三段电流保护整定实例
- 格式:ppt
- 大小:245.50 KB
- 文档页数:10
2三段式电流保护的整定及计算三段式电流保护是一种常见的电力系统故障保护装置。
它主要用于检测电流超过设定值时,快速切断电源,以避免设备过载、烧坏或人身安全事故发生。
下面将详细介绍三段式电流保护的整定及计算方法。
三段式电流保护通常包括低、中、高三个阈值,分别是过载电流保护、短路电流保护以及地故障电流保护。
1.过载电流保护:用于检测设备长时间运行时的过负荷状态。
其整定值是设备额定电流的一定倍数。
根据设备的额定电流和过载倍数来计算过载电流保护整定值,公式为:过载电流保护整定值=设备额定电流×过载倍数2.短路电流保护:用于检测电路短路状态,即电流突然增大至极高值的情况。
其整定值应根据电路短路电流计算得出。
计算短路电流保护整定值需要考虑电路特性,主要包括电压、阻抗等参数。
常用的计算方法有以下两种:a.阻抗差法:根据电路的阻抗及电源电压计算短路电流。
该方法适用于阻抗较大的电路。
计算公式为:短路电流保护整定值=电压/阻抗b.零序电流法:根据电路的零序电流及电源电压计算短路电流。
该方法适用于系统中存在地故障的情况,能够考虑地回路的耦合。
计算公式为:短路电流保护整定值=电压/零序电流3.地故障电流保护:用于检测系统中的接地故障,确保故障电流不致超过安全范围。
通常情况下,地故障电流保护整定值根据系统的雷电冲击电流及接地电阻计算得出。
计算公式为:地故障电流保护整定值=雷电冲击电流×接地电阻整定三段式电流保护的关键在于准确计算保护整定值。
通常需要详细了解电力系统的参数及各个设备的特性。
根据不同系统的具体情况,也可以采用其他方法进行计算,例如考虑设备的感应熔丝特性等。
值得注意的是,三段式电流保护的整定值并非固定不变,而是需要根据系统运行情况和设备参数做动态调整。
为确保系统的可靠性和安全性,应定期对保护装置进行检查和整定。
总之,三段式电流保护是电力系统中一项重要的保护措施。
通过合理的整定及计算,能够确保保护装置在电流异常情况下的正确动作,有效防止设备过载、烧坏以及人身安全事故的发生。
三段式过流保护整定原则一、三段式过流保护概述三段式过流保护由电流速断保护(Ⅰ段)、限时电流速断保护(Ⅱ段)和定时限过电流保护(Ⅲ段)组成,分别用于快速切除近处故障、切除本线路全长范围内的故障以及作为相邻线路保护的后备保护,在电力系统的安全稳定运行中起着重要作用。
二、电流速断保护(Ⅰ段)整定原则1. 动作电流- 按照躲过被保护线路末端的最大短路电流来整定。
这是因为如果不躲过,在被保护线路末端发生短路时,电流速断保护就会误动作,将本线路切断,而实际上故障应该由下一级线路的保护去切除。
其动作电流计算公式为I_{op1}=K_{rel}I_{k.max},其中I_{op1}为电流速断保护的动作电流,K_{rel}为可靠系数(一般取1.2 - 1.3),I_{k.max}为被保护线路末端的最大短路电流。
2. 动作时间- 动作时间一般取t_{1}=0s(实际上考虑到继电器固有动作时间等因素,大约为0.06 - 0.1s),这是为了实现快速切除故障,尽可能减少故障对系统的影响。
三、限时电流速断保护(Ⅱ段)整定原则1. 动作电流- 按照躲过下级线路电流速断保护的动作电流来整定。
这样可以保证在下级线路的速断保护范围以外发生故障时,本级的限时电流速断保护才动作,避免无选择性动作。
其动作电流计算公式为I_{op2}=K_{rel}I_{op1下},其中I_{op2}为本级限时电流速断保护的动作电流,K_{rel}为可靠系数(一般取1.1 - 1.2),I_{op1下}为下级线路电流速断保护的动作电流。
2. 动作时间- 动作时间比下级线路电流速断保护的动作时间高出一个时间级差Δ t,一般Δ t = 0.5s。
这是为了保证动作的选择性,即当下级线路的速断保护先动作时,本级的限时电流速断保护不动作;只有当下级线路速断保护拒动时,本级限时电流速断保护才在高出一个时间级差后动作。
四、定时限过电流保护(Ⅲ段)整定原则1. 动作电流- 按照躲过被保护线路的最大负荷电流来整定。
三段式电流保护工作原理、整定计算什么是三段式电流保护三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段)相互配合构成的一套保护、下面我们就来详细介绍一下三段时电流保护的工作原理和整定计算方法。
一、电流速断保护(第I段)简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护。
为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。
