肝胆疾病的生物化学与实验诊断
- 格式:doc
- 大小:811.50 KB
- 文档页数:26
肝胆生物化学肝胆生物化学是一门研究肝脏和胆囊中发生的生物化学过程的学科。
它主要的是肝脏和胆囊的功能,包括新陈代谢、解毒、免疫反应以及胆汁的分泌和储存。
肝脏是人体内最大的器官,它涉及到许多关键的生物化学过程。
以下是其中一些重要的过程:蛋白质代谢:肝脏是合成和分解蛋白质的关键部位。
它能够合成各种蛋白质,包括血浆蛋白质、凝血因子和载脂蛋白等。
同时,肝脏也负责分解一些蛋白质,如血红蛋白和激素等。
脂肪代谢:肝脏在脂质的合成、分解和运输中起着至关重要的作用。
它能够合成胆固醇和脂肪酸,同时也负责将它们转运到身体的各个部位。
碳水化合物代谢:肝脏是维持血糖水平稳定的关键部位。
它能够合成糖原,储存能量,并在需要时释放出来。
解毒:肝脏在身体的排毒过程中起到重要作用。
它能够转化许多有毒物质,使其变得无毒或易于排出体外。
免疫反应:肝脏是身体的一道重要防线,能够识别并清除病原体、衰老细胞和外来异物等。
胆囊是一个小型的囊状器官,它主要负责储存和浓缩胆汁。
以下是胆囊中发生的几个主要生物化学过程:胆汁的分泌:肝脏产生的胆汁被输送到胆囊中,胆囊通过收缩和放松来调节胆汁的分泌量。
胆汁的浓缩:胆囊通过吸收胆汁中的水分和盐分,将其浓缩成一种粘稠的物质。
这种浓缩的胆汁有助于消化脂肪。
胆汁酸的合成:在胆囊中,胆固醇被转化为胆汁酸,这是一种重要的脂溶性物质,有助于消化脂肪。
肝胆生物化学是一门研究肝脏和胆囊中发生的各种生物化学过程的学科。
这些过程对于人体的正常生理功能至关重要,包括新陈代谢、解毒、免疫反应以及胆汁的分泌和储存等。
通过对这些过程的理解和研究,我们可以更好地理解人体的工作机制,为医学研究和治疗提供更多的可能性。
肝胆疾病是当前社会常见的疾病之一,许多人在日常生活中会出现肝胆不适或疾病。
中医肝胆辨证施护是一种针对肝胆疾病的中医护理方法,它基于中医理论和辨证施治的原则,旨在帮助患者缓解症状、改善生活质量。
本文将介绍中医肝胆辨证施护的基本概念、应用范围和实施方法。
医学检验主管检验师资格考试复习资料生物化学(7)肝胆疾病的实验室检查《考纲要求》1.肝胆生化(1)肝脏的代谢了解(2)肝脏的生物转化功能熟练掌握(3)胆汁酸代谢紊乱与疾病熟练掌握(4)胆红素代谢与黄疸熟练掌握2.肝胆疾病的检查(1)酶学检查(ALT、AST、ALP、GGT、ChE)方法学评价、参考值及临床意义熟练掌握(2)胆红素代谢产物(血浆总胆红素、结合与未结合胆红素,尿胆红素及尿胆原)和胆汁酸测定的方法学评价及临床意义熟练掌握(3)肝纤维化标志物(Ⅲ、Ⅳ型胶原等)的测定及其临床意义熟悉(4)肝昏迷时的生化变化及血氨测定掌握3.肝细胞损伤时的其他有关检查及临床意义(1)蛋白质代谢异常的检查了解(2)糖代谢异常的检查了解(3)脂代谢异常的检查了解(4)各种急、慢性肝病时综合考虑应选择的试验及其临床意义熟练掌握肝是人体重要的代谢器官,对维持机体内外其环境的稳定起着十分重要的作用。
其主要功能有:1.代谢功能,参与糖、脂类、蛋白质、维生素的合成、分解和储存;核酸代谢;激素的生物转化;胆红素和胆酸的代谢。
2.排泄功能,如胆红素、胆酸、药物、某些阴离子染料等的运输和排泄。
3.解毒功能,参与对药物、毒物等化合物的氧化、还原、水解、结合等。
4.凝血和纤溶因子、纤溶抑制因子的生成及对活性凝血因子的清除等。
