈()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==- 14x =(2)取,,推理出中有1个为,则另一个为1,即,()()11,,m a b x x == (),n c d =,c d 1-1X ∈再假设,其中,则,推导出矛盾,得到;1k x =1k n <<101n x x <<<11x =(3)由(2)可得,设,,则有,记11x =()11,m s t =()22,n s t =1212s t t s =-,问题转化为X 具有性质P ,当且仅当集合关于原点对称,得到,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B ,共个数,由对称性可知也有个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -()0,B +∞ ()1n -结合三角形数阵得到,得到数列为首项为1的等比123212321n n n n n n x x x x x x x x x x -----===== 12,,,n x x x 数列,设出公比为,结合求出公比,求出通项公式.q 2023n x =【详解】(1)对任意,都存在,使得,,a b X ∈,c d X ∈0ac bd +=即对于,都存在,使得,其中,(),m a b =(),n c d =0m n ⋅= ,,,a b c d X ∈因为集合具有性质P ,11,,,12x ⎧⎫-⎨⎬⎩⎭选取,,()1,,2m a b x ⎛⎫== ⎪⎝⎭ ()(),1,n c d d ==-则有,12x d -+=假设,则有,解得,这与矛盾,d x =102x x -+=0x =102x <<假设,则有,解得,这与矛盾,1d =-12x --=12x =-102x <<假设,则有,解得,这与矛盾,1d =12x -+=12x =102x <<假设,则有,解得,满足,12d =14x -+=14x =102x <<故;14x =(2)取,,()()11,,m a b x x == (),n c d =则,()10c d x +=因为,所以,即异号,120n x x x <<<< 0c d +=,c d 显然中有1个为,则另一个为1,即,,c d 1-1X ∈假设,其中,则,1k x =1k n <<101n x x <<<选取,,则有,()()1,,n m a b x x ==(),n s t =10n sx tx +=则异号,从而之中恰有一个为,,s t ,s t 1-若,则,矛盾,1s =-11n x tx t x =>≥若,则,矛盾,1t =-1n n x sx s x =<≤故假设不成立,所以;11x =(3)若X 具有性质P ,且,20231n x =>由(2)可得,11x =设,,则有,()11,m s t =()22,n s t =1212s t t s =-记,则X 具有性质P ,当且仅当集合关于原点对称,,,s B s X t X s t t ⎧⎫=∈∈>⎨⎬⎩⎭B 注意到是集合中唯一的负数,1-X 故,共个数,(){}234,0,,,,n B x x x x -∞=---- ()1n -由对称性可知也有个数,()0,B +∞ ()1n -由于,已经有个数,123421n n n n n nn n n n x x x x x x x x x x x x ----<<<<<< ()1n -对于以下三角形数阵:123421n n n n n n n n n n x x x x x xx x x x x x ----<<<<<< 1111123421n n n n n n n n x x x x xx x x x x --------<<<<< ……3321x x x x <21x x 注意到,123211111n n n x x x x x x x x x x -->>>>> 所以有,123212321n n n n n n x x x x x x x x x x -----===== 从而数列为首项为1的等比数列,设公比为,12,,,n x x x q 由于,故,解得,2023n x =112023n nx q x -==()112023n q -=故数列的通项公式为,.12,,,n x x x ()112023k n k x --=1k n ≤≤集合新定义问题,命题新颖,且存在知识点交叉,常常会和函数或数列相结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.14.(1)答案见解析(2)①证明见解析;②证明见解析【分析】(1)求出的导数,结合解不等式可得答案;()e 2x f x ax'=-(2)①,利用导数的几何意义求得的表达式,由此构造函数,()y h x =()()()F x g x h x =-利用导数判断其单调性,求其最小值即可证明结论;②设的根为,求得其表达式,()h x t=1x '并利用函数单调性推出,设曲线在点处的切线方程为,设11x x '≤()y g x =()0,0()y t x =的根为,推出,从而,即可证明结论.