江苏省洪泽县黄集中学2017_2018学年八年级数学下学期期中试题苏科版(附答案)
- 格式:doc
- 大小:995.08 KB
- 文档页数:8
2016-2017学年江苏省淮安市洪泽县黄集中学八年级(下)期中数学试卷一、选择题(每题3分,共24分)1.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.2.把分式中的x和y都扩大2倍,分式的值()A.不变B.扩大2倍C.缩小2倍D.扩大4倍3.某校测量了初三(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如图频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为7人B.该班身高最高段的学生数为7人C.该班身高最高段的学生数为20人D.该班身高低于160.5cm的学生数为15人4.在下列性质中,矩形具有而菱形不一定有的是()A.对角线互相垂直 B.对角线互相平分C.四个角是直角D.四条边相等5.无论x取什么数时,总是有意义的分式是()A.B.C.D.6.已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为()A.12 B.24 C.48 D.967.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB=AD,CB=CD8.已知某班有40名学生,将他们的身高分成4组,在160~165cm区间的有8名学生,那么这个小组的人数占全体的()A.10% B.15% C.20% D.25%二、填空题(每题3分,共30分)9. +=.10.“一个有理数的绝对值是负数”是的.(填“必然发生”或“不可能发生”或“可能发生”)11.某电视台综艺节目接到热线电话3000个,现要从中抽取“幸运观众”50名,小明打通了一次热线电话,那么他成为“幸运观众”的概率为.12.当m=时,分式的值为零.13.若分式有意义,则x的取值范围是.14.如图,在△ABC中,∠BAC=70°,在同一平面内将△ABC绕点A旋转到△A B′C′的位置,使得CC′∥AB,则∠BAB′=.15.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1:2,那么表示参加“其它”活动的人数占总人数的%.16.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为.17.为了估计鱼池里有多少条鱼,先捕上100条作上记号,然后放回到鱼池里,过一段时间,待有记号的鱼完全混合鱼群后,再捕上200条鱼,发现其中带记号的鱼20条,则可判断鱼池里大约有条鱼.18.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.三、解答题19.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1;(2)写出点A1、B1的坐标.20.化简(1)(2)﹣(3)[﹣]÷.21.先化简,再求值:(+)÷,其中a=3.22.某中学为推进素质教育,在初一年级设立了六个课外兴趣小组,如图是六个兴趣小组的频数分布直方图和扇形统计图,请根据图中提供的信息回答下列问题:(1)初一年级共有多少人?(2)补全频数分布直方图.(3)求“从该年级中任选一名学生,是参加音乐、科技两个小组学生”的概率.23.如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.24.已知:如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC 的延长线于点F.求证:AB=CF.25.如图,以△ABC的三边为边,在BC的同侧分别作3个等边三角形,即△ABD、△BCE、△ACF.(1)求证:四边形ADEF是平行四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形,并说明理由.(3)当△ABC满足什么条件时,四边形ADEF是菱形,并说明理由.(4)当△ABC满足什么条件时,四边形ADEF是正方形,不要说明理由.2016-2017学年江苏省淮安市洪泽县黄集中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)1.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】R1:生活中的旋转现象;P3:轴对称图形;R5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念和图形特点求解.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,是中心对称图形,不符合题意.故选:B.2.把分式中的x和y都扩大2倍,分式的值()A.不变B.扩大2倍C.缩小2倍D.扩大4倍【考点】65:分式的基本性质.【分析】把分式中的x换成2x,y换成2y,然后计算即可得解.【解答】解:x和y都扩大2倍时,==2×,所以,分式的值扩大2倍.故选B.3.某校测量了初三(1)班学生的身高(精确到1cm),按10cm为一段进行分组,得到如图频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为7人B.该班身高最高段的学生数为7人C.该班身高最高段的学生数为20人D.该班身高低于160.5cm的学生数为15人【考点】V8:频数(率)分布直方图.【分析】根据频数直方图的意义,表示每段中的人数,即可得到答案.【解答】解:由频数直方图可以看出:该班人数最多的身高段的学生数为20人;该班身高低于160.5cm的学生数为20人;该班身高最高段的学生数为7人;故选B.4.在下列性质中,矩形具有而菱形不一定有的是()A.对角线互相垂直 B.对角线互相平分C.四个角是直角D.四条边相等【考点】LB:矩形的性质;L8:菱形的性质.【分析】由矩形的性质和菱形的性质,容易得出结论.【解答】解:矩形的性质有:四个角都是直角;对角线互相平分且相等;菱形的性质有:四条边相等;对角线互相垂直平分;矩形具有而菱形不一定有的是:四个角都是直角.故选:C.5.无论x取什么数时,总是有意义的分式是()A.B.C.D.【考点】62:分式有意义的条件.【分析】分式总是有意义,即分母恒不为0.【解答】解:A、∵x2+1≠0,∴分式恒有意义.B、当2x+1=0,即x=﹣0.5时,分式无意义.C、当x3+1=0,即x=﹣1时,分式无意义.D、当x2=0,即x=0时,分式无意义.故选A.6.已知菱形的周长为40cm,两条对角线之比3:4,则菱形面积为()A.12 B.24 C.48 D.96【考点】L8:菱形的性质.【分析】根据已知可分别求得两条对角线的长,再根据菱形的面积等于两对角线乘积的一半即可得到其面积.【解答】解:设两条对角线长分别为3x,4x,根据勾股定理可得(x)2+()2=102,解之得,x=4,则两条对角线长分别为12cm、16cm,∴菱形的面积=12×16÷2=96(cm2).故选:D.7.能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB=AD,CB=CD【考点】L6:平行四边形的判定.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定定理知,A、B、D均不符合是平行四边形的条件;C满足两组对边分别相等的四边形是平行四边形.故选C.8.已知某班有40名学生,将他们的身高分成4组,在160~165cm区间的有8名学生,那么这个小组的人数占全体的()A.10% B.15% C.20% D.25%【考点】1D:有理数的除法.【分析】用这个小组的人数除以全班人数即可.【解答】解:根据题意得:8÷40=20%.故选C.二、填空题(每题3分,共30分)9. +=.【考点】6B:分式的加减法.【分析】根据分式的加法法则即可求出答案.【解答】解:原式=,故答案为:10.“一个有理数的绝对值是负数”是不可能发生的.(填“必然发生”或“不可能发生”或“可能发生”)【考点】X1:随机事件.