(完整版)新北师大版八年级下册数学第二章小结与复习
- 格式:ppt
- 大小:2.25 MB
- 文档页数:20
北师大版八年级下册数学各章知识点总结集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-第一章 一元一次不等式和一元一次不等式组一. 不等关系1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0二. 不等式的基本性质1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc, cb c a >.(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc, c b c a <2. 比较大小:(a 、b 分别表示两个实数或整式) 一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b;即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三. 不等式的解集:1. 能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.2. 不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:①边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左四. 一元一次不等式:1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.2. 解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3. 解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4. 一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为ab x >;②当a=0时,且b<0,则x 取一切实数;当a=0时,且b ≥0,则无解;③当a<0时, 解为a b x <;5. 不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意.五. 一元一次不等式组1. 定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定.3. 解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况(a、b为实数,且a<b)第二章分解因式一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系。
第一章 三角形的证明第1节 等腰三角形一、全等三角形的性质与判定1、全等三角形的性质定理1 全等三角形的对应边相等。
定理2 全等三角形的对应角相等。
推论1 全等三角形的面积相等。
推论2 全等三角形的周长相等。
2、全等三角形的判定公理1 两边夹角对应相等的两个三角形全等(SAS )公理2 两角及其夹边对应相等的两个三角形全等(ASA )公理3 三边对应相等的两个三角形全等(SSS )定理1 两角及其中一角的对边对应相等的两个三角形全等(AAS )定理2 斜边和一条直角边分别相等的两个直角三角形全等。
(HL )二、等腰三角形的性质与判定1、等腰三角形的性质定理 等腰三角形的两个底角相等。
(等边对等角)推论1 等腰三角形顶角平分线、底边上的中线和底边上的高互相重合。
(三线合一) 推论 2 等腰三角形两腰上的中线、两腰上的高、两个底角的平分线都相等,并且它们的交点到底边两端点距离相等。
【说明】①等腰直角三角形的两个底角相等且等于45°。
②等腰三角形的底角只能为锐角,不能为钝角或直角,但顶角可为钝角或直角。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,周长为C ,则2b<a <2C④等腰三角形的三角关系:设顶角为∠C ,底角为∠A 、∠B ,则∠C =180°—2∠A =180°—2∠B ,∠A =∠B =2180A∠-︒2、等腰三角形的判定定义:有两条边相等的三角形叫做等腰三角形。
定理:有两个角相等的三角形是等腰三角形。
(等角对等边)三、等边三角形的性质与判定1、等边三角形的性质定理1 等边三角形的三条边都相等。
定理2 等边三角形的三个内角都相等,并且每个角都等于60°。
推论:在直角三角形中,如果有一个锐角等于30°,那么它所对直角边等于斜边一半。
2、等边三角形的判定定义:三条边都相等的三角形叫做等边三角形。
定理:三个角都相等的三角形是等边三角形。
北師大版八年級數學下冊各章知識要點總結第一章三角形的證明一、全等三角形判定、性質:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的對應邊相等、對應角相等。
二、等腰三角形的性質定理:等腰三角形有兩邊相等;(定義)定理:等腰三角形的兩個底角相等(簡寫成“等邊對等角”)。
推論1:等腰三角形頂角的平分線、底邊上的中線及底邊上的高線互相重合。
(三線合一)推論2:等邊三角形的各角都相等,並且每一個角都等於60°。
等腰三角形是以底邊的垂直平分線為對稱軸的軸對稱圖形;三、等腰三角形的判定1. 有關的定理及其推論定理:有兩個角相等的三角形是等腰三角形(簡寫成“等角對等邊”。
)推論1:三個角都相等的三角形是等邊三角形。
推論2:有一個角等於60°的等腰三角形是等邊三角形。
2. 反證法:先假設命題的結論不成立,然後推導出與定義、基本事實、已有定理或已知條件相矛盾的結果,從而證明命題的結論一定成立。
這種證明方法稱為反證法四、直角三角形1、直角三角形的性質直角三角形的兩銳角互餘直角三角形兩條直角邊的平方和等於斜邊的平方;在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半;在直角三角形中,斜邊上的中線等於斜邊的一半。
2、直角三角形判定如果三角形兩邊的平方和等於第三邊的平方,那麼這個三角形是直角三角形;3、互逆命題、互逆定理在兩個命題中,如果一個命題的條件和結論分別是另一個命題的結論和條件,那麼這兩個命題稱為互逆命題,其中一個命題稱為另一個命題的逆命題.如果一個定理的逆命題經過證明是真命題,那麼它也是一個定理,這兩個定理稱為互逆定理,其中一個定理稱為另一個定理的逆定理.五、線段的垂直平分線、角平分線1、線段的垂直平分線。
性質:線段垂直平分線上的點到這條線段兩個端點的距離相等;三角形三條邊的垂直平分線相交於一點,並且這一點到三個頂點的距離相等。
八年级下册数学各章节知识点总结第一章一元一次不等式和一元一次 不等式组不等关系1. 一般地,用符号“V”(或“W”),“>”(或“事”)连接的式子叫做丕篦武.2. 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。