在正常情况下,肝脏各种功能有条不紊地进行,当肝脏受到各种致病因素侵袭时,其功能状态和组织结构必然受到影响。
肝的病理状态大致可分为肝细胞损伤,间质反应,胆汁淤积,局限性肝损害及肝血管系统损害五种。
以上病理改变往往合并存在,但有所侧重,从而出现各种肝病的实验室检查特征,导致有关的试验结果异常。
一、肝胆生化(一)肝脏的代谢功能1.糖代谢:肝脏是维持血糖浓度相对稳定的重要器官。
肝脏通过肝糖原的合成分解及糖异生作用维持血糖浓度的恒定。
进食之后自肠道吸收进入门静脉再进入肝脏,肝细胞迅速摄取葡萄糖,并合成肝糖原储存起来。
于是在肝静脉血液中保持着较低的血糖浓度。
肝胆胰疾病实验诊断重点:蛋白代谢功能:TP Alb Pre 蛋白电泳测定及意义胆红素代谢及黄疸类型的鉴别ALT AST ALP GGT AMY MAO LIP检测及意义病毒性肝炎、肝硬化、肝癌、胰腺炎的实验诊断(一)常用生物化学的实验检1.蛋白质代谢功能检测(1)肝脏疾病相关蛋白质代谢相关检测①血清总蛋白(total protein,TP)、白蛋白(albumin,ALB)、球蛋白(globulin,GLB)静脉血2ml,不抗凝,分离血清进行测定。
血清总蛋白包括白蛋白及球蛋白。
TP-ALB=GLB , A/G=1.5-2.5:1应用价值:反映慢性肝损害和肝实质细胞的储备功能i.总蛋白、白蛋白降低:合成减少;营养缺乏或不良;丢失过多;慢性消耗性疾病;血液稀释ii.总蛋白增高:合成增多;肝硬化(γ-球蛋白);慢性感染;血液浓缩iii.球蛋白增高:慢性肝脏疾病:如肝硬化、慢性肝炎等。
胶原性疾病,如系统性红斑狼疮(SLE)慢性感染性疾病如血吸虫病、疟疾等。
恶性疾病:多发性骨髓瘤,原发性巨球蛋白血症等。
iv.球蛋白减低:先天性体液免疫缺陷;免疫抑制剂及抗肿瘤治疗;严重肝、肾病晚期v.白蛋白/球蛋白比值(A/G)正常参考值1.5~2.5 。
A/G比值<1提示有慢性肝实质性损害。
动态观察可提示病情的发展和估计预后,病情恶化时A/G比值下降,A/G比值持续倒置表示预后较差。
vi.评价:静止、空腹、卧位状态下采血,避免止血带压迫时间过长、溶血激烈运动数小时TP可升12%直立位比卧位TP高3-5g/L,ALB上升5-10%1g/L Hb致TP上升3%脂血标本有正干扰止血带压迫3分钟,TP可上升10%②血清蛋白电泳(Serum protein electrophoresis)血清蛋白电泳特征性条带:肝癌患者有时在白蛋白和α1球蛋白之间出现一条新区带即甲胎蛋白区带。
多发性骨髓瘤在β、γ之间或γ区可见M蛋白区带。
肝硬化患者出现β-γ桥。
临床生化化学及检验肝胆疾病的生物化学检验试题库一、判断题1.正常人血清中的胆红素主要是结合胆红素。
2.重症肝炎时AST/ALT 上升。
3.血清中有部分胆红素与球蛋白共价结合,称为δ胆红素。
4.胆红素是以胆固醇为原料合成的。
5.胆红素在血液中以胆红素-清蛋白形式运输。
6. ALP 是肝胆疾病阳性率最高的酶。
7.直接胆红素是指和葡萄糖醛酸结合的胆红素。
8.肝胆疾病时血中的胆汁酸水平明显降低。
9. AST/ALT 在重症肝炎时下降。
10.血清中GGT 主要来自肝脏,故溶血标本的干扰不大。
11.肝细胞对胆红素的转化主要发生在线粒体。
12.肾脏是体内生物转化作用最强的器官。
13.由于胆红素遇光分解为胆绿素,因此采血后请尽快进行测定或避光冷冻保存。
