三段式电流保护整定计算和建模仿真
- 格式:docx
- 大小:223.14 KB
- 文档页数:14
2三段式电流保护的整定及计算三段式电流保护是一种常见的电力系统故障保护装置。
它主要用于检测电流超过设定值时,快速切断电源,以避免设备过载、烧坏或人身安全事故发生。
下面将详细介绍三段式电流保护的整定及计算方法。
三段式电流保护通常包括低、中、高三个阈值,分别是过载电流保护、短路电流保护以及地故障电流保护。
1.过载电流保护:用于检测设备长时间运行时的过负荷状态。
其整定值是设备额定电流的一定倍数。
根据设备的额定电流和过载倍数来计算过载电流保护整定值,公式为:过载电流保护整定值=设备额定电流×过载倍数2.短路电流保护:用于检测电路短路状态,即电流突然增大至极高值的情况。
其整定值应根据电路短路电流计算得出。
计算短路电流保护整定值需要考虑电路特性,主要包括电压、阻抗等参数。
常用的计算方法有以下两种:a.阻抗差法:根据电路的阻抗及电源电压计算短路电流。
该方法适用于阻抗较大的电路。
计算公式为:短路电流保护整定值=电压/阻抗b.零序电流法:根据电路的零序电流及电源电压计算短路电流。
该方法适用于系统中存在地故障的情况,能够考虑地回路的耦合。
计算公式为:短路电流保护整定值=电压/零序电流3.地故障电流保护:用于检测系统中的接地故障,确保故障电流不致超过安全范围。
通常情况下,地故障电流保护整定值根据系统的雷电冲击电流及接地电阻计算得出。
计算公式为:地故障电流保护整定值=雷电冲击电流×接地电阻整定三段式电流保护的关键在于准确计算保护整定值。
通常需要详细了解电力系统的参数及各个设备的特性。
根据不同系统的具体情况,也可以采用其他方法进行计算,例如考虑设备的感应熔丝特性等。
值得注意的是,三段式电流保护的整定值并非固定不变,而是需要根据系统运行情况和设备参数做动态调整。
为确保系统的可靠性和安全性,应定期对保护装置进行检查和整定。
总之,三段式电流保护是电力系统中一项重要的保护措施。
通过合理的整定及计算,能够确保保护装置在电流异常情况下的正确动作,有效防止设备过载、烧坏以及人身安全事故的发生。
三段式电流保护整定计算实例假设有一台变压器,其额定容量为10MVA,额定电压为10kV/400V,接线形式为YNyn0,额定电流为1000A。
现在需要对该变压器进行三段式电流保护的整定计算。
第一步是计算额定电压下的一次电流。
根据变压器的额定容量和额定电压,可以得到一次电流的公式为:I1=S/(3×U1)其中,I1为一次电流,S为变压器的额定容量,U1为变压器的高压侧额定电压。
将数据代入计算,得到一次电流I1的数值:I1=10M/(3×10k)=333.33A第二步是计算三段式电流保护的整定值。
一般情况下,三段式电流保护根据阻抗保护和方向保护进行整定。
阻抗保护整定时,通常设置不同的电流整定值和时间延迟,将整定值和时间延迟作为参数进行计算。
根据实际情况,假设保护整定参数如下:-第一段电流整定值:300A,时间延迟:0.1s-第二段电流整定值:600A,时间延迟:0.2s-第三段电流整定值:900A,时间延迟:0.3s根据整定参数,将整定值乘以一次电流,即可得到实际整定值。
计算结果如下:-第一段整定值:0.1×333.33=33.33A-第二段整定值:0.2×333.33=66.67A-第三段整定值:0.3×333.33=100A第三步是计算方向保护的整定值。
方向保护用于判断故障方向,需要根据实际情况进行整定。
一般情况下,方向保护整定值设置为一次电流的一定百分比。
假设方向保护整定值为20%。
根据方向保护的整定值,将整定值乘以一次电流,即可得到实际整定值。
-方向保护整定值:0.2×333.33=66.67A综上所述,该变压器的三段式电流保护整定值为:-第一段整定值:33.33A,时间延迟:0.1s-第二段整定值:66.67A,时间延迟:0.2s-第三段整定值:100A,时间延迟:0.3s-方向保护整定值:66.67A需要注意的是,这只是一个示例,实际的整定计算可能涉及更多的参数和考虑因素。
三段式过流保护Simulink仿真结果及报告刘斌2120140881 自动化学院一、仿真模型系统整体模型:封装的断路器QF1的控制子模块Subsystem1:封装的断路器QF2的控制子模块Subsystem2:各参数分别为:QF1 定时限过电流保护延时为4sQF2 带时限速断保护延时为1s定时限过电流保护延时为2s用阶跃函数step 1、step 2、step 3、step s分别控制开关K1、K2、K3、S的开通关断,分别用来模拟实际中各处短路及过载的故障情况。
用阶跃函数step judong控制QF2模拟QF2拒动故障。