3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(20) <==>0和正数 <=:=> 不小于0非正数VH 二〉小于等于0(W0) <===>0和负数 <=二二〉不大于0 二.不等式的基本性质 1. 掌握不等式的基本性质,并会灵活运用:(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即: 如果 a>b,那么a+c>b+c, a-c>b~c ・⑵ 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即 如果a>b,并且c>0,那么ac>bc,上> 2.⑶ 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:2•比较大小:(a 、b 分别表示两个实数或整式)一般地:如果a>b,那么a-b 是正数仮过来,如果a-b 是正数,那么a>b;如果a 二b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b;如果avb,那么a-b 是负数仮过来,如果a-b 是正数,那么a<b;即:a>b <===> a~b>0 a=b <===> a-b=0 a<b <==> a~b<0(III 此可见,要比较两个实数的大小,只要考察它们的差就可以了.三•不等式的解集:1. 能使不等式成立的未知数的值,叫做丕.笠武的腿;一个不等式的所有解,组成这 个不等式的解集;求不等式的解集的过程,叫做解丕笠式.2. 不等式的解可以有无数多个,一般是在某个范圉内的所有数,与方程的解不同.3. 不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向:① 边界:有等号的是实心圆圈,无等号的是空心圆圈;②方向:大向右,小向左如果a>b,并且c<0,那么ac<bc,a b -< - c c四. 一元一次不等式:1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1•像这样的不等式叫做二.元二次丕笹贰.2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.3.解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(不等号的改变问题)4.—元一次不等式基本情形为ax>b(或axvb)①当a>0时,解为x上;②当&二0时,且b〈0,则x取一切实数;当a=0时,且b$0,则a无解;③当a<0时,解为xj;a5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”豁义;②设:设出适当的未知数;③列:根据题中的不等关系,列出不等式;④解:解出所列的不等式的解集;⑤答:写岀答案,并检验答案是否符合题意.五. 一元一次不等式组1.定义:由含有一个相同未知数的儿个一元一次不等式组成的不等式组,叫做庁二次丕等或组•2.一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.儿个不等式解集的公共部分,通常是利用数轴来确定.3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.两个一元一次不等式组的解集的四种情况、为实数,且第二章分解因式—•分解因式1.把一个多项式化成儿个整式的积的形式,这种变形叫做把这个多题式分魏因武.2.因式分解与整式乘法是互逆关系。
第一章小结与复习【学习目标】1.巩固本章知识,对等腰三角形、等边三角形和直角三角形有关性质与判定有整体性认识.2.熟悉角平分线、线段垂直平分线的性质与判定,并会进行相关证明.【学习重点】等腰三角形、等边三角形和直角三角形性质与判定的应用.【学习难点】有关性质定理的熟练应用.教与学环节知道行为提示:点燃激情,引发学生思考本节课学什么.行为提示:教会学生怎么交流,先对学,再群学,充分在小组内展示自己,分析答案,提出疑惑,共同解决.情景导入生成问题知识结构框图自学互研生成能力知识模块一等腰三角形与等边三角形【自主探究】范例1:已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为10.仿例1:如图1,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为( A)A.35°B.40°C.45°D.50°(图1)(图2)仿例2:如图2,已知∠AOB=60°,点P在边OA上,OP=12,点M、N在边OB上,PM=PN,若MN =2,则OM=5.仿例3:如图,等边△ABC中,AE=CD,AD、BE相交于P,BQ⊥AD于Q.求证:BP=2PQ.证明:∵AB=AC,∠BAE=∠ACD=60°,AE=CD,∴△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BAC=∠BAP+∠CAD=60°,∴∠BAP+∠ABE=60°,∴∠BPQ=60°,∵BQ⊥AD,∠PBQ=30°,∴BP=2PQ.学习笔记:行为提示:教师结合各组反馈的疑难问题分配展示任务,各组在展示过程中,老师引导其他组进行补充,纠错,最后进行总结评分.学习笔记:检测可当堂完成.知识模块二直角三角形范例2:Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( A)A.8 B.4 C.6 D.无法计算仿例1:如图,已知∠C=∠FBD=90°,FD⊥AB,垂足为点O,若使△ACB≌△DBF,还需添加的条件是答案不唯一,如AB=DF或AC=DB或CB=BF.仿例2:使两个直角三角形全等的条件是( D)A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.两条边对应相等知识模块三线段垂直平分线与角平分线范例3:在△ABC中,AB的垂直平分线与AC边所在直线相交所得的锐角为50°,则∠A的度数为( C)A.50°B.40°C.40°或140°D.40°或50°仿例1:如图,D是线段AB、BC垂直平分线的交点,若∠ABC=150°,则∠ADC的大小是( A)A.60°B.70°C.75°D.80°,(仿例1题图)) ,(仿例2题图)),(仿例3题图))仿例2:如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为6.仿例3:如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( B)A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°交流展示生成新知【交流预展】1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.【展示提升】知识模块一等腰三角形与等边三角形知识模块二直角三角形知识模块三线段垂直平分线和角平分线检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定、性质:1. 判定(SSS)(SAS)(ASA)(AAS)(HL直角三角形)2. 全等三角形的对应边相等、对应角相等。
二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60 °。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
北师大版八年级数学下册各章知识要点总结编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版八年级数学下册各章知识要点总结)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版八年级数学下册各章知识要点总结的全部内容。
北师大版八年级数学下册各章知识要点总结第一章三角形的证明一、全等三角形判定定理:1、三组对应边分别相等的两个三角形全等(SSS)2、有两边及其夹角对应相等的两个三角形全等(SAS)3、有两角及其夹边对应相等的两个三角形全等(ASA)4、有两角及一角的对边对应相等的两个三角形全等(AAS)5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角").推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。
) 推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。