14.溶血性黄疸时血中结合胆红素显著升高。
15.梗阻性黄疸时血中结合胆红素显著升高。
16.急性肝炎时A/G 显著降低。
17.国内引起肝纤维化的病因主要是病毒性肝炎。
18.梗阻性黄疸时粪便颜色加深。
19.溶血性黄疸时尿胆原显著增高。
20.肝性脑病时血氨增高。
二、单选题21.体内生物转化作用最强的器官是 A.肾脏 B.胃肠道 C.肝脏 D.心脏 E.胰腺22.反映肝纤维化为主的酶是 A. ALT B. AST C. ALPD. GGTE. MAO23.胆汁酸主要是下列哪种化合物生成 A.蛋白质 B.脂肪酸 C.胆固醇 D.葡萄糖 E.核酸24.肝胆疾病阳性检出率最高的酶是 A. GGT B. ASTC. ALPD. LDE. MAO25.隐性黄疸血清胆红素水平是A.<7.1 μmol/LB. 7.1μmol/L~17.1 μmol/LC. 17.1μmol/L~34.2 μmol/LD. 34.2 μmol/L~171 μmol/LE. 171 μmol/L~342 μmol/L26.可在传染性肝炎临床症状出现之前就急剧升高的血清酶是 A. LD B. CK C. ALP D. ALT E. GGT27.既可以用于诊断骨疾病又可以用于诊断肝胆疾病的血清酶是A. LD B. GGT C. ALT D. ALP E. CK28.反应肝癌的监测指标是A. A/G B. AFP C. GGT D. AST E. ALP29.属于次级胆汁酸的是 A.胆酸 B.鹅脱氧胆酸 C.甘氨胆酸 D.牛磺胆酸 E.脱氧胆酸30.急性黄疸性肝炎可出现的实验结果是A.血中结合胆红素和未结合胆红素均增多B.尿三胆试验均阳性C.血清总胆红素升高,一分钟胆红素减少D.粪便颜色变深E.血中结合胆红素显著增加,而未结合胆红素微增31.可在传染性肝炎临床症状出现之前就急剧升高的血清酶是A.LDH B.CK C.ALP D.ALT E.GGT32.胆汁酸主要是下列哪种物质生成A.蛋白质B.脂肪酸C.胆固醇D.葡萄糖E.核酸33. 鉴别黄疸是否因肝癌引起时,首先应考虑测定下列哪一指标A. A/G B. AFP C. GGT D. AST E. ALP34.胆道梗阻性病变时血清胆汁酸改变正确的是A. CA 和CDCA 浓度增加,但以CDCA 为主,CA/CDCA<lB. CA 和CDCA 浓度增加,但以CA 为主,CA/CDCA>1C. CA 和CDCA 浓度增加,但以CA 为主,CA/CDCA<lD. CA 和CDCA 浓度增加,但以CDCA 为主,CA/CDCA>1E. CA 和CDCA 浓度减少,但以CDCA 为主,CA/CDCA>135.体内生物转化作用最强的器官是A.肾脏B.胃肠道C.肝脏D.心脏E.胰腺36.结合胆红素是胆红素和下列哪种物质结合而成A. Y 蛋白B.胆汁酸C.葡萄糖醛酸D.葡萄糖E.清蛋白37.下列哪项检查对肝硬化诊断最有意义A.ALT B.ALP C.AFP D.TBil E.A/G38.在肝细胞轻度损伤时,血清哪种酶最敏感A.ALT B.AST C.ALP D.ALP E.GGT39.肝炎发病后浓度最早下降的蛋白质是A.铜蓝蛋白B.前白蛋白C.白蛋白D.AFP E.C-反应蛋白40.肝细胞中与胆红素结合的主要物质是A.乙酰基B.硫酸根C.甲基D.葡萄糖醛酸E.甘氨酸基41.在血液中的胆红素主要与哪一种血浆蛋白结合而运输A.