【分析】根据任何一个有理数的绝对值一定是非负数,然后根据必然事件、不可能事件、可能发生事件的定义即可作出判断.【解答】解:一个有理数的绝对值是负数”是不可能发生的.故答案是:不可能发生.11.某电视台综艺节目接到热线电话3000个,现要从中抽取“幸运观众”50名,小明打通了一次热线电话,那么他成为“幸运观众”的概率为.【考点】X4:概率公式.【分析】让“幸运观众”数除以打电话的总数即为所求的概率.【解答】解:因为共接到的3000个热线电话中,从中抽取50名“幸运观众”,小明打通了一次热线电话,所以他成为“幸运观众”的概率是=.故答案为:.12.当m=﹣2时,分式的值为零.【考点】63:分式的值为零的条件.【分析】分式的值为零时,分子等于零,且分母不等于零.【解答】解:依题意,得|m|﹣2=0,且m﹣2≠0,解得,m=﹣2.故答案是:﹣2.13.若分式有意义,则x的取值范围是x≠1.【考点】62:分式有意义的条件.【分析】根据分式有意义的条件可知x﹣1≠0,再解不等式即可.【解答】解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.14.如图,在△ABC中,∠BAC=70°,在同一平面内将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=40°.【考点】R2:旋转的性质.【分析】首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=40°即可解决问题.【解答】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=70°,∴∠ACC′=∠AC′C=∠BAC=70°,∴∠CAC′=180°﹣2×70°=40°;由题意知:∠BAB′=∠CAC′=40°,故答案为40°.15.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1:2,那么表示参加“其它”活动的人数占总人数的20%.【考点】VB:扇形统计图.【分析】由“踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1:2”可得,踢毽的人数占总人数的比例以及打篮球的人数占的比例,由“各部分占总体的百分比之和为1”可得:参加“其它”活动的人数占总人数的比例.【解答】解:由题意知,踢毽的人数占总人数的比例=60°÷360°=,则打篮球的人数占的比例=×2=,∴表示参加“其它”活动的人数占总人数的比例=1﹣﹣﹣30%=20%.故答案为:20%.16.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为10.【考点】KP:直角三角形斜边上的中线;KH:等腰三角形的性质.【分析】根据垂线的性质推知△ADC是直角三角形;然后在直角三角形ADC中,利用直角三角形斜边上的中线是斜边的一半,求得AC=10;最后由等腰三角形ABC的两腰AB=AC,求得AB=10.【解答】解:∵在△ABC中,AD⊥BC,垂足为D,∴△ADC是直角三角形;∵E是AC的中点.∴DE=AC(直角三角形的斜边上的中线是斜边的一半);又∵DE=5,AB=AC,∴AB=10;故答案为:10.17.为了估计鱼池里有多少条鱼,先捕上100条作上记号,然后放回到鱼池里,过一段时间,待有记号的鱼完全混合鱼群后,再捕上200条鱼,发现其中带记号的鱼20条,则可判断鱼池里大约有1000条鱼.【考点】V5:用样本估计总体.【分析】根据200条鱼,发现带有记号的鱼只有20条,则可求出带记号的鱼所占的百分比,再根据带记号的总计有100条,即可求得湖里鱼的总条数.【解答】解:根据题意得:100÷(20÷200×100%)=1000(条).答:鱼池里大约有1000条鱼;故答案为:1000.18.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是10.【考点】PA:轴对称﹣最短路线问题;LE:正方形的性质.【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.三、解答题19.△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1;(2)写出点A1、B1的坐标.【考点】R8:作图﹣旋转变换.【分析】(1)分别作出各点关于点C的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出点A1、B1的坐标即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)由图可知,A1(2,1),B1(1,3).20.化简(1)(2)﹣(3)[﹣]÷.【考点】6C:分式的混合运算.【分析】(1)可以分子分母约分解答本题;(2)根据分式的减法可以解答本题;(3)先化简括号内的式子,然后根据分式的除法即可解答本题.【解答】解:(1)=;(2)﹣===;(3)[﹣]÷===.21.先化简,再求值:(+)÷,其中a=3.【考点】6D:分式的化简求值.【分析】先化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(+)÷==[]==,当a=3时,原式=.22.某中学为推进素质教育,在初一年级设立了六个课外兴趣小组,如图是六个兴趣小组的频数分布直方图和扇形统计图,请根据图中提供的信息回答下列问题:(1)初一年级共有多少人?(2)补全频数分布直方图.(3)求“从该年级中任选一名学生,是参加音乐、科技两个小组学生”的概率.【考点】X6:列表法与树状图法;V8:频数(率)分布直方图;VB:扇形统计图.【分析】(1)用科技小组的频数除以它所占的百分比即可得到总人数;(2)先计算出体育小组的人数,然后补全频数分布直方图.(3)利用概率公式求解.【解答】解:(1)32÷10%=320,所以初一年级共有320人;(2)体育小组的人数=320﹣48﹣64﹣32﹣64﹣16=96(人),频数分布直方图为:(3)“从该年级中任选一名学生,是参加音乐、科技两个小组学生”的概率==.23.如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】先证∠AEF=∠ECD,再证Rt△AEF≌Rt△DCE,然后结合题目中已知的线段关系求解.【解答】解:在Rt△AEF和Rt△DEC中,EF⊥CE.∴∠FEC=90°.∴∠AEF+∠DEC=90°.而∠ECD+∠DEC=90°.∴∠AEF=∠ECD.在Rt△AEF与Rt△DCE中,∵,∴Rt△AEF≌Rt△DCE(AAS).∴AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm.∴2(AE+ED+DC)=32,即2(2AE+4)=32,整理得:2AE+4=16解得:AE=6(cm).24.已知:如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC 的延长线于点F.求证:AB=CF.【考点】L7:平行四边形的判定与性质;KD:全等三角形的判定与性质.【分析】根据平行四边形的性质可得到AB∥CD,从而可得到AB∥DF,根据平行线的性质可得到两组角相等,已知点E是BC的中点,从而可根据AAS来判定△BAE≌△CFE,根据全等三角形的对应边相等可证得AB=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵点F为DC的延长线上的一点,∴AB∥DF,∴∠BAE=∠CFE,∠ECF=∠EBA,∵E为BC中点,∴BE=CE,则在△BAE和△CFE中,∴△BAE≌△CFE,∴AB=CF.25.如图,以△ABC的三边为边,在BC的同侧分别作3个等边三角形,即△ABD、△BCE、△ACF.(1)求证:四边形ADEF是平行四边形?(2)当△ABC满足什么条件时,四边形ADEF是矩形,并说明理由.(3)当△ABC满足什么条件时,四边形ADEF是菱形,并说明理由.(4)当△ABC满足什么条件时,四边形ADEF是正方形,不要说明理由.