二、各情况下仿真结果波形输出波形分别为流经QF1的电流I1、流经QF2的电流I2、控制QF1的波形signal1、控制QF2的波形signal2注:以下输出波形电流值均为有效值1.正常运行时QF1、QF2闭合,S断开,K1、K2、K3各处无对地短路故障;此时设置step1、step2、step3、step s均始终为0,波形可得2.定时限过流保护(第III段):S闭合后,负荷3投入,系统进入过负荷状态,QF2应启动定时限过流保护,若QF2拒动,经一段时间延时后,QF1断开;此时设置step s为第5秒从0跃变为1,使S闭合,可见QF2在第7秒定时限过电流保护(延时2s)然后将QF2使用step judong模拟拒动,可见在第9秒时QF1实行定时限过电流保护(延时4秒)3.限时电流速断保护(第II段):若K3处发生对地短路故障,QF2应启动带时限电流速断保护,若QF2拒动,则作为后备保护的QF1应断开;将step 3设置为在第4秒跃迁为1模拟K3短路,可见QF2在第5秒时限时速断保护(延时1秒)然后将QF2使用step judong模拟拒动,可见在第8秒时QF1实行定时限过电流保护(延时4秒)4.电流速断保护(第I段):若K2处发生对地短路故障,QF2应启动电流速断保护,若QF2拒动,则作为后备保护的QF1应断开;将step 2设置为在第4秒跃迁为1模拟K2短路,可见QF2在第4秒时速断保护然后将QF2使用step judong模拟拒动,可见在第8秒时QF1实行定时限过电流保护(延时4秒)5.电流速断保护(第I段):若K1处发生对地短路故障,QF1应启动电流速断保护。
三段式电流保护整定计算实例:如图所示单侧电源放射状网络,AB 和BC 均设有三段式电流保护。
已知:1)线路AB 长20km ,线路BC 长30km ,线路电抗每公里欧姆;2)变电所B 、C 中变压器连接组别为Y ,d11,且在变压器上装设差动保护;3)线路AB 的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。
试对AB 线路的保护进行整定计算并校验其灵敏度。
其中25.1=I relK ,15.1=II rel K ,15.1=III rel K ,85.0=re K整定计算:① 保护1的Ⅰ段定值计算)(1590)4.0*204.5(337)(31min .)3(max .A l X X E I s skB =+=+=)(1990159025.1)3(max ,1A I K I kB I rel I op =⨯==工程实践中,还应根据保护安装处TA 变比,折算出电流继电器的动作值,以便于设定。
按躲过变压器低压侧母线短路电流整定:选上述计算较大值为动作电流计算值.最小保护范围的校验:=满足要求②保护1的Ⅱ段限时电流速断保护与相邻线路瞬时电流速断保护配合)(105084025.12A I I op =⨯==×=1210A选上述计算较大值为动作电流计算值,动作时间。
灵敏系数校验:可见,如与相邻线路配合,将不满足要求,改为与变压器配合。
③保护1的Ⅲ段定限时过电流保护按躲过AB 线路最大负荷电流整定:)(6.3069.010353105.985.03.115.136max 1.A I K K K I L re ss III rel IIIop =⨯⨯⨯⨯⨯⨯== =动作时限按阶梯原则推。
此处假定BC 段保护最大时限为,T1上保护动作最大时限为,则该保护的动作时限为+=。
灵敏度校验:近后备时:B 母线最小短路电流:)(1160)4.0*209.7(237)(3231max .)2(min .A l X X E I s s kB =+⨯=+⨯= )5.1~3.1(78.36.30611601.)2(min ..>===III op B K sen I I K 远后备时:C 母线最小短路电流为:2.197.16.3066601.)2(min ..>===III op c k sen I I K。
《分数的初步认识》说课稿《分数的初步认识》说课稿在教学工作者开展教学活动前,时常需要用到说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。
那么优秀的说课稿是什么样的呢?下面是小编精心整理的《分数的初步认识》说课稿,希望能够帮助到大家。
《分数的初步认识》说课稿1尊敬的老师、同学们:大家好!一、说教材本节课是人教版第五册第七单元《分数的初步认识》的第一节,“分数的初步认识”这一单元教材是在学生已经掌握一些整数知识的基础上进行教学的,主要是使学生初步认识分数的含义。