白蛋白B.α1球蛋白C.α2球蛋白D.β球蛋白E.r 球蛋白42.结合胆红素有下列何种特性A.具有水溶性B.具有脂溶性C.具有水,脂溶性D.非极性E.不易在尿中出现43.溶血性黄疸时胆红素代谢的特点为A.血清结合胆红素明显升高B.尿胆红素强阳性C.尿胆原减少D.尿胆素减少E.血清非结合胆红素明显升高44.血清胆红素测定的标本必须避免光直接照射以免结果减低,其原因是A.胆红素氧化成血红素B.胆红素氧化成胆黄素C.胆红素分解D.胆红素氧化成胆绿素E.间接胆红素变为直接血红素45.肝硬化时患者出现出血倾向的最主要原因是A.维生素缺乏B.毛细血管脆性增加C.血小板功能不良D.凝血因子合成障碍E.肝脏解毒功能下降46.胆红素进入肝细胞后,与哪两种蛋白结合进行转运A.白蛋白和球蛋白B.Y 蛋白和Z 蛋白C.C 蛋白和B 蛋白D.S 蛋白和C 蛋白E.G 蛋白和C 蛋白47.下列哪项是未结合胆红素的特点A.水溶性大B.细胞膜通透性小C.与血浆清蛋白结合而运输D.正常人主要从尿中排出E.无加速剂存在时,重氮反应呈阳性48.下列哪项不仅能反映肝细胞合成、摄取及分泌功能,且还与胆道排泄功能有关A.总胆汁酸B.ALT C.胆固醇D.前白蛋白E.甘油三酯49.胆汁酸于何处合成A.肾脏B.肝脏C.心脏D.小肠E.脂肪组织50.原发性肝癌的标志物为A.CEA B.AFP C.PSA D.NSE E.CA19-951.核黄疸是指胆红素沉积于何部位A.皮肤B.巩膜C.脑组织D.肾小球基底膜E.胸膜52.肝脏"酶胆分离"的表现是A.血清ALT 增高,血清胆红素增高B.血清ALT 增高,血清胆红素降低C.血清ALT 降低,血清胆红素降低D.血清ALT 降低,血清胆红素增高E.血清AST 增高,血清胆红素降低53.急性肝炎早期患者血清中AST/ALT A.>1.0 B.=1.0 C.<1.0 D.≥.0 E.≥.054.血清Ⅳ型胶原浓度A.慢性活动性肝炎>肝硬化>急性肝炎B.肝硬化>慢性活动性肝炎>急性肝炎C.急性肝炎>慢性活动性肝炎>肝硬化D.肝硬化>急性肝炎>慢性活动性肝炎E.急性肝炎>肝硬化>慢性活动性肝炎55.正常人体生物转化过程最重要的作用是A.使药物失效B.使生物活性物质灭活C.使毒物毒性降低D.使非极性化合物变为极性化合物,利于排出体外E.使某些药物药性更强或毒性增加56.急性肝炎时,血中转氨酶一般变化情况为A.ALT 和AST 均升高,且ALT>AST B.ALT 和AST 均升高,且ALT=ASTC.ALT 升高,AST 正常D.ALT 正常,AST 升高E.ALT 和AST 均升高,且ALT<AST57.下列哪种物质仅由肝细胞合成A.ATP B.蛋白质C.糖原D.尿素E.脂肪58.正常人血中胆红素主要来源于A.胆汁B.胆汁酸盐C.衰老的红细胞D.还原酶E.氧化酶59.怀疑是肝豆状核变性应检查A.血清总蛋白B.血清白蛋白C.结合珠蛋白D.C-反应蛋白E.铜蓝蛋白60.女,25岁,平时无出血倾向,食欲良好。
肝胆疾病的生物化学与实验诊断第一节概述一、肝细胞的正常代谢功能肝是人体内体积最大的实质性腺体,是具有重要而复杂的代谢功能的器官。
它具有肝动脉和肝静脉双重的血液供应,且有肝静脉及胆道系统出肝,加上丰富的血窦及精巧的肝小叶结构,以及肝细胞中富含线粒体、内质网、核蛋白体和大量酶类,因而能完成复杂多样的代谢功能。
每个肝细胞平均约含400个线粒体,呈圆形、椭圆形或棒形。