以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A母线处的保护1来讲,其起动电流必须整定得大于d2点处短路时,可能出现的最大短路电流,即在最大运行方式下B母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在A母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在B母线处的保护2就能起动,最后动作于跳断路器2。
后面几段线路的电流速断保护整定原则同上。
电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。
但由于引入的可靠系数,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。
运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。
二、限时电流速断保护(第II段)1、工作原理及整定计算的基本原则由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。
由于要求它必须保护本线路的全长,因此它的保护范围必然要延伸到下一条线路中去,这样当下一条线路出口处(如图1中,对于保护1来说,d2点处)发生短路时,它就要起动,在这种情况下,为了保证动作的选择性,就必须使保护的动作带有一定的时限,但又为了使这一时限尽量缩短,我们就考虑使它的保护范围不超过下一条线路速断保护(如图1中的保护2)的保护范围,而动作时限则比下一条线路速断保护高出一个时间阶段,即如图2(a)所示,由于它能以较小的时限快速切除全线路范围以内的故障,所以我们称它为限时电流速断保护。
实验一过流保护三段配合整定一、实验目的1、加深对电流保护三段配合相互配合的理解;2、掌握电力系统电流保护的整定及实现方法.二、实验内容1、学习RTDS电流保护元件的使用方法;2、根据实际系统参数对保护进行整定,并记录故障波形;3、使用电力系统故障诊断专家进行故障分析。
三、实验原理电流一段保护的整定:为了保护电流速断的选择性,其起动电流必须躲过本条线路末端短路时最大短路电流,即在最大运行方式下末端母线三相接地短路故障电流。
电流速断保护不可能保护线路全长,要求保护线路全长的15%—20%即可。
电流二段保护的整定:要求限时速断保护必须保护线路全长,因此他的保护范围必须延伸到下一级线路去,这样当下一级线路首端发生短路故障时就要动作.在这种情况下,为了保证动作的选择性,就必要保护的动作具有一定的时限。
所以其整定值在下一条线路的一段整定值上加一个配合的可靠性系数即可.对于二段保护来说,一般要延时0。
5秒动作。
另外为了保护线路全长,限时速断保护必须在最不利于保护动作的情况下有足够的反应能力,所以需要其灵敏系数大于等于1。
3。
电流三段保护的整定:为保证在正常情况下各条线路上的过电流保护不误动,需要考虑最大负荷电流、返回系数和电机的自启动系数,因此:具体的RTDS中保护设置模块设定在实验过程中体现,这里不再赘述.四、实验步骤1、建立如下图35kV电力系统模型:三条线路分别长60km,80km,100km,CT的变比取为600:1,PT的变比取为35000:100。
线路一末端负荷2MW,0。
8MVar;线路二末端负荷3MW,1MVar;线路三末端负荷3MW,1MVar.分别在三条线路的中间和末端设置故障.2、参考实验原理和继电保护课程教材,根据线路参数合理设置整定值,完成各条线路三段间过电流配合。
基本要求:第一条线路中间故障,保护一瞬时动作;第一条线路末端故障,保护一延时动作;第二条线路中间故障,保护二瞬时动作;第二条线路末端故障,保护二延时动作;第三条线路实现全线速动。
电流三段保护整定原则在咱们电工界,有一句老话:“电流三段保护,就像一把无形的保护伞,保护着电路宝宝的安全。
”那么,这把保护伞是怎么撑起来的呢?这就得聊聊电流三段保护整定原则了。
首先,咱们得知道,电流三段保护就像电路宝宝的三个保镖,分别是“电流速效保镖”、“电流慢效保镖”和“电流超慢效保镖”。
他们各有各的本事,负责在不同的时间保护宝宝。
咱们先来说说“电流速效保镖”。
这位保镖的反应速度极快,一旦发现电路宝宝有危险,立刻冲上前去阻止。
他对应的是“电流速断保护”,主要是针对短路故障。
比如说,电路宝宝突然心血来潮,想要玩个“短路游戏”,这时候,“电流速效保镖”就会立刻跳出来,把电路宝宝抱在怀里,阻止短路的发生。
接下来是“电流慢效保镖”。
这位保镖虽然反应没有“电流速效保镖”那么快,但他有着更长远的目光。
他负责的是“过电流保护”,主要是保护电路宝宝在正常工作状态下,不会被过大电流伤害。
比如说,电路宝宝在玩耍时,突然被一个巨大的电流冲击,这时候,“电流慢效保镖”就会站出来,像老爹爹一样,保护着电路宝宝。
最后是“电流超慢效保镖”。
这位保镖的使命是保护电路宝宝免受“过载”的伤害。
他对应的是“过载保护”,主要是针对电路宝宝在长时间工作状态下,电流过大,导致过热等问题。
这时候,“电流超慢效保镖”就会出场,像老爷爷一样,把电路宝宝抱在怀里,保护他不受伤害。