()t x t=2x '22x x '≥2121x x x x ''-≤-【详解】(1)由题意得,令,则,()e 2x f x ax'=-()e 2x g x ax=-()e 2x g x a'=-当时,,函数在上单调递增;0a ≤()0g x '>()f x 'R 当时,,得,,得,0a >()0g x '>ln 2x a >()0g x '<ln 2x a <所以函数在上单调递减,在上单调递增.()f x '(),ln 2a -∞()ln 2,a +∞(2)①证明:由(1)可知,令,有或,()()()1e 1x g x x =+-()0g x ==1x -0x =故曲线与x 轴负半轴的唯一交点P 为.()y g x =()1,0-曲线在点处的切线方程为,()1,0P -()y h x =则,令,则,()()()11h x g x '=-+()()()F x g x h x =-()()()()11F x g x g x '=--+所以,.()()()()11e 2e x F x g x g x '''=-=+-()10F '-=当时,若,,1x <-(],2x ∈-∞-()0F x '<若,令,则,()2,1x --()1()e 2e x m x x =+-()()e 30xm x x '=+>故在时单调递增,.()F x '()2,1x ∈--()()10F x F ''<-=故,在上单调递减,()0F x '<()F x (),1-∞-当时,由知在时单调递增,1x >-()()e 30x m x x '=+>()F x '()1,x ∈-+∞,在上单调递增,()()10F x F ''>-=()F x ()1,-+∞设曲线在点处的切线方程为()y g x =()0,0令()()()()(1e x T x g x t x x =-=+当时,2x ≤-()()2e x T x x =+-'()()2e xn x x =+-设,∴()()1122,,,B x y C x y 1x 又1211,22AB x AC x =+=+依题意,即,则,0bc <02x >()()220220004482x y c x x b =+---因为,所以,2002y x =0022x b c x -=-所以,()()00000242248122424S b c x x x x x -⋅=-++≥-⋅+=-=-当且仅当,即时上式取等号,00422x x -=-04x =所以面积的最小值为8.PDE △方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.16.(1)2214x y +=(2)证明见解析(3)存在,7,,777⎛⎫⎛⎫-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 【分析】(1)根据椭圆的对称性,得到三点在椭圆C 上.把的坐标代入椭圆234,,P P P 23,P P C ,求出,即可求出椭圆C 的方程;22,a b (2)当斜率不存在时,不满足;当斜率存在时,设,与椭圆方程联立,利():1l y kx t t =+≠用判别式、根与系数的关系,结合已知条件得到,能证明直线l 过定点;21t k =--()2,1-(3)利用点差法求出直线PQ 的斜率,从而可得直线PQ 的方程,与抛物线方程联14PQ k t =立,由,及点G 在椭圆内部,可求得的取值范围,设直线TD 的方程为,0∆>2t 1x my =+与抛物线方程联立,由根与系数的关系及,可求得m 的取值范围,进而可求得直线11DA TB k k =的斜率k 的取值范围.2l【详解】(1)根据椭圆的对称性,两点必在椭圆C 上,34331,,1,22P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又的横坐标为1,4P ∴椭圆必不过,()11,1P ∴三点在椭圆C 上.()234330,1,1,,1,22P P P ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭把代入椭圆C ,()3231,20,1,P P ⎛⎫- ⎪ ⎪⎝⎭得,解得,222111314b a b ⎧=⎪⎪⎨⎪+=⎪⎩2241a b ⎧=⎨=⎩∴椭圆C 的方程为.2214x y +=(2)证明:①当斜率不存在时,设,,:l x m =()(),,,A A A m y B m y -∵直线与直线的斜率的和为,2P A 2P B 1-∴,221121A A P A P B y y k k m m m ----+=+==-解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设,,,:l y kx t =+1t ≠()()1122,,,A x y B x y 联立,消去y 整理得,22440y kx tx y =+⎧⎨+-=⎩()222148440k x ktx t +++-=则,,122814kt x x k -+=+21224414t x x k -=+则()()()()222112************111111P A P B x y x y x kx t x kx t y y k k x x x x x x -+-+-++---+=+==,()()()()()()12121222222448218114141144411142t k k kx x t tk t k t k k t t x t x x x +-+=--⋅+-⋅-++===--+-+又,∴,此时,1t ≠21t k =--()()222222644144464161664k t k t k t k ∆=-+-=-+=-故存在k ,使得成立,0∆>∴直线l 的方程为,即21y kx k =--()12y k x +=-∴l 过定点.