认识几分之一又是认识几分之几的第一阶段,是单元的“核心”,是整个单元的起始课,对以后学习起着至关重要的作用,为此,教材例1--例5借助一些图形和学生所熟悉的具体事例,通过演示和操作,使学生逐渐形成分数的正确表象,建立分数的初步概念,学好这部分的内容,既为学习分数初步认识作铺垫,更为小学生以后学习分数和小数等知识打下初步基础,教学大纲对这一部分知识的要求是:初步认识分数,会读、写简单的分数。
二、说学情这是学生第一次接触分数,从整数到分数是学生认识数的概念的一次质的飞跃,因为无论在意义上,还是在读、写方法上以及计算方法上,它们都有很大的差异。
分数概念比较抽象,学生接受起来比较困难,不容易一次学好,所以,分数的知识是分段教学的,本单元只是“初步认识”。
三、说教学目标本节课教学目标的确定是根据“新课标”的理念,以及学生的认知特点和思维规律,具体从“知识与技能、过程与方法、情感和态度”三个方面制定的:初步认识分数:认识几分之一、感悟几分之一;会正确地读、写分数,知道分数各部分的名称。
理解分数产生、形成、发展的过程,培养学生观察、动手、分析等学习数学的能力。
体验学习数学的乐趣、激发主动探索的欲望,提高学生的合作意识和创新能力。
四、说教学重难点因为认识几分之一是学生初步理解分数的开始,也是今后进一步学分数的基础。
所以使学生认识几分之一是教学重点。
又因为从整数扩展到分数,学生接受起来比较抽象、困难,所以理解几分之一的含义是这节课的教学难点。
三段式电流保护的整定及计算————————————————————————————————作者:————————————————————————————————日期:2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。
K1rel——可靠系数,一般取1.2~1.3。
I1op1——保护动作电流的一次侧数值。
nTA——保护安装处电流互感器的变比。
灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。
要求最小保护范围不得低于15%~20%线路全长,才允许使用。
2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。
所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。
故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。
要求作为本线路主保护的后备以及相邻线路或元件的远后备。
动作电流按躲过最大负荷电流整定。
式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。
灵敏度分别按近后备和远后备进行计算。
式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。
即:最小运行方式下,两相相间短路电流。
要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。
三段式电流保护的整定及计算电流保护是电力系统中非常重要的一项保护措施,它能有效地保护电路设备免受过电流的损害。
其中,三段式电流保护是一种常用的保护方式,它利用三个不同的电流阈值来触发保护动作,以实现不同级别的保护。
本文将介绍三段式电流保护的整定方法及计算过程。
一、三段式电流保护的原理三段式电流保护是基于不同的电流阈值来触发不同的保护动作,以实现多级保护的目的。
一般来说,三段式电流保护包括低灵敏度段、中灵敏度段和高灵敏度段。
低灵敏度段主要用于对电流异常的早期预警,一般设置在额定电流的80%左右。
当电流超过该阈值时,保护装置会发出警告信号,以提醒操作人员注意。
中灵敏度段是三段式电流保护的核心,一般设置在额定电流的120%左右。
当电流超过该阈值时,保护装置会迅速切断电路,以避免设备过载或短路引起的损坏。
高灵敏度段是为了应对更严重的故障情况而设置的,一般设置在额定电流的150%左右。
当电流超过该阈值时,保护装置会立即切断电路,以确保系统的安全运行。
二、三段式电流保护的整定方法三段式电流保护的整定方法一般包括以下几个步骤:1. 确定低灵敏度段的整定值:根据设备的额定电流和保护的要求,一般将低灵敏度段的整定值设置在额定电流的80%左右。
通过实际测量和分析,确定适合的整定值。
2. 确定中灵敏度段的整定值:根据设备的额定电流和保护的要求,一般将中灵敏度段的整定值设置在额定电流的120%左右。
通过实际测量和分析,确定适合的整定值。
3. 确定高灵敏度段的整定值:根据设备的额定电流和保护的要求,一般将高灵敏度段的整定值设置在额定电流的150%左右。