线粒体与三羧酸循环、呼吸链及氧化磷酸化、脂肪酸的β-氧化及酮体生成、氨基酸的脱氨基、转氨基及尿素合成等有密切关系。
线粒体对缺氧特别敏感,易于受损伤。
肝细胞的粗面内质网是合成各种蛋白质和酶类的场所,而滑面内质网则与糖原的合成和分解、胆红素、激素、药物、染料及毒物等的生物转化有关。
溶酶体中含10余种水解酶类,它与肝细胞的溶解和坏死、胆红素的分泌以及胆褐素和铁颗粒的代谢有关,具有吞饮、储存、消化和运输细胞内代谢产物的作用。
高尔基复合体与分泌和排泄代谢产物及合成糖蛋白等有关。
有人认为高尔基复合体、溶酶体和毛细胆管构成肝细胞的胆汁分泌微小器官,在肝内胆汁淤积时其功能受到损害。
肝细胞的胞质中含有糖酵解、磷酸戊糖通路、氨基酸激活、脂肪酸和胆固醇合成的多种酶类。
肝细胞核染色体DNA及调控蛋白对肝细胞内代谢起调控作用,肝细胞再生时,DNA大量合成和复制。
肝细胞膜由蛋白质和磷脂等构成,具有三种形态:一是两个相邻肝细胞间的细胞膜,依靠指状突起使相邻肝细胞相互连接;面向肝窦的细胞膜则具有微绒毛,能增大与肝窦血液的接触面积,有利于物质交换;在2或3个肝细胞之间,细胞膜皱折形成毛细胆管,毛细胆管与胆红素等胆汁成分的排泌有关。
当肝内或肝外胆汁淤积时,毛细胆管发生改变。
肝细胞能合成多种血浆蛋白质(白蛋白、纤维蛋白原、凝血酶原及多种血浆蛋白质)。
在血浆蛋白质的处理上肝起着重要作用。
白蛋白以外的血浆蛋白质都是含糖基的蛋白质,它们在肝细胞膜上的唾液酸酶的作用下,失去糖基末端的唾液酸,就可被肝细胞上的特异受体-肝糖结合蛋白所识别,并经胞饮作用进入肝细胞而被溶酶体清除。
肝内含有丰富的与氨基酸分解代谢有关的酶类,由食物消化吸收而来的和组织蛋白分解而来的氨基酸大部分被肝细胞摄取,经过转氨基、脱氨基、转甲基、硫和脱羧等反应转变成酮酸及其他化合物。
除亮氨酸、异亮氨酸和缬氨酸这三种支链氨基酸主要在肌肉组织降解外,其余氨基酸特别是苯丙氨酸、酪氨酸及色氨酸等芳香氨基酸都主要在肝内进行分解代谢。
肝是合成尿素的重要器官,肝细胞功能严重障碍会引起血中多种氨基酸的含量增高,血氨浓度增高、血中尿素浓度降低。
肝脏是维持血糖浓度相对稳定的重要器官,肝有较强的糖原合成与分解的能力,通过糖原的合成与分解而调节血糖。
肝是进行糖异生的重要器官,可将甘油、乳酸、氨基酸等转化为葡萄糖或糖原。
肝还可将半乳糖、果糖等转化为葡萄糖。
肝在脂类的消化、吸收、运输、合成及分解等过程中起重要作用。
肝合成甘油三酯、磷脂及胆固醇的能力很强,并进一步合成VLDL及HDL。
某些载脂蛋白(如ApoAⅠ、ApoB100、ApoCⅠ、ApoC等)以及卵磷脂胆固醇酰基转移酶(LCAT)在肝细胞中合成,它们在脂蛋白的代谢及脂类运输中起着重要的作用。
肝对甘油三酯及脂肪酸的分解能力很强,是生成酮体的重要器官。
肝在维生素的吸收、储存和转化方面都起着重要作用。
维生素A、D、E、K及B在肝内储存,胡萝卜转变成维生素A,维生素D3在C25位上的羟化,由维生素PP合成NAD+和NADP+,由维生素B1合成TPP等过程均在肝内进行。
肝与许多激素的灭活和排泄有密切关系,血中的类固醇激素在肝内灭活,生成种种代谢产物(如17-羟类固醇、17-氧类固醇),有的代谢产物在肝脏进一步与葡萄糖醛酸或硫酸结合,再从尿液或胆汗排出。
胰岛素及其他多种蛋白质或多肽激素以及肾上腺素、甲状激素等也都在肝内灭活。