()2,1-(3)∵点P ,Q 在椭圆上,所以,,2214P P x y +=2214Q Q x y +=两式相减可得,()()()()04PQ P Q P Q P Q y xy x x x y y +-++-=又是线段PQ 的中点,()1,G t -∴,2,2P Q P Q x x x x t+=-=∴直线PQ 的斜率,()144P Q P QP Q P QPQ x x k ty y x y y x +==-=--+∴直线PQ 的方程为,与抛物线方程联立消去x 可得,()114y x t t =++()22164410y ty t -++=由题可知,∴,()2161210t ∆=->2112t >又G 在椭圆内部,可知,∴,故,2114t +<234t <213124t <<设,,由图可知,,221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭223434,,,44y y T y D y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭2134,y y y y >>∴,()2121216,441y y t y y t +==+当直线TD 的斜率为0时,此时直线TD 与抛物线只有1个交点,不合要求,舍去,设直线TD 的方程为,与抛物线方程联立,消去x 可得,()10x my m =+≠2440y my --=∴,34344,4y y m y y +==-由,可知,即,11//ATB D 11DA TB k k =3142222234214444y y y y y y y y --=--∴,即,1342y y y y +=+1243y y y y -=-∴,()()221212343444y y y y y y y y +-=+-∵,()()()()()222212124161641161210,128y y y y t t t +-=-+=-∈∴,解得,即,()()223434416160,128y y y y m +-=+∈27m <()7,7m ∈-∴直线TD 即的斜率.2l 771,77,k m ⎛⎫⎛⎫=∈-∞- ⎪ ⎪ ⎪ ⎪⎝+∞⎝⎭⎭ 思路点睛:处理定点问题的思路:(1)确定题目中的核心变量(此处设为),k (2)利用条件找到与过定点的曲线的联系,得到有关与的等式,k (),0F x y =k ,x y (3)所谓定点,是指存在一个特殊的点,使得无论的值如何变化,等式恒成立,()00,x y k 此时要将关于与的等式进行变形,直至找到,k ,x y ()00,x y ①若等式的形式为整式,则考虑将含的式子归为一组,变形为“”的形式,让括号中式k ()k ⋅子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去变为常数.k 17.(1)1y =-(2)2ln23-+【分析】(1)由题意,将代入函数的解析式中,对函数进行求导,得到1m =()f x ()f x 和,代入切线方程中即可求解;()1f '()1f (2)得到函数的解析式,对进行求导,利用根的判别式以及韦达定理对()g x ()g x 进行化简,利用换元法,令,,可得,12122()()y x x b x x =--+12x t x =01t <<2(1)ln 1t y t t -=-+根据,求出的范围,构造函数,对进行求导,利用导数得到322m ≥t 2(1)()ln 1t h t tt -=-+()h t 的单调性和最值,进而即可求解.()h t 【详解】(1)已知(为常数),函数定义域为,()ln f x x mx =-m (0,)+∞当时,函数,1m =()ln f x x x =-可得,此时,又,11()1x f x x x -'=-=()=01f '()11=f -所以曲线在点处的切线方程为,即.()y f x =()()1,1f (1)0(1)y x --=⨯-1y =-(2)因为,函数定义域为,22()2()2ln 2g x f x x x mx x =+=-+(0,)+∞可得,222(1)()22x mx g x m x x x -+=-+='此时的两根,即为方程的两根,()0g x '=1x 2x 210x mx -+=因为,所以,由韦达定理得,,322m ≥240m ∆=->12x x m +=121=x x 又,所以1212lnx x b x x =-121212121212ln 22()()()()xx y x x b x x x x x x x x =--=--++-,11211211222212()ln 2ln 1x x x x x x x x x x x x --=-=⨯-++令,,所以,12x t x =01t <<2(1)ln 1t y t t -=-+因为,整理得,2212()x x m +=22212122x x x x m ++=因为,则,121=x x 2221212122x x x x m x x ++=等式两边同时除以,得,12x x 212212=x x m x x ++可得,因为,212t m t ++=322m ≥所以,,152t t +≥()()2252=2210t t x x -+--≥解得 或,则,12t ≤2t ≥102t <≤不妨设,函数定义域为,2(1)()ln 1t h t t t -=-+10,2⎛⎤⎥⎝⎦可得,22(1)()0(1)t h t t t -'=-<+所以函数在定义域上单调递减,()h t 此时,min 12()()ln223h t h ==-+故的最小值为.12122()()y x x b x x =--+2ln23-+利用导数求解在曲线上某点处的切线方程,关键点有两点,第一是切线的斜率,第二是切点。