那么,这三位保镖是怎么分工合作的呢?这就得提到“整定原则”了。
简单来说,就是根据电路宝宝的具体情况,给三位保镖设定不同的“反应阈值”。
这样一来,当电路宝宝遇到危险时,三位保镖就会按照设定好的程序,分别出场,保护电路宝宝。
这里有个幽默的小故事:有一天,电路宝宝在玩耍时,突然被一个巨大的电流冲击。
这时,“电流速效保镖”立刻跳出来,把电路宝宝抱在怀里,说:“宝宝,别怕,我来了!”紧接着,“电流慢效保镖”也赶到了,说:“宝宝,别怕,我会保护你的!”最后,“电流超慢效保镖”也来了,说:“宝宝,别怕,我会保护你不受伤害的!”三位保镖齐心协力,终于保护了电路宝宝。
第1章输电线路呵护设置装备摆设与整定盘算重点:控制110KV及以下电压等级输电线路呵护设置装备摆设办法与整定盘算原则.难点:呵护的整定盘算才能造就请求:基本性对110KV及以下电压等级线路的呵护进行整定盘算.学时:4学时主呵护:反应全部呵护元件上的故障并能以最短的延时有选择地切除故障的呵护称为主呵护.后备呵护:主呵护拒动时,用来切除故障的呵护,称为后备呵护.帮助呵护:为填补主呵护或后备呵护的缺少而增设的简略呵护.一.线路上的故障类型及特点:相间短路(三相相间短路.二相相间短路)接地短路(单相接地短路.二相接地短路.三相接地短路)个中,三相相间短路故障产生的伤害最轻微;单相接地短路最罕有.相间短路的最根本特点是:故障相流淌短路电流,故障相之间的电压为零,呵护装配处母线电压下降;接地短路的特点:1.中性点不直接接地体系特色是:①全体系都消失零序电压,且零序电压全体系均相等.②非故障线路的零序电流由本线路对地电容形成,零序电流超前零序电压90°.③故障线路的零序电流由全体系非故障元件.线路对地电容形成,零序电流滞后零序电压90°.显然,当母线上出线愈多时,故障线路流过的零序电流愈大.④故障相电压(金属性故障)为零,非故障相电压升高为正常运行时的相间电压.⑤故障线路与非故障线路的电容电流偏向和大小不雷同.是以中性点不直接接地体系中,线路单相故障可以反响零序电压的消失组成零序电压呵护;可以反响零序电流的大小组成零序电流呵护;可以反响零序功率的偏向组成零序功率偏向呵护.2.中性点直接接地体系接地时零序分量的特色:①故障点的零序电压最高,离故障点越远处的零序电压越低,中性点接地变压器处零序电压为零.②零序电流的散布,重要决议于输电线路的零序阻抗和中性点接地变压器的零序阻抗,而与电源的数量和地位无关.③在电力体系运行方法变更时,假如输电线路和中性点接地的变压器数量不变,则零序阻抗和零序等效收集就是不变的.但电力体系正序阻抗和负序阻抗要跟着体系运行方法而变更,将间接影响零序分量的大小.④对于产生故障的线路,两头零序功率偏向与正序功率偏向相反,零序功率偏向现实上都是由线路流向母线的.二.呵护的设置装备摆设小电流接地体系(35KV及以下)输电线路一般采取三段式电流呵护反响相间短路故障;因为小电流接地体系没有接地点,故单相接地短路仅视为平常运行状况,一般应用母线上的绝缘监察装配发旌旗灯号,由运行人员“分区”停电查找接地装备.对于变电站来讲,母线上出线回路数较多,也涉及供电的持续性问题,故一般采取零序电流或零序偏向呵护反响接地故障.对于短线路.运行方法变更较大时,可不斟酌Ⅰ段呵护,仅用Ⅱ段+Ⅲ段呵护分离作为主呵护和后备呵护应用.110KV输电线路一般采取三段式相间距离呵护作为相间短路故障的呵护方法,采取阶段式零序电流呵护作为接地短路的呵护方法.对极个体平常短的线路,若有须要也可以斟酌采取纵差呵护作为主呵护.留意:1.在双侧电源的输电线路上,当反偏向短路时,假如呵护可能掉去选择性的话,就应当增设偏向元件,组成偏向电流呵护.2.变压器——线路组接线时,将线路视为变压器绕组的引出线,不再单独设置呵护.3.呵护的设置装备摆设没有定章,只要能反响对象上可能消失的所有故障且知足呵护的四个根本请求的计划都可以,最经济的计划就是最好的.无论那种呵护,其敏锐度都应知足规程请求,不然应更换其它呵护方法.三.三段式电流呵护的整定盘算1.瞬时电流速断呵护整定盘算原则:躲开本条线路末尾最大短路电流整定盘算公式:式中:Iact——继电器动作电流Kc——呵护的接线系数IkBmax——最大运行方法下,呵护区末尾B母线处三相相间短路时,流经呵护的短路电流.K1rel——靠得住系数,一般取1.2~1.3.I1op1——呵护动作电流的一次侧数值.nTA——呵护装配处电流互感器的变比.敏锐系数校验:式中:X1——Ω/KM;Xsmax——体系最大短路阻抗.请求最小呵护规模不得低于15%~20%线路全长,才许可应用.2.限时电流速断呵护整定盘算原则:不超出相邻下一元件的瞬时速断呵护规模.所以呵护1的限时电流速断呵护的动作电流大于呵护2的瞬时速断呵护动作电流,且为包管鄙人一元件首端短路时呵护动作的选择性,呵护1的动作时限应当比呵护2大.故:式中:KⅡrel——限时速断呵护靠得住系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;敏锐度校验:规程请求:3.