因此,当发生严重肝功能损伤时,体内多种激素因灭活而堆积,会导致相应的激素调节功能紊乱。
肝的生物转化功能,胆汁酸及胆色素代谢功能在第二、三、四节中介绍。
二、枯否细胞的功能肝内存在的枯否细胞(Kupffercells,KC)实际是位于肝窦内的巨噬细胞,此类细胞的特点是其内质网及核膜上的内源性过氧化物酶活性。
KC除具有吞噬、消灭病原微生物、清除机体内的内毒素、调节免疫和炎症反应等功能外,还能调控组织和基质修复、调控肝细胞、肝储脂细胞的增殖和合成细胞外基质等。
这些功能是通过枯否细胞所分泌的多种生物活性因子(如转化生长因子TGF、肝细胞生长因子HGF、胰岛素样生长因子ⅡIGFⅡ、转化生长因子βTGFβ、白介素6IL-6、白介素-1IL-1、肿瘤坏死因子αTNFα、干扰素IFN等)而起作用的。
肝内的枯否细胞、储脂细胞等与肝纤维化的形成有密切关系。
三、肝细胞损伤时的代谢障碍(一)肝细胞损伤时蛋白质代谢的变化肝细胞合成白蛋白的能力很强,正常人每天能合成10g。
当肝功能严重受损时,血浆胶体渗透压可因白蛋白的合成不足而降低,同时球蛋白浓度(尤其γ-球蛋白)反而增高,导致血浆白蛋白与球蛋白的比值(A/G)降低。
在重症肝炎及急性黄色肝萎缩时,可见α、β及γ球蛋白降低。
肝细胞损伤时血清游离氨基酸增加,甚至从尿中丢失,这可能是由于肝细胞处理氨基酸的能力下降所致。
肝细胞损伤时合成尿素的能力降低,可引起血氨增高。
肝细胞损伤时肝细胞(胞质,线粒体等)内多种酶可逸入血中,使血中多种酶活性增高。
(二)肝细胞损伤时的脂类代谢变化肝细胞损伤时可导致脂肪肝的形成。
肝实质细胞内有甘油三酯的蓄积,这是由于甘油三酯在肝细胞内的合成与其向体循环中释放间的平衡失调所致。
在脂肪肝的肝细胞线粒体内,A TP、NAD及细胞色素C的含量常显著减少,由于糖代谢障碍而引起脂肪动员的增加。
脂肪肝时磷脂酰胆碱显著减少,可能是由于缺氧或氧化磷酸化障碍,致使A TP和CDP-胆碱的形成不足,造成磷脂及VLDL的合成障碍,导致肝内脂肪向体循环的释放不足,促使肝细胞中甘油三酯的堆积。
在重度肝细胞损伤时,肝细胞合成胆固醇的能力降低,这种情况见于严重的肝细胞炎症及变性坏死。
肝细胞严重损伤时,胆固醇酯的合成也降低。
某些慢性肝损伤时,由于糖代谢障碍,糖利用减少,脂肪分解增加,可导致酮症。
(三)肝细胞损伤时糖代谢的变化当肝细胞损伤(尤其肝炎)时,肝内糖代谢有关酶类的特征性变化是:活性增高的酶有G6P脱氢酶、6-磷酸葡萄糖酸脱氢酶、磷酸甘油醛脱氢酶、丙酮酸磷酸激酶、乳酸脱氢酶等。
活性降低的酶是葡萄糖-6-磷酸酶、醛缩酶、磷酸甘油脱氢酶、异柠檬酸脱氢酶、琥珀酸脱氢酶、苹果酸脱氢酶等。
由上述酶谱变化可以看出:肝细胞损伤时糖代谢变化的特点是磷酸戊糖途径及糖酵解途径相对增强,严重肝损伤时糖有氧氧化及三羧酸循环运转不佳,血中丙酮酸量可显著上升。
慢性肝病时血中α-酮戊二酸量与症状平行地增加。
不同肝病时耐糖曲线可呈低平型、高峰型、高坡型等异常曲线。
第二节肝的生物转化功能在人整个生命过程中经常有某些外来异物(如毒物、药物、致癌物)进入体内,代谢过程中体内也不断产生一些生物活性物质及代谢物(激素、胺类等)。
这些外来及内生物质大部分在肝内进行代谢转化。
在肝内有关酶的催化下,一方面使上述物质的极性或水溶性增加,有利于从尿或胆汁排出,同时也改变了它们的毒性或药理作用。
