北师大版八年级数学上册全套精美课件
- 格式:pptx
- 大小:91.38 MB
- 文档页数:32
北师大版八年级数学上册课件一、勾股定理。
1. 勾股定理内容。
- 直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么a^2+b^2=c^2。
- 例如,一个直角三角形的两条直角边分别为3和4,那么斜边c=√(3^2) +4^{2}=√(9 + 16)=√(25) = 5。
2. 勾股定理的证明。
- 常见的证明方法有赵爽弦图法。
赵爽通过构造以直角三角形的斜边为边长的正方形,然后将其分割成四个全等的直角三角形和一个小正方形,通过面积关系来证明勾股定理。
- 设直角三角形的两条直角边为a、b,斜边为c。
大正方形的面积可以表示为c^2,也可以表示为(a + b)^2- 2ab=a^2+b^2,从而证明a^2+b^2=c^2。
3. 勾股定理的逆定理。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
- 例如,三角形三边分别为5、12、13,因为5^2+12^2=25 + 144 =169=13^2,所以这个三角形是直角三角形。
4. 勾股数。
- 满足a^2+b^2=c^2的三个正整数a、b、c称为勾股数。
常见的勾股数有(3,4,5)、(5,12,13)、(8,15,17)等。
二、实数。
1. 无理数的概念。
- 无限不循环小数叫做无理数。
例如√(2),π等。
- √(2)的计算:设√(2)=(p)/(q)(p,q为互质的正整数),则2=frac{p^2}{q^2},即p^2=2q^2。
由此可推出p是偶数,设p = 2m,则(2m)^2=2q^2,即q^2=2m^2,所以q也是偶数,这与p,q互质矛盾,所以√(2)是无理数。
2. 实数的分类。
- 实数包括有理数和无理数。
有理数又包括整数和分数。
- 整数:正整数、0、负整数;分数:有限小数和无限循环小数。
3. 实数的运算。
- 实数的运算顺序:先算乘方、开方,再算乘除,最后算加减。
有括号的先算括号里面的。