通过实际测量和分析,确定适合的整定值。
三、三段式电流保护的计算过程三段式电流保护的整定计算可以通过以下步骤进行:1. 确定低灵敏度段的整定值:根据设备的额定电流和保护的要求,将低灵敏度段的整定值设置为额定电流乘以0.8。
2. 确定中灵敏度段的整定值:根据设备的额定电流和保护的要求,将中灵敏度段的整定值设置为额定电流乘以1.2。
2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。
K1rel——可靠系数,一般取1.2~1.3。
I1op1——保护动作电流的一次侧数值。
nTA——保护安装处电流互感器的变比。
灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。
要求最小保护范围不得低于15%~20%线路全长,才允许使用。
2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。
所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。
故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。
要求作为本线路主保护的后备以及相邻线路或元件的远后备。
动作电流按躲过最大负荷电流整定。
式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。
灵敏度分别按近后备和远后备进行计算。
式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。
即:最小运行方式下,两相相间短路电流。
要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。
已知:1)线路AB长20km,线路BC长30km,线路电抗每公里0.4欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为9.5MW,功率因数0.9,自起动系数取1.3;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗7.9欧,系统最小电抗4.5欧。
三段式电流保护的整定及计算一、引言电流保护是电力系统中非常重要的一项保护措施,它能够有效地保护电力设备和电路免受过载和短路等故障的损害。
而三段式电流保护是一种常用的保护方式,通过设置三个不同的整定值,在不同故障情况下分别触发保护动作,提高了保护的精确性和可靠性。
本文将介绍三段式电流保护的整定及计算方法。
二、三段式电流保护的整定方法1. 第一段整定值的确定第一段整定值通常用于检测系统中的过载情况,其整定值应根据所保护设备的额定电流和短时过载能力来确定。
一般情况下,第一段整定值可取设备的额定电流的 1.2倍,以确保设备在短时间内的过载情况下能够正常运行。
2. 第二段整定值的确定第二段整定值主要用于检测系统中的短路故障,其整定值应根据所保护设备的额定电流和短路能力来确定。
一般情况下,第二段整定值可取设备的额定电流的2倍,以确保设备在短路故障发生时能够及时切断电路,保护设备的安全运行。
3. 第三段整定值的确定第三段整定值主要用于检测系统中的严重短路故障,其整定值应根据所保护设备的额定电流和系统的最大短路电流来确定。
一般情况下,第三段整定值可取系统最大短路电流的 1.5倍,以确保设备在严重短路故障发生时能够迅速切断电路,有效地保护电力系统的安全运行。
三、三段式电流保护的计算方法1. 第一段整定值的计算第一段整定值的计算可根据所保护设备的额定电流和短时过载能力来进行。
例如,某设备的额定电流为100A,短时过载能力为150A,那么第一段整定值可取100A×1.2=120A。
2. 第二段整定值的计算第二段整定值的计算可根据所保护设备的额定电流和短路能力来进行。
例如,某设备的额定电流为100A,短路能力为5000A,那么第二段整定值可取100A×2=200A。
3. 第三段整定值的计算第三段整定值的计算可根据所保护设备的额定电流和系统的最大短路电流来进行。
例如,某设备的额定电流为100A,系统的最大短路电流为10000A,那么第三段整定值可取10000A×1.5=15000A。
配电网三段式电流保护虚拟仿真分析配电网是将输电系统的电能传送到用户终端的重要部分,因此电流保护是配电网中的重要环节之一、三段式电流保护是一种常用的电流保护方式,采用虚拟仿真进行分析可以帮助工程师更好地理解和优化该系统。
下面将对配电网三段式电流保护的虚拟仿真分析进行详细介绍。