【考点】LF:正方形的判定;KD:全等三角形的判定与性质;L6:平行四边形的判定;L9:菱形的判定;LC:矩形的判定.【分析】(1)可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;(3)若四边形ADEF是菱形,则AD=AF,所以AB=AC,则△ABC是等腰三角形;(4)若四边形ADEF是正方形,则AD=AF,且∠DAF=90°,所以△ABC是等腰三角形,且∠BAC=150°.【解答】证明:(1)∵△ABD,△BCE都是等边三角形,∴∠DBE=∠ABC=60°﹣∠ABE,AB=BD,BC=BE.在△ABC与△DBE中,,∴△ABC≌△DBE(SAS).∴DE=AC.又∵AC=AF,∴DE=AF.同理可得EF=AD.∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴当∠DAF=90°时,四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.则当∠BAC=150°时,四边形ADEF是矩形;(3)∵四边形ADEF是平行四边形,∴当AD=AF时,四边形ADEF是菱形,又∵AD=AB,AF=AC,∴AB=AC时,四边形ADEF是菱形;(4)综合(2)、(2)知,当AB=AC且∠BAC=150°时,四边形ADEF是正方形.2017年6月14日。
2017-2018学年度第二学期八年级数学期中试卷一、填空题(共12题,每小题2分,共计24分)1.调查市场上某品牌酸奶的质量情况,采用调查方式是.(填“普查”或“抽样调查”)2.把一个正六边形绕着其对称中心旋转一定的角度,要使旋转后的图形与原来的图形重合,那么旋转的角度至少是°.3.在菱形ABCD中,AC=10,BD=24,则菱形的边长等于.4.如图,为某冷饮店一天售出各种口味雪糕数量的扇形统计图,其中售出红豆口味的雪糕200支,那么售出巧克力口味雪糕的数量是支.5.某种玉米种子在相同条件下发芽试验的结果如下:根据以上数据可以估计,该玉米种子发芽的概率为(精确到0.1).6.“平行四边形的对角线相等”是事件.(填“必然”、“随机”、“不可能”)7.在平行四边形ABCD中,AC、BD相交于点O,已知AC=10,BD=6,则边AB的取值范围是.如图,平行四边形ABCD与平行四边形DCFE周长相等,且∠BAD=60°,∠F=100°,则8.如图,把∆ABC绕着点A顺时针旋转α后,得到∆AB,C,,若∠C=20°,点C、B,、C,共线,则∠α= °.9.已知,在矩形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交边AD于F.若AB=3,EF=1,则AD= .10.如图,在正方形ABCD中,点F在边BC上,把∆ABF沿着AF折叠,点B落在正方形内一点E处,射线DE与射线AF交于点G,则∠AGD= .11.如图,在四边形ABCD中,∠A=90°,AB=9,AD=12,点E、F分别是AB、AD的中点,点H是线段EF上的一个动点,连接CH,点P是线段CH的中点,当点H从点E沿着EF向终点F运动的过程中,点P移动的路径长为.二、选择题(共6题,每小题3分,共计18分)13、下列图形中,既是轴对称图形又是中心对称图形的是()A B C D14、今年我市有近3500名考生参加中考,为了解这些考生的数学成绩,从中抽取800名考生的数学成绩进行统计分析,这个问题中样本是()A、每位考生的数学成绩B、3500名考生的数学成绩C、被抽取的800名考生的数学成绩D、被抽取的800名学生15、下列命题中正确的是()A、有一组邻边相等的四边形是菱形B、有一个角是直角的平行四边形是矩形C、对角线垂直的平行四边形是正方形D、一组对边平行的四边形是平行四边形16、顺次连接下列各四边形各边中点所得的四边形一定是矩形的是()A、等腰梯形B、矩形C、平行四边形D、对角线互相垂直的四边形17、如图,在菱形ABCD中,AB=2,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB,C,D,,则图中阴影部分的面积为()A、1+3B、2+3C、3D、3-318、如图,在矩形ABCD中,∠CAD=68°,将矩形ABCD绕点D逆时针旋转90°得到矩形DGEF,顶点G在边CD上,AC的对应边为GF,连接BE,则∠CBE的度数为()A、23°B、30°C、22°D、18°三、解答题(共8小题,共计78分)19、已知,在四边形ABCD中,AD=AC=BC,∠B=∠D=40°(1)求∠DAC的度数(2)求证:四边形ABCD是平行四边形(1)表中a=___,b=___,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60⩽x<70对应扇形的圆心角度数是___;(3)请估计该年级分数良好(分数在80及80以上为良好)的学生有多少人?21.如图,在正方形网格中,每个小正方形的边长为1个单位长度,平面直角坐标系xoy 的原点O 在格点上,x 轴、y轴都在网格线上,△ABC 的顶点A 、B 、C 都在格点上(1)将△ABC 向左平移两个单位得到△A 1B 1C 1,请在图中画出△A 1B 1C 1(2)△ABC 和△A 2B 2C 2关于原点O 成中心对称,请在图中画出△A 2B 2C 2(3)请写出C 2的坐标_________,并判断以点B 1、C 1、B 2、C 2为顶点的 .22、如图,在矩形ABCD 中,AB=3,E 在边AD 上,且AE=4,点F 是CD 的中点,EF 平分∠BED ,求DE 的长23. (本题满分10分)如图,在平面直角坐标系中,四边形ABCD 是正方形,点A ()a ,2、C都在直线x y 21=上,且点C 在点A 的右侧,求点C 的坐标.24. (本题满分8分)我们数学上将内角度数小于0180的四边形叫做凹凸四边形,形如上图(1),(2),(4)是凸四边形,(3)不是凸四边形.操作:已知如图,两个全等的三角形纸片△ABC 和△DEF ,其中4,3,6===BC AC AB ,按照下列要求把这两个三角形纸片无缝拼接,且没有重叠,画出所有可能的示意图,并写出所拼出图形的周长.(1)拼接成轴对称的凸四边形,写出对应的周长.(2)拼接成中心对称的凸四边形,写出对应的周长.25.(本题满分12分)如图,在△ABC中,∠C=90°,∠A=30°BC=4cm,点D从点B出发沿BC方向以每秒1个单位长的速度向点C匀速运动,同时点E从点A出发沿AB方向以每秒a个单位长的速度向点B匀速运动,当其中一个点到达终点时,两点同时停止.设点D 运动的时间是t秒(t>0).过点E作EF⊥AC,垂足为点F,连接DF,得到平行四边形BDFE.(1)求出a的值;(2)分别连接BF、DE,在运动过程中,BF能与DE互相垂直吗?如果能,求出t的值,如果不能,请说明理由.(3)当△DEF为直角三角形,求t的值.26.如图(1),矩形OABC的边OA、OC在坐标轴上,点B坐标为(5,4),点P是射线BA上的一动点,把矩形OABC沿着CP折叠,点B落在点D处;(1)当点C、D、A共线时,AD=;(2)如图(2),当点P与点A重合时,CD与x轴交于点E,过点E作EF⊥AC,交BC于点F,请判断四边形CEAF的形状,并说明理由;(3)若点D正好落在x轴上,请直接写出点P的坐标.2017-2018学年度第二学期八年级数学期中试卷解析一填空题(共12题,每小题2分,共计24分)1 抽样调查2 60°3 134 1005 0.86 随机7 2<AB<88 20°9 140°10 5或711 45°12 如图所示,当点H与点E重合时,中点P的位置为P1,当点H与点F重合时,中点P的位置为P2,点P运动的路径即为P1P2的长度.