高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。
2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。
答案:an = 2n + 1。
3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。
答案:三角形ABC的面积为12。
4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。
答案:k = ±√3/3,b = ±√6/3。
5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。
答案:f'(x) = 2x/(x^2 + 1)ln2。
6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。
答案:向量a和向量b的夹角为arccos(1/√5)。
7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。
答案:矩阵A的逆矩阵为[4 2; 3 1]。
8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。
答案:f(x)的零点为x = 1和x = 3。
9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。
答案:f(x)在区间[0, π/2]上的最大值为√2。
10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。
答案:f(x)的顶点坐标为(2, 0)。
高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。
答案:f'(x) = e^x 2。
12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。
答案:f(x)的极值点为x = 2,极值为f(2) = 0。
2017届北京市海淀区高三下学期期中考试数学理卷
18.已知函数2()24(1)ln(1)f x x ax a x =-+-+,其中实数3a <.
(Ⅰ)判断1x =是否为函数()f x 的极值点,并说明理由;
(Ⅱ)若()0f x ≤在区间[]0,1上恒成立,求a 的取值范围.
19.已知椭圆G :2
212
x y +=,与x 轴不重合的直线l 经过左焦点1F ,且与椭圆G 相交于A ,B 两点,弦AB 的中点为M ,直线OM 与椭圆G 相交于C ,D 两点.
(Ⅰ)若直线l 的斜率为1,求直线OM 的斜率;
(Ⅱ)是否存在直线l ,使得2||||||AM CM DM =⋅成立?若存在,求出直线l 的方程;若不存在,请说明理由.
西城区高三统一测试
18.(本小题满分13分) 已知函数21()e 2
x f x x =-.设l 为曲线()y f x =在点00(,())P x f x 处的切线,其中0[1,1]x ∈-.
(Ⅰ)求直线l 的方程(用0x 表示);
(Ⅱ)设O 为原点,直线1x =分别与直线l 和x 轴交于,A B 两点,求△AOB 的面积的最小值.
19.(本小题满分14分)
如图,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,F 为椭圆C 的右焦点.(,0)A a -,||3AF =. (Ⅰ)求椭圆C 的方程;
(Ⅱ)设O 为原点,P 为椭圆上一点,AP 的中点为M .直线OM 与直线4x =交于点D ,过O
且平行于AP 的直线与直线4x =交于点E .求证:ODF OEF ∠=∠.
2017年南通市高考数学全真模拟试卷一
13.已知角,αβ满足tan 7tan 13
αβ=,若2sin()3αβ+=,则sin()αβ-的值为. 14.将圆的六个等分点分成相同的两组,它们每组三个点构成的两个正三角形除去内部的六条线段后可以形成一个正六角星.如图所示的正六角星的中心为点O ,其中,x y 分别为点O 到两个顶点的向量.若将点O 到正六角星12个顶点的向量都写成ax by +的形式,则a b +的最大值为.
18.已知椭圆:C 2231mx my +=(0)m >
的长轴长为,O 为坐标原点.
(1)求椭圆C 的方程和离心率.
(2)设点(3,0)A ,动点B 在y 轴上,动点P 在椭圆C 上,且点P 在y 轴的右侧.若BA BP =,求四边形OPAB 面积的最小值.