一、三段式电流保护的基本原理三段式电流保护是根据电流的大小和变化速度来进行保护动作的。
根据电流保护的动作方式,可以将三段式电流保护分成三个区域。
第一段:I>630%IL,保护动作时间短,可以在电流短时间内达到额定值时迅速动作,防止过电流引起的事故和损害。
第二段:I>200%IL,保护动作时间较短,可以在电流偏离额定电流时迅速动作,防止电气设备的损坏。
第三段:I>140%IL,保护动作时间较长,可以在电流超出设备的额定容量时动作,防止电气设备长时间过载。
这种保护方式可以根据不同的电流水平和变化情况进行动作的选择,从而保护电气设备的运行。
二、虚拟仿真分析的意义1.提高安全性:通过虚拟仿真分析可以模拟电流保护系统的运行情况,发现可能存在的问题和隐患,减少意外事故的发生。
2.优化保护方案:虚拟仿真可以模拟不同保护方案的运行情况,通过比较不同方案的优劣,选择最合适的保护方案。
3.减少试验次数:传统的试验方法需要多次设置和调整,而虚拟仿真可以通过计算机模拟,节省时间和成本。
三、虚拟仿真分析步骤1.建立模型:根据实际的配电网系统,建立电流保护系统的虚拟模型,包括传感器、保护装置、动作特性等。
2.输入参数:输入电流保护系统的参数,包括额定电流、故障电流、保护动作时间等。
3.运行仿真:运行仿真模型,模拟电流的变化过程,并根据设定的保护方案进行动作判断。
4.分析结果:根据仿真结果,分析电流的保护动作情况,判断保护方案的可行性和有效性。
5.优化方案:根据分析结果,优化保护方案,调整参数,减少保护动作的误判和滞后。
四、虚拟仿真分析应用案例以变电站为例,建立三段式电流保护的虚拟模型,并进行仿真分析。
三段式电流保护整定的计算方法什么是三段式电流保护?三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段),相互配合构成的一套保护、下面我们就来详细介绍一下三段时电流保护的工作原理和整定计算方法。
一、电流速断保护(第I段)简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护。
为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。
以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A母线处的保护1来讲,其起动电流当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在B 母线处的保护2就能起动,最后动作于跳断路器2。
后面几段线路的电流速断保护整定原则同上。
电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。
但由于引入的可靠系数,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。
运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。
二、限时电流速断保护(第II段)1、工作原理及整定计算的基本原则由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。
基于matlab的三段式电流保护仿真原理研究电力系统中的三段式电流保护是一种常用的保护方式,它能够对电力系统中的故障进行及时、准确的检测和切除。
本文将介绍基于matlab 的三段式电流保护仿真原理研究。
1. 三段式电流保护原理三段式电流保护是指将整个保护区域分为三个不同的区域,每个区域设置不同的动作时间和灵敏度,以便根据故障位置和类型进行快速、准确地检测和切除。
具体来说,三段式电流保护包括主保护、备用保护和后备保护。
主保护是最重要的一级保护,它应该在最短时间内切断故障点,并尽可能减少系统停运时间。
主保护通常设置在距离故障点最近的地方,并具有最高的灵敏度和最短的动作时间。
备用保护是为了增强系统可靠性而设置的第二级保护。
当主保护无法正常工作时,备用保护应该能够及时地接管并切断故障点。
备用保护通常设置在主变压器绕组或线路末端,具有较高的灵敏度和较长的动作时间。
后备保护是为了防止故障点被误判而设置的最后一级保护。
当主保护和备用保护均无法正常工作时,后备保护应该能够切断故障点,并避免系统进一步损坏。
后备保护通常设置在系统的起始点,具有最低的灵敏度和最长的动作时间。
2. 基于matlab的三段式电流保护仿真基于matlab的三段式电流保护仿真可以帮助我们更好地理解三段式电流保护原理,并对其进行优化和改进。