要求得P1P2的长度,即要求出EF的长度,EF的长度可以根据勾股定理求出.15答案:413 A既是轴对称图形又是中心对称图形,B是轴对称图形,C是中心对称图形,D是轴对称图形 A14 A是个体,B是总体,C是样本答案:C15A、有一组邻边相等的平行四边形是菱形,C对角线垂直的平行四边形是菱形D、两组组对边平行的四边形是平行四边形B16 顺次连接任意四边形各边中点所得的四边形一定是平行四边形,如果四边形的对角线相等所得中点四边形是菱形,如果对角线垂直所得中点四边形是矩形D17 设线段C ,D ,与线段BC 的交点为E ,由菱形性质可得∠CD ,E=60°,∠D ,CE=30°,所以∠CED ,=90°,S 阴影部分的面积=S △ABC - S △CD ,E ,S △ABC =21S 菱形ABCD =3, CD ,=AC-AD ,=23-2,则D ,E=3-1,CE=3-3,可以求出S △CD ,E =23-3 ;D18 连接BD 和DE ,则三角形BDE 为等腰直角三角形,所以∠BED=45°,因为∠GED=90°-68°=22°,所以∠BEG=45°-22°=23°,因为BC ∥GE ,所以∠CBE=∠BEG=23°A19 因为AD=AC ,∠D=40°,所以∠ACD=40°,∠DAC=180°-40°-40°=100°(3)因为AC=BC ,∠B=40°,所以∠BAC=40°,所以∠BAC=∠ACD ,所以AB ∥CD ,又因为∠DAB+∠B=180°,所以AD ∥BC ,所以四边形ABCD 是平行四边形20、(1)a=8 b=0.3 (2)72° (3)16021.平移变换、中心对称作图、矩形判定(1)略 (2)略 (3) (-3,-1) 矩形22 延长EF 交BC 的延长线于点G ,则△DEF ≌△CGF ,所以DE=CG ;因为EF 平分∠BED ,所以∠BEF=∠DEF ,又因为AD ∥BG ,所以∠DEF=∠BGF ,所以∠BEF=∠BGF ,所以BE=BG ;在RT △ABE 中由勾股定理得BE=5,所以BG=5,设DE=x ,则BG=4+2x ,所以CG=ED=21 2123 因为点A 在直线x y 21上,将A 点坐标代入求出a 值,然后DC AD =,∠ADC=090,考虑到分别从A 、C 两点向x 轴作垂线交于E 、F 两点,从而得到△AED ≌△DFC ,令b DE =,从而得出C 点坐标,且点C 在直线x y 21=上,将C 点坐标代入求出b 值,进而求出C 点坐标. ()3,6C24 首先根据题目所给材料,理解凸四边的特点就是每一个内角都小于0180.结合题目所给的△ABC 和△DEF三边的数值或者观察,可知∠ACB=∠DFE>090.第一问中,要组成轴对称图形,考虑对称性和不重叠的关系,所以有以下情况: 第一种A 、C 两点分别与D 、F 两点对应重合;第二种C 、B 两点分别与F 、E 两点对应重合;第三种A 、B 两点分别与D 、E 两点对应重合.但是第一种和第二种不属于凸四边形,只有第三种符合题意要求.在第二问中,要求组成中心对称图形,所以有以下情况:第一种A 、C 两点分别与F 、D 两点对应重合,且此时四边形ABCE 为平行四边形; 第二种C 、B 两点分别与E 、F 两点对应重合,同理得到四边形ABDC 为平行四边形; 第三种A 、B 两点分别与E 、D 两点对应重合,同理得到四边形DCEF 为平行四边形。
○…………外订………_考号:____……内…………○…………………绝密★启用前 2017-2018学年度第二学期 苏科版八年级期中考试备考数学试卷一 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分,满分120分一、单选题(计30分) ) A. B. C. D. 2.(本题3分)下列调查方式合适的是( ) A. 为了了解电视机的使用寿命,采用普查的方式 B. 调查济南市初中学生利用网络媒体自主学习的情况,采用普查的方式 C. 调查某中学七年级一班学生视力情况,采用抽样调查的方式 D. 为了了解人们保护水资源的意识,采用抽样调查的方式 3.(本题3分)在100个数据中,用适当的方法,抽取50个作为样本进行统计,频数分布表中55~58这一组数据的频率是0.12,那么估计这100个数据中,落在55~58之间的约有( ) A. 120个 B. 60个 C. 12个 D. 6个 4.(本题3分)一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小华在袋中放入10个除颜色外其他完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发现,摸到白球的频率是27,则袋中红球约为 ( ) A. 4个 B. 25个 C. 14个 D. 35个 5.(本题3分)在平行四边形ABCD 中,AB =3 cm ,BC =5 cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是( ) A. 2 cm <OA <5 cm B. 2 cm <OA <8 cm C. 1 cm <OA <4 cm D. 3 cm <OA <8 cm 6.(本题3分)如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转到ABF 的位置,若四边形AECF 的面积为25,DE =2,则AE 的长为( ) A. 7 B. 6 C. 29 D. 5装…………○……线…………○※※要※※在※※装※※订……线○……7.(本题3分)如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为()A.8.(本题3分)计算200820091122⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭的结果是 ( )A.2009112⎛⎫+⎪⎝⎭B.200912⎛⎫- ⎪⎝⎭C.200812⎛⎫- ⎪⎝⎭D.200912⎛⎫⎪⎝⎭9.(本题3分)期中考试后,学生相约去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,但每人可以少分摊3元,原来参加春游的学生人数是 ( )A. 7B. 8C. 9D. 1010.(本题3分)如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A. 12mB. 20mC. 22mD. 24m二、填空题(计32分)11.(本题4分)化简:11aa a-+=__________.12.(本题4分)已知样本的100个数据分别落在5个小组内,第一,二,三,四小组的个数分别为4,15,31,40,则第五组的频率为_________.13.(本题4分)一个菱形的周长为52cm,一条对角线长为10cm,则其面积为__cm2.14.(本题4分)若关于x的分式方程7311mxx x+=--无解,则实数m=__________.15.(本题4分)若分式1xx-的值为0,则x=…○…………线……____ ○…………内…………○…………16.(本题4分)已知11a b +=4,则-322-7a ab b a b ab ++的值是________. 17.(本题4分)在对某班的一次数学测试成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分100分),请观察下图,并回答下列问题:(1)该班有________名学生; (2)该班共有__________人及格(60分以上),及格率为____________. 18.(本题4分)在一块a 公顷的稻田上插秧,如果10个人插秧,要用m 天完成;如果用一台插秧机工作,要比10个人插秧提前3天完成.一台插秧机的工作效率是一个人工作效率的_____倍. 三、解答题(计58分) 19.(本题8分)(1)11322x x x -=--- (2)113262x x x -=--…○…………装…※※请※※不※※要※……20.(本题8分)先化简,再求值:(x 2−4x +4x −4−xx +2)÷x−1x +2 ,其中x =−3.21.(本题8分)研究“掷一枚图钉,钉尖朝上”的概率,两个小组用同一个图钉做试验进行比较,他们的统计数据如下:(1)请你估计第一小组和第二小组所得的概率分别是多少?(2)你认为哪一个小组的结果更准确?为什么?……○………………○…………学校:________________ 装…………○………………○…………内……… 22.(本题8分)已知,如图OM ⊥ON ,OP=x-3,OM=4,ON=x-5,MN=5,MP=11-x ,求证:四边形OPMN 是平行四边形。