准时限过电流呵护准时限过电流呵护一般是作为后备呵护应用.请求作为本线路主呵护的后备以及相邻线路或元件的远后备.动作电流按躲过最大负荷电流整定.式中:KⅢrel——靠得住系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电念头自起动系数,一般取1.5~3.0;动作时光按阶梯原则递推.敏锐度分离按近后备和远后备进行盘算.式中:Ikmin——呵护区末尾短路时,流经呵护的最小短路电流.即:最小运行方法下,两相相间短路电流.请求:作近后备应用时,Ksen≥1.3~1.5作远后备应用时,Ksen≥1.2留意:作近后备应用时,敏锐系数校验点取本条线路最末尾;作远后备应用时,敏锐系数校验点取相邻元件或线路的最末尾;4.三段式电流呵护整定盘算实例如图所示单侧电源放射状收集,AB和BC均设有三段式电流呵护.已知:1)线路AB长20km,线路BC长30km,线路电抗每公里0.4欧姆;2)变电所B.C中变压器衔接组别为Y,d11,且在变压器上装设差动呵护;3)线路AB的最大传输功率为9.5MW,功率因数0.9,自起动系数取1.3;4)T1变压器归算至被呵护线路电压等级的阻抗为28欧;5)体系最大电抗7.9欧,体系最小电抗4.5欧.试对AB线路的呵护进行整定盘算并校验其敏锐度.解:(1)短路电流盘算留意:短路电流盘算值要留意归算至呵护装配处电压等级,不然会消失错误;双侧甚至多侧电源收集中,应取流经呵护的短路电流值;在有限体系中,短路电流数值会随时光衰减,整定盘算及敏锐度校验时,准确盘算应取响应时光处的短路电流数值. B母线短路三相.两相最大和最小短路电流为:=1590(A)=1160(A)C母线短路电流为:E母线短路电流为:整定盘算①呵护1的Ⅰ段定值盘算工程实践中,还应依据呵护装配处TA变比,折算出电流继电器的动作值,以便于设定.最小呵护规模的校验:知足请求②呵护1限时电流速断呵护按躲过变压器低压侧母线短路电流整定:与相邻线路瞬时电流速断呵护合营××840=1210A选上述盘算较大值为动作电流盘算值,动作时光0.5S.敏锐系数校验:可见,如与相邻线路合营,将不知足请求,改为与变压器合营.③呵护1定限时过电流呵护按躲过AB线路最大负荷电流整定:动作时限按阶梯原则推.此处假定BC段呵护最大时限为1.5S,T1上呵护动作最大时限为0.5S,则该呵护的动作时限为1.5+0.5=2.0S.敏锐度校验:近后备时:远后备时:留意:不克不及作T1的远后备.四.距离呵护的整定盘算相间距离呵护多采取阶段式呵护,三段式距离呵护整定盘算原则与三段式电流呵护基底细同.1.相间距离Ⅰ段呵护的整定相间距离呵护第Ⅰ段动作阻抗为:靠得住系数取0.8~0.85.若被呵护对象为线路变压器组,则动作阻抗为:假如整定阻抗角与线路阻抗角相等,则呵护区为被呵护线路全长的80%~85%.2.相间距离Ⅱ段呵护的整定相间距离Ⅱ段应与相邻线路相间距离第Ⅰ段或与相邻元件速动呵护合营.①与相邻线路第Ⅰ段合营动作阻抗为:式中:Kbmin——最小分支系数.KⅡrel——靠得住系数,一般取0.8.关于分支系数:助增分支(呵护装配处至故障点有电源注入,呵护测量阻抗将增大)B.汲出分支(呵护装配处至故障点有负荷引出,呵护测量阻抗将减小.)Znp1——引出负荷线路全长阻抗Znp2——被影响线路全长阻抗Zset——被影响线路距离Ⅰ段呵护整定阻抗汲出系数是小于1的数值.C.助增分支.汲出分支同时消失时总分支系数为助增系数与汲出系数相乘.例题:分支系数盘算Ω/KM ,平行线路70km.MN线路为40km,距离Ⅰ段呵护靠得住系数取0.85.M侧电源最大阻抗ZsM.max=25Ω.最小等值阻抗为ZsM.min=20Ω;N侧电源最大ZsN.max=25Ω.最小等值阻抗分离为ZsN.min=15Ω,试求MN线路M侧距离呵护的最大.最小分支系数.解:(1)求最大分支系数最大助增系数:最大汲出系数:最大汲出系数为1.总的最大分支系数为:(2)求最小分支系数最小助增系数:最小汲出系数:总分支系数:②与相邻元件的速动呵护合营敏锐度校验:请求:≥若敏锐系数不知足请求,可与相邻Ⅱ段合营,动作阻抗为动作时光:3.相间距离Ⅲ段呵护的整定整定盘算原则:按躲过最小负荷阻抗整定①按躲过最小负荷阻抗整定靠得住系数取1.2~1.3;全阻抗继电器返回系数取1.15~1.25.若测量元件采取偏向阻抗继电器:Ψlm——偏向阻抗继电器敏锐角Ψld——负荷阻抗角②敏锐度校验近后备时:请求≥1.3~1.5远后备时:请求≥留意:以上动作阻抗为一次侧盘算值,工程实践中还应换算成继电器的整定值:五.阶段式零序电流呵护的整定三段式零序电流呵护道理接线图1.零序电流速断呵护与反响相间短路故障的电流呵护类似,零序电流呵护只反响电流中的零序分量.躲过被呵护线路末尾接地短路时,呵护装配处测量到的最大零序电流整定.因为是呵护动作速度很快,动作值还应与“断路器三相触头不合时闭合”.“非全相运行陪同振荡”等现象产生的零序电流合营,以包管选择性.按非全相且振荡前提整定定值可能过高,敏锐度将不知足请求.措施:平日设置两个速断呵护,敏锐Ⅰ段按前提①和②整定;不敏锐Ⅰ段按前提③整定.在消失非全相运行时闭锁敏锐Ⅰ段.2.限时零序电流速断呵护基起源基础理与相间短路时阶段式电流呵护雷同,不再赘述.当敏锐度不知足请求时:可采取与相邻线路的零序Ⅱ段合营,其动作电流.动作时光均要合营.3.零序过电流呵护动作电流整定前提:①躲过下级线路相间短路时最大不服衡电流②零序Ⅲ段呵护之间在敏锐度上要逐级合营。