通常将这些物质在体内(主要是肝细胞微粒体内)的代谢转变过程称为生物转化作用(biotransformation)。
现已证明:肝、肾、胃肠道、肺、神经、皮肤及胎盘等组织都存在一些使毒物、药物及激素等进行生物转化的酶系,但以肝为最重要,其生物转化功能最强。
随着工业化和科学技术的发展,人们与各种化学物质接触的机会越来越多,常用的化学物质有63000种以上。
对于人体来说,这些化学物质有的可能是药物,有的可能是对人体有害的毒物,有的可能是能诱发细胞癌变的致癌物。
阐明这些物质在肝内生物转化的规律,对于保障人类的健康是很有意义的。
一、生物转化的反应类型通常将生物转化反应分为两相反应。
第一相反应包括氧化、还原、水解反应,第二相反应即结合反应。
每一相反应又各自包括多种不同的反应,分别在不同的部位中进行(表1-1)。
表1-1生物转化反应的一般类型(一)第一相反应大多数毒物、药物等进入肝细胞后,常先进行氧化反应,有些可被水解,少数物质被还原。
经过氧化、还原和水解作用,一般能使非极性的化合物产生带氧的极性基团,从而使其水溶性增加以便于排泄,同时也改变了药物或毒物分子原有的某些功能基团,或产生新的功能基团使毒物解毒或活化,使某些药物的药理活化发生变化,使某些致癌物质活化或灭活。
1、氧化作用在肝细胞的微粒体、线粒体及胞液中含有参与生物转化的不同的氧化酶系,包括加单氧酶系、胺氧化酶系脱氧酶系(表1-2)。
存在于微粒体中的以细胞色素P450为重要成分的加单氧酶系具有十分重要的生理意义。
在该系统所催化的反应中,由于氧分子中的一个氧原子掺入到底物中,而另一个氧原子使NADPH氧化生成水,即一种氧分子发挥了两种功能,故又称混合功能氧化酶,从底物的角度来看,只掺入一个原子的氧,故称加单氧酶。
应当指出:依赖细胞色素P450的电子传递系统存在于各种生物膜系统中。
在高等动物组织中有微粒体型及线粒体内膜型两大类。
微粒体型又包括单一电子传递系统和复合电子传递系统,后者中既有NADPH参与,又有NADP参与。
线粒体内膜型则有铁氧还原蛋白、NADPH及细胞色素P450参加。
多样的细胞色素P450系统催化外来异物的羟化和脱烷基反应,还参与类固醇激素的生物合成、灭活胆汁酸的生物合成及维生素D3的羟化反应等。
许多毒物、药物或致癌物经过混合功能氧化酶的催化而产生各种羟化反应产物。
现将微粒体混合功能氧化酶催化的氧化反应类型列于表10-3。
表10-3微粒体混合功能氧化酶催化的氧化反应类型2、还原作用肝细胞中生物转化的还原反应主要有偶氮还原酶和硝基还原酶所催化的两类反应。
硝基还原酶存在于肝、肾、肺等细胞微粒体中,是FAD型还原酶,可使对-硝基苯甲酸、硝基苯、氯霉素等的-NO2还原成-NH2,反应在厌氧条件下进行,由NADH供氢。
偶氮还原酶存在于肝细胞微粒体中,由NADPH 供氢,中间经氢偶氮复合物最后生成胺,反应可在有氧条件下进行,此酶属P450酶类。
3、水解作用如某些酯类(普鲁卡因)、酰胺类(异丙异菸肼)及糖苷类化合物(洋地黄毒苷)可分别在酯酶、酰胺酶、糖苷酶等水解酶的作用下被水解。
这类酶在体内分布广泛,种类繁多,肝外组织也含有这些酶类。
(二)第二相反应有机毒物或药物,特别是具有极性基团的物质,不论是否经过氧化、还原及水解反应,大多要与体内其他化合物或基团相结合,从而遮盖了药物或毒物分子中的某些功能基团,使它们的生物活性、分子大小以及溶解度等发生改变,这就是生物转化中的结合反应。