2017~2018学年第二学期初二期中调研测试含答案数学 2018.4注意事项:1.本试卷满分130分,考试时间120分钟;2.答卷前将密封线内的项目填写清楚,所有解答均须写在答题卷上,在本试卷上答题无效.一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.下列图形中,中心对称图形是2.若代数式12x +在实数范围内有意义,则实数x 的取值范围是 A.2x =- B.2x ≠- C.2x <- D.2x >-3.下列式子为最简二次根式的是4.一只不透明的袋子中装有一些白球和红球,这些球除颜色外都相同.将球摇匀,从中任意摸出一个球,摸到红球是A.不可能事佚B.必然事件C.确定事件D.随机事件5.去年我市有约7万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是A.这1000名考生是总体的一个样本B.约7万名考生是总体C.每位考生的数学成绩是个体D. 1000名学生是样本容量6.如图,在ABCD Y 中,90ODA ∠=︒,10AC =cm ,6BD = cm ,则AD 的长为A. 4 cmB. 5 cmC. 6 cmD. 8 cm7.下列性质中,菱形具有而矩形不一定具有的是A.对角线互相平分B.对角线互相垂直C.对边平行且相等D.对角线相等8.在反比例函数2k y x-=的图像上有两点1122(,),(,)A x y B x y .若120x x >>时,12y y > , 则k 取值范围是A. 2k ≥B. 2k >C. 2k ≤D. 2k <9.如图,矩形纸片ABCD 中,AB =6cm, BC =8cm ,现将其沿AE 对折,使得点B 落在边 AD 上的点1B 处,折痕与边BC 交于点E ,则CE 的长为A. 6cmB. 4cmC. 2cmD. 1 cm10.如图,在ABCD Y 中,2AD AB =, F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,连接,EF CF ,则下列结论中一定成立的是①2BCD DCF ∠=∠;②EF CF =; ③2BEC CEF S S ∆∆=; ④3DFE AEF ∠=∠.A.①②③B.①③④C.①②④D.②③④二、填空题:(本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.)11.化简: = .12.当x = 时,分式211x x -+的值为零. 13.“抛掷图钉实验”的结果如下:由表可知,“针尖不着地的”的概率的估计值是 .(精确到0.01)14.在ABCD Y 中,220A C ∠+∠=︒,则B ∠= .15.菱形ABCD 的对角线AC =6cm, BD =8cm ,则菱形ABCD 的面积是 cm 2 .16.某物质的密度ρ (kg/m 3)关于其体积V (m 3)的函数图像如图所示,那么ρ与V 之间的 函数表达式是ρ= .17.如图,在四边形ABCD 中,P 是对角线BD 的中点,,E F 分别是,AB CD 的中点, ,100A D B C F P E =∠=︒,则PFE ∠= ° .18.如图,正方形ABCD 的边长为4. E 为BC 上一点,1,BE F =为AB 上一点,2,AF = P 为AC 上一点,则PF PE +的最小值为 .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色,墨水签字笔.)19.计算:(本题满分8分,每小题4分)(1) 01(3)π--; (2) 22111a a a a a ++---.20.解方程: (本题满分8分,每小题4分)(1) 512552x x x +=--; (2) 221x x x x +=-+.21.(本题满分6分)先化简,再求值: 35(2)242a a a a -÷+---,其中12a =-.22.(本题满分6分)如图所示,在平面直角坐标系中,方格纸中的每个小正方形的边长为1个 单位,己知(1,0),(2,2),(4,1)A B C -----,请按要求画图:(1)以A 点为旋转中心,将ABC ∆绕点A 顺时针旋转90°得11AB C ∆,画出11AB C ∆;(2)作出ABC ∆关于坐标原点O 成中心对称的222A B C ∆.23.(本题满分6分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了八年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是 度;(3)若全校八年级共有学生900人,估计八年级一周课外阅读时间为6小时的学生有多少人?24.(本题满分6分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,己知小明的速度是小芳速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.25.(本题满分8分)如图,在矩形ABCD 中,,M N 分别是边,AD BC 的中点,,E F 分别是线段,BM CM 的中点.(1)判断四边形MENF 是什么特殊四边形,并证明你的结论;(2)若四边形MENF 是正方形,求:AD AB 的值.26.(本题满分9分)如图,在平面直角坐标系xoy 中,直线2y x =-与y 轴相交于点A ,与反比例函数k y x=在第一象限内的图象相交于点(,2)B m . (1)求该反比例函数关系式; (2)当14x ≤≤时,求k y x =的函数值的取值范围; (3)将直线2y x =-向上平移后与反比例函数在第一象限内的图象相交于点C ,且ABC ∆的面积为18,求平移后的直线的函数关系式.27.(本题满分9分)我们宅义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:(1)已知:如图1,四边形ABCD 是等对角四边形,,60,75A C A B ∠≠∠∠=︒∠=︒, 则: C ∠= ° ,D ∠= °;(2)图①、图②均为4×4的正方形网格,线段,AB BC 的端点均在网点上.按要求在图①、图②中以AB 和BC 为边各画一个等对角四边形ABCD .(要求:四边形ABCD 的顶点D 在格点上,所画的两个四边形不全等)(3)已知:在等对角四边形ABCD 中,60,90,2,1DAB ABC AB CD ∠=︒∠=︒==, 求BC 的长.(在直角三角形中,30°角所对直角边等于斜边的一半).28.(本题满分10分)如图1,已知直线2y x =分别与双曲线8,k y y x x==交于第一象限内,P Q 两点,且OQ PQ =.(1)则P 点坐标是 ; k = .(2)如图2,若点A 是双曲线8y x =在第一象限图像上的动点,//AB x 轴,//AC y 轴, 分别交双曲线k y x=于点,B C ; ①连接BC ,请你探索在点A 运动过程中,ABC ∆的面积是否变化,若不变,请求出ABC ∆的面积;若改变,请说明理由;②若点D 是直线2y x =上的一点,请你进一步探索在点A 运动过程中,以点,,,A B C D 为顶点的四边形能否为平行四边形,若能,求出此时点A 的坐标;若不能,请说明理由.1112。