继电保护知识,三段式电流保护工作原理、整定计算什么是三段式电流保护三段式电流保护指的是电流速断保护(第一段)、限时电流速断保护(第二段)、定时限过电流保护(第三段)相互配合构成的一套保护、下面我们就来详细介绍一下三段时电流保护的工作原理和整定计算方法。
一、电流速断保护(第I段)简单网络接线示意图对于仅反应于电流增大而瞬时动作的电流保护,称为电流速断保护。
为优先保证继电保护动作的选择性,就要在保护装置起动参数的整定上保证下一条线路出口处短路时不起动,这在继电保护技术中,又称为按躲过下一条线路出口处短路的条件整定。
以上图1所示的网络接线为例,假定每条线路上均装有电流速断保护,对于安装在A母线处的保护1来讲,其起动电流必须整定得大于d2点处短路时,可能出现的最大短路电流,即在最大运行方式下B母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在A 母线处的保护1就能起动,最后动作于跳断路器1对保护2来讲,按照同样的原则,其起动电流必须整定得大于d4点处短路时,可能出现的最大短路电流,即在最大运行方式下C母线上三相短路时的电流,即:当被保护线路的一次侧电流达到起动电流这个数值时,安装在B 母线处的保护2就能起动,最后动作于跳断路器2。
后面几段线路的电流速断保护整定原则同上。
电流速断保护的主要优点是:简单可靠,动作迅速,因而获得了广泛的应用。
但由于引入的可靠系数,所以不难看出,电流速断保护的缺点是:不能保护本线路的全长,且保护范围直接受系统运行方式变化的影响。
运行实践证明,电流速断保护的保护范围大概是本线路的85%~90%。
二、限时电流速断保护(第II段)1、工作原理及整定计算的基本原则由于有选择性的电流速断保护不能保护本线路的全长,因此我们考虑增加一段新的保护,用来切除速断范围以外的故障,保护本线路的全长,同时也能作为电流速断保护的后备保护。
由于要求它必须保护本线路的全长,因此它的保护范围必然要延伸到下一条线路中去,这样当下一条线路出口处(如图1中,对于保护1来说,d2点处)发生短路时,它就要起动,在这种情况下,为了保证动作的选择性,就必须使保护的动作带有一定的时限,但又为了使这一时限尽量缩短,我们就考虑使它的保护范围不超过下一条线路速断保护(如图1中的保护2)的保护范围,而动作时限则比下一条线路速断保护高出一个时间阶段,即如图2(a)所示,由于它能以较小的时限快速切除全线路范围以内的故障,所以我们称它为限时电流速断保护。
三段式电流保护的整定及计算三段式电流保护是一种常用的电流保护方式,它将电流保护分为三个不同的动作段,以便实现对不同故障类型的可靠保护。
三段式电流保护一般有低速段、中速段和高速段,各段的动作时间及电流整定值不同,下面将详细介绍三段式电流保护的整定及计算方法。
首先是低速段的整定及计算。
低速段主要用于保护无故障绕组和过载,通过设置较长的动作时间可以防止虚警。
低速段的整定主要依据设备的额定电流来确定,一般为额定电流的1.5倍。
动作时间的选择可以根据设备的特性和实际需求进行调整,一般为3-10s。
在计算低速段的电流保护值时,需确定设备的额定电流和对应的系数,然后将系数乘以额定电流即可得到低速段的电流保护值。
接下来是中速段的整定及计算。
中速段主要用于保护设备的短路故障,通过较短的动作时间可以快速切断故障电流,减少故障损失。
中速段的整定一般为设备的额定电流的3倍。
动作时间的选择一般为0.1-1s,根据实际情况进行调整。
在计算中速段的电流保护值时,可根据设备的额定电流乘以相应的系数即可得到中速段的电流保护值。
最后是高速段的整定及计算。
高速段主要用于保护设备的外部故障,例如地故障。
高速段的整定一般为设备的额定电流的10倍。
动作时间的选择一般为0.01-0.1s,根据实际情况进行调整。
在计算高速段的电流保护值时,可根据设备的额定电流乘以相应的系数即可得到高速段的电流保护值。
需要特别注意的是,以上整定和计算方法是根据一般情况进行的推荐,具体的整定值和动作时间还需根据实际设备情况和要求进行调整。
在实际应用中,还需考虑电力系统的可靠性和经济性,合理确定三段式电流保护的整定参数。
总结起来,三段式电流保护的整定及计算方法是根据设备的额定电流和不同段的系数来确定各段的电流保护值,同时根据设备特性和实际需求来选择动作时间。