具体来说,基于matlab的三段式电流保护仿真包括以下几个步骤:(1)建立模型:根据实际情况建立电力系统模型,并设置故障点位置和类型。
(2)设计算法:根据三段式电流保护原理设计相应的算法,并设置不同区域的动作时间和灵敏度。
(3)运行仿真:运行仿真程序,模拟不同类型和位置的故障,并观察三段式电流保护是否能够及时、准确地检测并切除故障点。
(4)分析结果:根据仿真结果分析三段式电流保护的性能,并对其进行优化和改进。
通过基于matlab的三段式电流保护仿真,我们可以更好地理解三段式电流保护原理,并对其进行优化和改进。
三段式电流保护整定计算实例假设有一条长度为100公里的输电线路,额定电压为110千伏,额定电流为500安培。
我们需要对该线路进行三段式电流保护的整定计算,以便在出现过电流时及时切断故障电路。
首先,我们需要计算出三段式电流保护的三个整定值:最低电流保护的整定电流(I1)、中电流保护的整定电流(I2)和最高电流保护的整定电流(I3)。
1.最低电流保护(I1)的整定电流:根据输电线路的额定电流和距离,我们可以使用下式来计算I1:I1=0.25*Ie*(1+K)其中,Ie为额定电流,K为标尺因数,K通常取值为0.22.中电流保护(I2)的整定电流:根据输电线路的额定电流和距离,我们可以使用下式来计算I2:I2=I1+(Ie-I1)*(1+K)其中,Ie为额定电流,K为标尺因数,K通常取值为0.23.最高电流保护(I3)的整定电流:根据输电线路的额定电流和距离,我们可以使用下式来计算I3:I3=I1+(Ie-I1)*(1+2*K)其中,Ie为额定电流,K为标尺因数,K通常取值为0.2根据上述计算公式,我们可以进行具体的计算:1.计算最低电流保护的整定电流(I1):I1=0.25*500*(1+0.2)=125安培2.计算中电流保护的整定电流(I2):I2=125+(500-125)*(1+0.2)=325安培3.计算最高电流保护的整定电流(I3):I3=125+(500-125)*(1+2*0.2)=525安培根据上述计算结果,我们可以将最低电流保护的整定电流(I1)设置为125安培,中电流保护的整定电流(I2)设置为325安培,最高电流保护的整定电流(I3)设置为525安培。
这样,在发生过电流故障时,三段式电流保护装置将根据整定电流来判断故障是否超过阈值,并做出相应的切除动作。
总结起来,三段式电流保护的整定计算包括计算最低电流保护的整定电流(I1)、中电流保护的整定电流(I2)和最高电流保护的整定电流(I3)。
2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc-—保护的接线系数IkBmax—-最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。
K1rel——可靠系数,一般取1.2~1.3。
I1op1——保护动作电流的一次侧数值.nTA—-保护安装处电流互感器的变比.灵敏系数校验:式中:X1——线路的单位阻抗,一般0。
4Ω/KM;Xsmax --系统最大短路阻抗。
要求最小保护范围不得低于15%~20%线路全长,才允许使用.2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。
所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。
故:式中:KⅡrel—-限时速断保护可靠系数,一般取1。
1~1.2;△t——时限级差,一般取0。
5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。
要求作为本线路主保护的后备以及相邻线路或元件的远后备。
动作电流按躲过最大负荷电流整定.式中:KⅢrel-—可靠系数,一般取1。
15~1.25;Krel-—电流继电器返回系数,一般取0。
85~0.95;Kss-—电动机自起动系数,一般取1。
5~3。
0;动作时间按阶梯原则递推。
灵敏度分别按近后备和远后备进行计算。
式中:Ikmin—-保护区末端短路时,流经保护的最小短路电流。
即:最小运行方式下,两相相间短路电流。
要求:作近后备使用时,Ksen≥1。
3~1。
5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。
已知:1)线路AB 长20km,线路BC长30km,线路电抗每公里0.4欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为9.5MW,功率因数0.9,自起动系数取1。