苏科版(完整版)八年级数学下册期中试卷及答案一、选择题1.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,5AB =,6AC =,过D 作AC 的平行线交BC 的延长线于点E ,则BDE ∆的面积为( )A .22B .24C .48D .442.下列调查中,适合采用普查的是( )A .了解一批电视机的使用寿命B .了解全省学生的家庭1周内丢弃塑料袋的数量C .为保证某种新研发的战斗机试飞成功,对其零部件进行检查D .了解扬州市中学生的近视率3.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( ) A .能中奖一次 B .能中奖两次C .至少能中奖一次D .中奖次数不能确定 4.一个事件的概率不可能是( )A .32B .1C .23D .05.如图,在矩形ABCD 中,E 是BC 边的中点,将△ABE 沿AE 所在的直线折叠得到△AFE ,延长AF 交CD 于点G ,已知CG =2,DG =1,则BC 的长是( )A .2B .6C .5D .36.下列方程中,关于x 的一元二次方程是( ) A .x 2﹣x (x +3)=0B .ax 2+bx +c =0C .x 2﹣2x ﹣3=0D .x 2﹣2y ﹣1=0 7.若分式42x x -+的值为0,则x 的值为( ) A .0 B .-2 C .4 D .4或-28.已知反比例函3y x =-,下列结论中不正确的是( ) A .图像经过点(1,3)- B .图像在第二、四象限C .当1x >时,30y <<D .当0x <,y 随着x 的增大而减小 9.两个反比例函数3y x =,6y x=在第一象限内的图像如图所示,点1P 、2P 、3P ……2020P 反比例函数6y x =图像上,它们的横坐标分别是1x 、2x 、3x ……2020x ,纵坐标分别是1,3,5,…,共2020个连续奇数,过点1P 、2P 、3P ……2020P 分别作y 轴的平行线,与反比例函数3y x=的图像交点依次是()11,Q x y 、()22,Q x y 、()33,Q x y ……()20202020,Q x y ,则2020y 等于( )A .2019.5B .2020.5C .2019D .403910.下列调查中,适宜采用普查方式的是( )A .一批电池的使用寿命B .全班同学的身高情况C .一批食品中防腐剂的含量D .全市中小学生最喜爱的数学家 11.反比例函数3y x =-,下列说法不正确的是( ) A .图象经过点(1,-3)B .图象位于第二、四象限C .图象关于直线y=x 对称D .y 随x 的增大而增大12.甲、乙、丙、丁四位同学在这一学期4次数学测试中平均成绩都是95分,方差分别是2.2S =甲, 1.8S =乙, 3.3S =丙,S a =丁,a 是整数,且使得关于x 的方程2(2)410a x x -+-=有两个不相等的实数根,若丁同学的成绩最稳定,则a 的取值可以是( )A .3B .2C .1D .1-二、填空题13.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C ,A’B’交AC 于点D ,若∠A’DC=90°,则∠A= °.14.不透明的袋子里装有6只红球,1只白球,这些球除颜色外都相同.搅匀后从中任意摸出1只球.摸出的是红球的可能性_____摸出的是白球的可能性(填“大于”、“小于”或“等于”).15.在一次数学测试中 ,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2 ,则第六组的频数是_______.16.如图,将正方形ABCD 沿BE 对折,使点A 落在对角线BD 上的A′处,连接A′C ,则∠BA′C=________度.17.若()14,A y -、()22,B y -都在反比例函数6y x=的图像上,则1y 、2y 的大小关系为1y _________2y (填“>”、“<”、“=”)18.根据某商场2019年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为800万元,则该商场全年的营业额为________万元.19.若点A (﹣4,y 1),B (﹣2,y 2)都在反比例函数1y x=-的图象上,则y 1,y 2的大小关系是y 1_____y 2. 20.x 千克橘子糖、y 千克椰子糖、z 千克榴莲糖混合成“什锦糖”.已知这三种糖的单价分别为30元/千克、32元/千克、40元/千克,则这种“什锦糖”的单价为_____元.(用含x 、y 、z 的代数式表示)21.空气是混合物,为直观介绍空气各成分的百分比,宜选用_____统计图.22.一个不透明袋子中装有3个红球,2个白球,1个蓝球,从中任意摸一球,则摸到_____(颜色)球的可能性最大.23.方程x2=0的解是_______.24.已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为__________.三、解答题25.如图,在ABCD中,点O为对角线BD的中点,过点O的直线EP分别交AD,BC于E,F两点,连接BE,DF.(1)求证:四边形BFDE为平行四边形;(2)当∠DOE= °时,四边形BFDE为菱形?26.已知:如图,在平行四边形ABCD中,点E、F在AD上,且AE=DF求证:四边形BECF是平行四边形.27.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;(2)设∠BEA=α,试用含α的代数式表示∠DFA的大小;(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.28.如图,矩形ABCD中,AB=8,AD=6,点O是对角线BD的中点,过点O的直线分别交AB,CD边于点E,F.(1)求证:四边形DEBF 是平行四边形;(2)当DE =DF 时,求EF 的长.29.计算:(1)2354535⨯; (2)()22360,0x yxy x y ≥≥; (3)()48274153-+÷. 30.如图,在平面直角坐标系中,四边形ABCD 为正方形,已知点A(-6,0),D(-7,3),点B 、C 在第二象限内.(1)点B 的坐标 ;(2)将正方形ABCD 以每秒1个单位的速度沿x 轴向右平移t 秒,若存在某一时刻t,使在第一象限内点B 、D 两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t 的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x 轴上的点P 和反比例函数图象上的点Q,使得以P 、Q 、B′、D′四个点为顶点的四边形是平行四边形?若存在,请求出符合题意的点P 、Q 的坐标;若不存在,请说明理由.31.2020年4月23日,是第25个世界读书日.为了解学生每周阅读时间,某校随机抽取了部分学生进行调查,根据调查结果,将阅读时间x(单位:小时)分成了4组,A:0≤x <2;B:2≤x<4;C:4≤x<6;D:6≤x<8,试结合图中所给信息解答下列问题:(1)这次随机抽取了名学生进行调查;扇形统计图中,扇形B的圆心角的度数为.(2)补全频数分布直方图;(3)若该校共有2000名学生,试估计每周阅读时间不少于4小时的学生共有多少名?32.如图,四边形ABCD的对角线AC、BD相交于点O,BO=DO,点E、F分别在AO,CO 上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.33.为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次调查的总人数是人;(2)请将条形统计图补充完整;(3)在扇形统计图中表示观点B的扇形的圆心角度数为度;(4)在扇形统计图中表示观点E的百分比是.34.如图,在△ABC中,DE∥BC,EF∥AB,BE平分∠ABC,试判断四边形DBFE的形状,并说明理由.35.如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC ⊥BC ,AC =2,BC =3.点E 是BC 延长线上一点,且CE =3,连结DE .(1)求证:四边形ACED 为矩形.(2)连结OE ,求OE 的长.36.已知:ABC ∆中以CB 为边在ABC ∆外侧作等边CBP ∆.(1)连接AP ,以AP 为边作等边APQ ∆,求证:AC BQ =;(2)当30CAB ∠=︒,4AB =,3AC =时,求AP 的值;(3)若4AB =,3AC =,改变CAB ∠的度数,发现CAB ∠在变化到某一角度时,AP 有最大值.画出CAB ∠为这个特殊角度时的示意图,并直接写出CAB ∠的角度和AP 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先判断出四边形ACED 是平行四边形,从而得出DE 的长度,根据菱形的性质求出BD 的长度,利用勾股定理的逆定理可得出△BDE 是直角三角形,计算出面积即可.