在实际应用中还需结合电力系统的可靠性和经济性进行综合考虑,合理确定三段式电流保护的整定参数。
许继wxh-820第31页8定值整定说明10.1三段电流电压方向保护由于电流电压方向保护针对不同系统有不同的整定规则,此处不一一详述。
以下内容是以一线路保护整定为实例进行说明,以做为用户定值整定已知条件:最大运行方式下,降压变电所母线三相短路电流I)3(maX.dl为5500A,配电所母线三相短路电流I)3(maXd为5130A,配电变压器低压.2侧三相短路时流过高压侧的电流I)3(maX.3d为820A。
最小运行方式下,降压变电所母线两相短路电流I)2(maX.1d为3966A,配电所母线两相短路电流I)2(maXd为3741A,配电变压器低压侧两相短路.2时流过高压侧的电流I)2(maX.3d为689A。
电动机起动时的线路过负荷电流Igh为350A,10kV电网单相接地时取小电容电流IC为15A,10kV电缆线路最大非故障接地时线路的电容电流Icx为1.4A。
系统中性点不接地。
相电流互感器变比为300/5,零序电流互感器变比为50/5。
整定计算(计算断路器DL1的保护定值)电压元件作为闭锁元件,电流元件作为测量元件。
电压定值按保持测量元件范围末端有足够的灵敏系数整定。
10.1.1电流电压方向保护一段(瞬时电流电压速断保护)瞬时电流速断保护按躲过线路末端短路时的最大三相短路电流整定,保护装置的动作电流 A n I K K I l d jx k dz 11160513013.1)3(max .2j=⨯⨯==,取110A保护装置一次动作电流A 6600160110K n I I jx l j.dz dz =⨯== 灵敏系数按最小运行方式下线路始端两相短路电流来校验:2601.066003966I I K dz)2(min,dl lm <===由此可见瞬时电流速断保护不能满足灵敏系数要求,故装设限时电流速断保护。
10.1.2电流电压方向保护二段(限时电流电压速断保护)限时电流速断保护按躲过相邻元件末端短路时的最大三相短路时的电流整定,则保护装置动作电流A A n I K K I l d jx k jdz 20,8.176082013.1)3(max .3.取=⨯⨯==保护装置一次动作电流A 120016020K n I I jx l j.dz dz =⨯== 灵敏系数按最小运行方式下线路始端两相短路电流来校验:23.312003966I I K dz )2(min .dl lm>=== 限时电流速断保护动作时间T 取0.5秒。
三段电流保护的整定原则一、三段电流保护的整定原则是啥呢?小伙伴们,今天咱们来唠唠三段电流保护的整定原则这个事儿哈。
先来说说第一段电流保护,也就是瞬时电流速断保护。
这一段呢,它主要是为了快速切除靠近电源端的短路故障。
它的整定原则就是按照躲过被保护线路末端的最大短路电流来整定。
为啥要这么整呢?你想啊,如果不躲过这个最大短路电流,那可能就会误动作啦。
比如说,正常运行的时候可能会有一些比较大的电流波动,但还没到故障的程度,要是整定得不合适,就会以为是故障然后乱动作,那可就麻烦喽。
再看看第二段,限时电流速断保护。
这一段可就有点讲究啦。
它要和下一段线路的瞬时电流速断保护相配合呢。
它的动作电流得比下一段线路的瞬时电流速断保护的动作电流大一些,而且还得有个时间的延迟。
这个时间延迟就是为了区分故障到底是发生在本线路还是下一段线路。
如果本线路发生故障,那它得在第一段没切除故障的情况下,在这个时间延迟内动作,把故障给解决掉。
这就像是一个接力赛,第一段要是没完成任务,第二段就得赶紧顶上。
最后就是第三段啦,过电流保护。
这一段的整定原则是按照躲过线路的最大负荷电流来整定的。
因为在正常运行的时候,线路是有负荷电流的,要是不躲过这个最大负荷电流,那在正常运行的时候就可能会误动作。
而且这个第三段保护是作为后备保护存在的。
什么叫后备保护呢?就是说前面两段要是都出问题了,没能把故障切除,那它就得发挥作用,把故障给解决掉,就像一个超级替补一样,随时准备上场拯救大局。
反正三段电流保护的整定原则都是有它们的道理的,都是为了能让电力系统在发生故障的时候准确地把故障给处理掉,保障电力系统的安全稳定运行。
要是这些整定原则没弄好,那电力系统就可能会经常出乱子,就像一个人身体里的免疫系统出问题了一样,到处都是毛病。
2三段式电流保护的整定及计算三段式电流保护是用于电力系统中对过电流进行保护的一种方式。
它主要包括低电流保护、中电流保护和高电流保护三个阶段。
三段式电流保护的整定及计算是非常重要的,下面将详细介绍三段式电流保护的整定及计算过程。
整定三段式电流保护的整定包括三个方面:电流整定、时间整定和信号整定。
1.电流整定:电流整定是根据电路的额定电流以及电流变化的特点来确定保护整定值的过程。
在给定的时间范围内,对于不同电流等级的设备,设定不同的整定值。
2.时间整定:时间整定是确定过流保护在不同故障情况下的触发时间的过程。