2三段式电流保护的整定及计算三段式电流保护是用于电力系统中对过电流进行保护的一种方式。
它主要包括低电流保护、中电流保护和高电流保护三个阶段。
三段式电流保护的整定及计算是非常重要的,下面将详细介绍三段式电流保护的整定及计算过程。
整定三段式电流保护的整定包括三个方面:电流整定、时间整定和信号整定。
1.电流整定:电流整定是根据电路的额定电流以及电流变化的特点来确定保护整定值的过程。
在给定的时间范围内,对于不同电流等级的设备,设定不同的整定值。
2.时间整定:时间整定是确定过流保护在不同故障情况下的触发时间的过程。
根据故障发生的位置和电路的可靠性要求,设定不同的时间值。
一般情况下,短路故障需要立即跳闸,而过载故障可以延迟一段时间后再跳闸。
3.信号整定:信号整定是对过电流保护的判据进行整定的过程。
根据电流的大小和变化趋势来设定不同的判据。
一般情况下,电流超过设定值就会触发保护装置,但如果电流短时间内迅速增加,则需要设定更低的判据。
计算三段式电流保护的计算主要包括电流计算、时间计算和信号计算。
1.电流计算:电流计算是根据电流的大小和变化规律来确定整定值的过程。
根据电路的特点和运行要求,计算出保护装置的整定值。
一般情况下,电流计算可以通过测量设备的额定电流以及电流变换器的变比来进行。
2.时间计算:时间计算是确定过流保护装置的动作时间的过程。
根据故障的类型和电路的可靠性要求,计算出保护装置的动作时间。
一般情况下,时间计算可以通过测量设备的额定时间和电路的可靠性要求来进行。
3.信号计算:信号计算是根据电流的变化趋势来确定保护装置的判据的过程。
根据电流的大小和变化速度来计算出判据的设定值。
一般情况下,信号计算可以通过测量设备的额定电流和电流变化率来进行。
综上所述,三段式电流保护的整定及计算是根据电路的特点和运行要求,通过电流计算、时间计算和信号计算等步骤来确定保护装置的整定值、动作时间和判据设定值的过程。
只有经过合理的整定和计算,才能保证三段式电流保护的可靠性和精确性,提高电力系统的安全运行水平。
辽宁工程技术大学电力系统继电保护课程设计设计题目三段式电流保护整定计算和建模仿真指导教师刘健辰院(系、部)电控学院专业班级智能电网信息工程学号 1305080116 姓名苏小平日期 2017.1.9课程设计标准评分模板电力系统继电保护课程设计任务书本次课程设计的目的在于通过对于一个简单电网进行三段式电流保护的整定计算和建模仿真,巩固和运用三段式电流保护理论知识,熟悉Matlab 仿真软件的使用方法,培养学生分析和解决实际工程问题的能力。
简单电网结构图如下:系统参数如下:G1:115/E ϕ=,;G2:115/E ϕ=,;G3:115/E ϕ=,;线路阻抗0.4/km Ω,1260km L L ==,340km L =,30C D L km -= 20D E L km -=,I rel 1.2K =,II III rel rel 1.15K K ==,.max 300B C l I A -=,.max 200C D l I A -=,.max 150D E l I A -=, 1.5ss K =,0.85re K =。
1G X ,2G X ,3G X ,B C L -见班级数据表;系统运行方式:发电机最多三台并联运行,最少一台,线路最多三条运行,最少一条。
设计说明书内容:1、任务书1、确定保护3在系统最大、最小运行方式下的等值阻抗。
1、整定保护1、2、3的电流速断整定值,并计算各自的最小保护范围。
K≥)。
2、整定保护2、3的限时电流速断整定值,并校验灵敏度要求( 1.2sen3、整定保护1、2、3的过电流整定值,假定母线E过电流动作时限为0.5s,校验保护1作为近后备,保护2和3作为远后备的灵敏度。
4、仿真验证保护3的三段保护动作情况(设置短路点在线路首段、末端和下级线路出口处,仿真计算短路电流,比较整定值,分析保护动作情况)。
5、结论电网13-1班数据说明:1)1~7组每组3人;第8组4人。
2)将自己姓名填入表中目录一课程设计目的 (1)二课设内容 (1)1 最大运行方式和最小运行方式下的等效阻抗 (1)2 整定保护1、2、3的电流速断整定 (2)2.1对于保护1,母线E最大运行方式下短路电流 (2)2.2 对于保护2,母线E最大运行方式下短路电流 (3)2.3对于保护3,母线E最大运行方式下短路电流 (3)3 整定保护2、3的限时电流速断整定 (4)3.1整定保护2的限时电流速断 (4)3.2整定保护3的限时电流速断 (5)4整定保护1、2、3的过电流整定 (5)5仿真验证 (7)三设计总结 (10)参考文献 (9)一 课程设计目的继电保护的基本要求:可靠性、选择性、速动性、灵敏性。