【详解】解:∵AD∥BE,AC∥DE,∴四边形ACED是平行四边形,∴AC=DE=6,在RT△BCO中,4=,即可得BD=8,又∵BE=BC+CE=BC+AD=10,∴△BDE是直角三角形,∴S△BDE=124 2DE BD⋅=.故答案为B.【点睛】此题考查了菱形的性质、勾股定理的逆定理及三角形的面积,属于基础题,求出BD的长度,判断△BDE是直角三角形,是解答本题的关键.2.C解析:C【分析】根据调查的实际情况逐项判断即可.【详解】解:A. 了解一批电视机的使用寿命,调查具有破坏性,适合抽样调查,不合题意;B. 了解全省学生的家庭1周内丢弃塑料袋的数量,调查费时费力,适合抽样调查,不合题意;C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查,考虑安全性,适合全面调查,符合题意;D. 了解扬州市中学生的近视率,调查费时费力,适合抽样调查,不合题意.故选:C【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.3.D解析:D【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【点睛】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1<<③为随机事件.4.A解析:A【分析】根据概率的意义知,一件事件的发生概率最大是1,所以只有A项是错误的,即找到正确选项.【详解】∵必然事件的概率是1,不可能事件的概率为0,∴B、C、D选项的概率都有可能,∵32>1,∴A不成立.故选:A.【点睛】本题主要考查了概率的定义,正确把握各事件的概率是解题的关键.5.B解析:B【分析】连接EG,由折叠的性质可得BE=EF又由E是BC边的中点,可得EF=EC,然后证得Rt△EGF≌Rt△EGC(HL),得出FG=CG=2,继而求得线段AG的长,再利用勾股定理求解,即可求得答案.【详解】解:连接EG,∵E是BC的中点,∴BE=EC,∵△ABE沿AE折叠后得到△AFE,∴BE=EF,∴EF=EC,∵在矩形ABCD 中,∴∠C =90°,∴∠EFG =∠B =90°,∵在Rt △EGF 和Rt △EGC 中,EF EC EG EG =⎧⎨=⎩, ∴Rt △EGF ≌Rt △EGC (HL ),∴FG =CG =2,∵在矩形ABCD 中,AB =CD =CG +DG =2+1=3,∴AF =AB =3,∴AG =AF +FG =3+2=5,∴BC =AD=.故选:B .【点睛】此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的应用.熟练掌握折叠的性质是关键. 6.C解析:C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A 、x 2﹣x (x +3)=0,化简后为﹣3x =0,不是关于x 的一元二次方程,故此选项不合题意;B 、ax 2+bx +c =0,当a =0时,不是关于x 的一元二次方程,故此选项不合题意;C 、x 2﹣2x ﹣3=0是关于x 的一元二次方程,故此选项符合题意;D 、x 2﹣2y ﹣1=0含有2个未知数,不是关于x 的一元二次方程,故此选项不合题意; 故选:C .【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.7.C解析:C【分析】根据分式的值为零的条件可以得到4020x x -=⎧⎨+≠⎩,从而求出x 的值.解:由分式的值为零的条件得4020x x -=⎧⎨+≠⎩, 由40x -=,得:4x =,由20x +≠,得:2x ≠-.综上,得4x =,即x 的值为4.故选:C .【点睛】本题考查了分式的值为零的条件,以及分式有意义的条件,解题的关键是熟练掌握分式的值为零的条件进行解题. 8.D解析:D【分析】根据反比例函数的性质对各选项进行逐一分析即可.【详解】解:A 、∵()133-⨯=-,∴图象必经过点(1,3)-,故本选项正确;B 、∵30k =-<,∴函数图象的两个分支分布在第二、四象限,故本选项正确;C 、∵1x =时,3y =-且y 随x 的增大而而增大,∴1x >时,30y -<<,故本选项正确;D 、函数图象的两个分支分布在第二、四象限,在每一象限内,y 随x 的增大而增大,故本选项错误.故选:D .【点睛】本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质进行解题.9.A解析:A【分析】主要是找规律,找出规律即可求出本题答案,先根据已知条件求出y 分别为1、3、5时x 的值,即可求出当2020y =时x 的值,再将其代入3y x =中即可求出2020y . 【详解】解:当1,3,52020y =⋅⋅⋅时,1x 、2x 、3x …2020x 分别为6、2、65 (62020)将1x 、2x 、3x …2020x 代入3y x =, 得:1y 、2y 、3y …2020y 202040392019.52y ==,【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k ≠0)的图象是双曲线;图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 10.B解析:B【分析】根据抽样调查和普查的特点分析即可.【详解】解:A .调查一批电池的使用寿命适合抽样调查;B .调查全班同学的身高情况适合普查;C .调查一批食品中防腐剂的含量适合抽样调查;D .调查全市中小学生最喜爱的数学家适合抽样调查;故选:B .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.D解析:D【解析】【分析】通过反比例图象上的点的坐标特征,可对A 选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【详解】解:由点()1,3-的坐标满足反比例函数3y x=-,故A 是正确的; 由30k =-<,双曲线位于二、四象限,故B 也是正确的; 由反比例函数的对称性,可知反比例函数3y x =-关于y x =对称是正确的,故C 也是正确的,由反比例函数的性质,0k <,在每个象限内,y 随x 的增大而增大,不在同一象限,不具有此性质,故D 是不正确的,故选:D .【点睛】考查反比例函数的性质,当0k <时,在每个象限内y 随x 的增大而增大的性质、反比例函数的图象是轴对称图象,y x =和y x =-是它的对称轴,同时也是中心对称图形;熟练掌握反比例函数图象上点的坐标特征和反比例函数图象和性质是解答此题的关键.解析:C【分析】根据方程的根的情况得出a 的取值范围,结合乙同学的成绩最稳定且a 为整数即可得a 得取值.【详解】∵关于于x 的方程2(2)410a x x -+-=有两个不相等的实数根, ∴()=16+42>0,a ∆-且20.a -≠ 解得:>-2a 且 2.a ≠∵丁同学的成绩最稳定,∴<1.8a 且0a >.则a=1.故答案选:C.【点睛】本题主要考查了方差的意义理解,结合一元二次方程的根的判别式进行求解.二、填空题13.【详解】试题分析:∵把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1解析:【详解】试题分析:∵把△ABC 绕点C 按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.14.大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=,摸出的是白球的概率=,所以摸出的是红球的可能性大于摸出的解析:大于【分析】分别计算出摸出的是红球和白球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸出1只球.摸出的是红球的概率=67,摸出的是白球的概率=17,所以摸出的是红球的可能性大于摸出的是白球的可能性.故答案为:大于.【点睛】本题考查的是概率的意义,以及求简单随机事件的概率,掌握以上知识是解题的关键.15.5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-解析:5【详解】解:一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数是50-6-8-9-10-12=5.