19.已知函数32
()f x ax bx cx b a =-++=(0)a >.
(1)设0c =.
①若a b =,曲线()y f x =在0x x =处的切线过点(1,0),求0x 的值;
②若a b >,求()f x 在区间[0,1]上的最大值. (2)设()f x 在1x x =,2x x =两处取得极值,求证:11()f x x =,22()f x x =不同时成立. 13.1
5
-14.5 18.(1)由题意知椭圆:C 22
111
3x y m m
+=, 所以21a m =,213b m
=,
故2a ==, 解得16m =
,
所以椭圆C 的方程为22
162
x y +=.
因为2c ==,
所以离心率c e a =
=. (2)设线段AP 的中点为D .
因为BA BP =,所以BD AP ⊥.
由题意知直线BD 的斜率存在,
设点P 的坐标为000(,)(0)x y y ≠,
则点D 的坐标为003(,)22x y +,直线AP 的斜率003
AP y k x =-, 所以直线BD 的斜率00
31BD AP x k k y -=-=, 故直线BD 的方程为000033()22
y x x y x y -+-=-. 令0x =,得2200092x y y y +-=,故22000
9(0,)2x y B y +-. 由2200162
x y +=,得220063x y =-,化简得202023(0,)2y B y --. 因此,OAP OAB OPAB S S S ∆∆=+四边形
=. 当且仅当0032||2||y y =
时,即0[y =时等号成立. 故四边形OPAB
面积的最小值为
19.解:(1)当0c =时,32
()f x ax bx b a =-+-. ①若a b =,则32()f x ax ax =-,
从而2'()32f x ax ax =-,
故曲线()y f x =在0x x =处的切线方程为3200()y ax ax --=2000(32)()ax ax x x --.
将点(1,0)代入上式并整理得200(1)x x -=000(1)(32)x x x --,
解得00x =或01x =.
②若a b >,则令2'()320f x ax bx =-=,解得0x =或213b x a
=<. (ⅰ)若0b ≤,则当[0,1]x ∈时,'()0f x ≥,
所以()f x 为区间[0,1]上的增函数,
从而()f x 的最大值为(1)0f =.
(ii )若0b >,列表:
所以()f x 的最大值为(1)0f =.
综上,()f x 的最大值为0.
(2)假设存在实数,,a b c ,使得11()f x x =与22()f x x =同时成立.
不妨设12x x <,则12()()f x f x <.
因为1x x =,2x x =为()f x 的两个极值点,
所以2'()32f x ax bx c =-+123()()a x x x x =--.
因为0a >,所以当12[,]x x x ∈时,'()0f x ≤,
故()f x 为区间12[,]x x 上的减函数,
从而12()()f x f x >,这与12()()f x f x <矛盾,故假设不成立.
既不存在实数a ,b ,c ,使得11()f x x =,22()f x x =同时成立.
深圳市2017年高三年级第二次调研考试
(12)设实数0λ>,若对任意的()0,x ∈+∞,不等式ln 0x x e λλ-
≥恒成立,则λ的最小值为() (A )1e (B )12e (C )2e (D )3
e (20)(本小题满分12分)
平面直角坐标系中,动圆C 与圆()22114x y -+=外切,且与直线12
x =-相切,记圆心C 的轨迹为曲线T .
(Ⅰ)求曲线T 的方程;
(Ⅱ)设过定点(),0Q m (m 为非零常数)的动直线l 与曲线T 交于A 、B 两点,问:在曲线T 上是否存在点P (与A 、B 两点相异),当直线P A 、PB 的斜率存在时,直线P A 、PB 的斜率之和为定值.
若存在,求出点P 的坐标;若不存在,请说明理由.
(21)(本小题满分12分)
已知函数()()222
x a f x x e x =--,其中a R ∈,e 为自然对数的底数. (Ⅰ)函数()f x 的图象能否与x 轴相切?若能与x 轴相切,求实数a 的值;否则,请说明理由;
(Ⅱ)若函数()2y f x x =+在R 上单调递增,求实数a 能取到的最大整数值.。