根据故障发生的位置和电路的可靠性要求,设定不同的时间值。
一般情况下,短路故障需要立即跳闸,而过载故障可以延迟一段时间后再跳闸。
3.信号整定:信号整定是对过电流保护的判据进行整定的过程。
根据电流的大小和变化趋势来设定不同的判据。
一般情况下,电流超过设定值就会触发保护装置,但如果电流短时间内迅速增加,则需要设定更低的判据。
计算三段式电流保护的计算主要包括电流计算、时间计算和信号计算。
1.电流计算:电流计算是根据电流的大小和变化规律来确定整定值的过程。
根据电路的特点和运行要求,计算出保护装置的整定值。
一般情况下,电流计算可以通过测量设备的额定电流以及电流变换器的变比来进行。
2.时间计算:时间计算是确定过流保护装置的动作时间的过程。
根据故障的类型和电路的可靠性要求,计算出保护装置的动作时间。
一般情况下,时间计算可以通过测量设备的额定时间和电路的可靠性要求来进行。
3.信号计算:信号计算是根据电流的变化趋势来确定保护装置的判据的过程。
根据电流的大小和变化速度来计算出判据的设定值。
一般情况下,信号计算可以通过测量设备的额定电流和电流变化率来进行。
综上所述,三段式电流保护的整定及计算是根据电路的特点和运行要求,通过电流计算、时间计算和信号计算等步骤来确定保护装置的整定值、动作时间和判据设定值的过程。
只有经过合理的整定和计算,才能保证三段式电流保护的可靠性和精确性,提高电力系统的安全运行水平。
三段式电流保护的工作原理及整定计算
嘿!今天咱们来聊聊“三段式电流保护的工作原理及整定计算”这个超重要的话题呀!
哎呀呀,先来说说这三段式电流保护到底是啥呢?它其实就像是电路的三道防线,分别是电流速断保护、限时电流速断保护和过电流保护。
这三道防线相互配合,共同守护着电路的安全哟!
电流速断保护呢,那可真是个厉害的角色!它动作迅速,一旦检测到电流超过设定值,瞬间就会跳闸,就像一个敏捷的卫士,快速出手保护电路哇!但是它也有个小缺点,就是保护范围有限呢。
限时电流速断保护呀,它弥补了电流速断保护范围小的不足。
它会在一定的时限内动作,既能扩大保护范围,又能保证动作的选择性,是不是很神奇呀?
过电流保护就像是个坚实的后盾!当线路的负荷电流超过了允许值,它就会动作啦。
它的动作时限是按照阶梯原则整定的哟,越靠近电源端,动作时限越长,这样就能避免越级跳闸的情况发生呢!
那这三段式电流保护的整定计算又是咋回事呢?这可就有点复杂啦!首先得确定保护装置的动作电流和动作时限。
动作电流的整定要考虑很多因素,比如线路的最大负荷电流、短路电流等等。
而动作时限的整定则要遵循阶梯原则,保证上下级保护之间的配合协调,哎呀呀,这可真是需要精心计算和仔细考量的呢!
总之,三段式电流保护的工作原理和整定计算可是电力系统中非常重要的知识呀!只有掌握了这些,才能确保电力系统的安全稳定运
行,为我们的生活和工作提供可靠的电力保障哇!怎么样,大家是不是对三段式电流保护有了更清晰的认识呢?。
第一章继电保护的作用和基本要求一、电力系统继电保护的作用短路类型:三相短路、两相短路、两点接地短路、单相接地短路。
在发生短路时可能产生以下的后果:(1)通过故障点的很大的短路电流和所燃起的电弧,使故障元件损坏;(2)短路电流通过非故障元件,由于发热和电动力的作用,引起它们的损坏或缩短它们的使用寿命;(3)电路系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响工厂产品质量;(4)破坏电力系统并列运行的稳定性,引起系统振荡,甚至使整个系统瓦解。
1、不正常运行状态:电力系统中电气元件的正常工作遭到破坏,但没有发生故障,这种情况属于不正常运行状态。
2、事故:就是指系统或其中一部分的正常工作遭到破坏,并造成对用户少送电或电能质量变坏到不能容许的地步,甚至造成人身伤亡和电气设备的损坏。
3、继电保护装置:就是指能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。
它的基本任务是:(1)自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其它无故障部分迅速恢复正常运行;(2)反应电气元件的不正常运行状态,并根据运行维护的条件(例如有无经常值班人员),而动作于发出信号、减负荷或跳闸。
二、继电保护的基本原理1、电流的增大;2、电压的减小;3、电流与电压之间相位角的变化;4、不对称的短路,出现相序分量的电流和电压。
三、继电保护装置的组成部分1、测量部分;2、逻辑部分;3、执行部分。
四、对电力系统继电保护的基本要求1、选择性:就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒动时,应由相邻设备或线路的保护将故障切除。
2、速动性:是指继电保护装置应能尽快地切除故障,以减少设备及用户在大电流、低电压运行的时间,降低设备的损坏程度,提高系统并列运行的稳定性。
3、灵敏性:是指电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,保护装置的反应能力。
许继wxh-820第31页8定值整定说明10.1三段电流电压方向保护由于电流电压方向保护针对不同系统有不同的整定规则,此处不一一详述。
以下内容是以一线路保护整定为实例进行说明,以做为用户定值整定已知条件:最大运行方式下,降压变电所母线三相短路电流I)3(m aX.dl为5500A,配电所母线三相短路电流I)3(m aXd为5130A,配电变压器低压.2侧三相短路时流过高压侧的电流I)3(m aX.3d为820A。
最小运行方式下,降压变电所母线两相短路电流I)2(m aX.1d为3966A,配电所母线两相短路电流I)2(m aXd为3741A,配电变压器低压侧两相短路.2时流过高压侧的电流I)2(m aX.3d为689A。
电动机起动时的线路过负荷电流Igh为350A,10kV电网单相接地时取小电容电流IC为15A,10kV电缆线路最大非故障接地时线路的电容电流Icx为1.4A。
系统中性点不接地。
相电流互感器变比为300/5,零序电流互感器变比为50/5。
整定计算(计算断路器DL1的保护定值)电压元件作为闭锁元件,电流元件作为测量元件。
电压定值按保持测量元件范围末端有足够的灵敏系数整定。
10.1.1电流电压方向保护一段(瞬时电流电压速断保护)瞬时电流速断保护按躲过线路末端短路时的最大三相短路电流整定,保护装置的动作电流 A n I K K I l d jx k dz 11160513013.1)3(max .2j=⨯⨯==,取110A保护装置一次动作电流A 6600160110K n I I jx l j.dz dz =⨯== 灵敏系数按最小运行方式下线路始端两相短路电流来校验:2601.066003966I I K dz)2(min,dl lm <===由此可见瞬时电流速断保护不能满足灵敏系数要求,故装设限时电流速断保护。
10.1.2电流电压方向保护二段(限时电流电压速断保护)限时电流速断保护按躲过相邻元件末端短路时的最大三相短路时的电流整定,则保护装置动作电流A A n I K K I l d jx k jdz 20,8.176082013.1)3(max .3.取=⨯⨯==保护装置一次动作电流A 120016020K n I I jx l j.dz dz =⨯== 灵敏系数按最小运行方式下线路始端两相短路电流来校验:23.312003966I I K dz )2(min .dl lm>=== 限时电流速断保护动作时间T 取0.5秒。
35kV 高压进线线三段式电流保护和整定计算对 35~63kV 线路,可按下列要求装设相间短路保护装置:1) 对单侧电源线路可采用一段或两段电流速断或电流闭锁电压速断作主保护,并应以带时限过电流保护作后备保护。
当线路发生短路,使发电厂厂用母线电压或重要用户母线电压 低于额定电压的 60%时,应能快速切除故障。
2)35kV 线路相间短路的电流保护35kV 线路继电保护的主体。
电流保护多采用三段式,即由电流速断保护、限时电流速断保护和过电流保护组成。
电流速断保护(也称为Ⅰ段)动作时间短,速动性好,但其动作电流较大,某些情况下不能保护线路全长;限时电流速断保护(也称为Ⅱ段)有较短的动作时限,而且能保护线路全长,却不能作为相邻线路的后备保护;定时限过电流保护(也称为Ⅲ段)的动作电流较前两段小,保护范围大,既能保护本线路全长又能作为相邻线路的后备保护。
7.3.1 第一段 无时限电流速断保护1) 'act.1I 应躲过进线末端K2点的最大三相短路电流整定。
'(3)1 2.max 1.2536594574 set rel k I K I A =⨯=⨯=其中: I act 保护装置的动作电流,又叫做一次动作电流(3)2,max k I ——K2点的最大三相短路电流K rel ——可靠系数,一般取1.25~1. 52) 继电器的动作电流为:``.1 LH 14574 38.12 6005CO set set K I I A K ⨯⨯=== (7.2) 其中:K co ——接线系数,本设计中取1K LH ——电流互感器TA 的变流比考虑到系统发展时仍能适应,选用DL-11/50型电流继电器,其动作电流的整定范围为12.5~50A ,故动作电流整定值为40A 。
3) 第一段的灵敏性通常用保护范围的大小来衡量,根据本设计的数据,按线路首端(d1点)短路时的最小短路电流校验灵敏系数。
.1min '.1 5196 2 0.98 1.5 4574sc d sen act I K I ===<(7.3) 其中:K sen ——灵敏系数不满足要求,因此必须进一步延伸电流速短的保护范围,使之与下一条线路的限时电流速断相配合,这样其动作时限就应该选择得比下一条线路限时速断的时限再高一个t ∆所以动作时限整定为:2t =1t +2t ∆=1.0 s (7.4)故应装设带时限电流速断保护。