考点:频数与频率16.5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形A解析:5.【分析】由四边形ABCD是正方形,可得AB=BC,∠CBD=45°,又由折叠的性质可得:A′B=AB,根据等边对等角与三角形内角和定理,即可求得∠BA′C的度数.【详解】解:因为四边形ABCD是正方形,所以AB=BC,∠CBD=45°,根据折叠的性质可得:A′B=AB,所以A′B=BC ,所以∠BA′C=∠BCA′=1801804522CBD -∠-==67.5°. 故答案为:67.5.【点睛】此题考查了折叠的性质与正方形的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用. 17.>【分析】根据反比例函数的图象与性质即可解答.【详解】解:的图象当时,y 随x 的增大而减小,∵,故,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数 解析:>【分析】根据反比例函数的图象与性质即可解答.【详解】 解:6y x =的图象当0x <时,y 随x 的增大而减小, ∵4-<-2,故12y y >,故答案为:>.【点睛】本题考查反比例函数的图象与性质,解题的关键是熟练掌握反比例函数的图象与性质. 18.000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-解析:000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-20%=20%,∴该商场全年的营业额为:800÷20%=4000(万元),故答案为:4000.【点睛】本题考查了扇形统计图,由统计图得到二季度所占的百分比是解题关键.19.<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数的图象上,解析:<【分析】直接利用反比例函数的增减性分析得出答案.【详解】∵反比例函数1yx=-中,k=﹣1<0,∴在每个象限内,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2)都在反比例函数1yx=-的图象上,且﹣2>﹣4,∴y1<y2,故答案为:<.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确把握反比例函数的性质是解题关键.20.【分析】根据混合什锦糖单价=三种糖果的总价钱÷混合糖果的重量列式可得答案.【详解】解:根据题意知,这种什锦糖的单价为:;故答案为:.【点睛】本题考查列代数式,解题的关键是读懂题意.解析:303240 x y zx y z++++【分析】根据混合什锦糖单价=三种糖果的总价钱÷混合糖果的重量列式可得答案.【详解】解:根据题意知,这种什锦糖的单价为:303240x y zx y z++++;故答案为:303240x y zx y z++++.【点睛】本题考查列代数式,解题的关键是读懂题意.21.扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,解析:扇形【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【详解】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点睛】本题考查统计图的选择,扇形统计图可以反映各个部分占整体的百分比.22.红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率==,摸到白球的概率==,摸到蓝球的概率=,所以从中任意摸一球,则摸到红球的可能性最大解析:红【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【详解】解:从中任意摸一球,摸到红球的概率=3321++=12,摸到白球的概率=26=13,摸到蓝球的概率=16, 所以从中任意摸一球,则摸到红球的可能性最大.故答案为:红.【点睛】本题考查了可能性的大小:某事件的可能性等于所求情况数与总情况数之比.23.【分析】直接开平方,求出方程的解即可.【详解】∵x2=0,开方得,,故答案为:.【点睛】此题考查了解一元二次方程-直接开平方法,比较简单.解析:120x x ==【分析】直接开平方,求出方程的解即可.【详解】∵x 2=0,开方得,120x x ==,故答案为:120x x ==.【点睛】此题考查了解一元二次方程-直接开平方法,比较简单.24.1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x3,x4, ∴at2+bt+1=0,由题意可知:t1=解析:1【解析】分析:利用整体的思想以及根与系数的关系即可求出答案.详解:设x+1=t ,方程a (x+1)2+b (x+1)+1=0的两根分别是x 3,x 4,∴at 2+bt+1=0,由题意可知:t 1=1,t 2=2,∴t 1+t 2=3,∴x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.三、解答题25.(1)详见解析;(2)90【分析】(1)证△DOE≌△BOF(ASA),得DE=BF,即可得出结论;(2)由∠DOE=90°,得EF⊥BD,即可得出结论.【详解】(1)∵四边形ABCD是平行四边形,O为对角线BD的中点,∴BO=DO,AD∥BC,∴∠EDO=∠FBO,在△EOD和△FOB中,EDO FBO DO BOEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE≌△BOF(ASA),∴DE=BF,又∵DE∥BF,∴四边形BFDE为平行四边形;(2)∠DOE=90°时,四边形BFDE为菱形;理由如下:由(1)得:四边形BFDE是平行四边形,若∠DOE=90°,则EF⊥BD,∴四边形BFDE为菱形;故答案为:90.【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质以及菱形的判定等知识,证出△DOE≌△BOF是解题的关键.26.证明见解析.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【详解】如答图,连接BC,设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OD,OB=OC.∵AE=DF,OA﹣AE=OD﹣DF,∴OE=OF.∴四边形BEDF 是平行四边形.27.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析【分析】(1)根据正方形的性质和三角形的内角和解答即可;(2)根据正方形的性质和三角形内角和解答即可;(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可.【详解】解:(1)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =90°,∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°;(2)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =∠ADF =90°,∴∠EAB =90°﹣∠BAE =90°﹣α,∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=, ∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α;(3)∠BEA =∠FEA ,理由如下:延长CB 至I ,使BI =DF ,连接AI .∵四边形ABCD 是正方形,∴AD =AB ,∠ADF =∠ABC =90°,∴∠ABI =90°,又∵BI =DF ,∴△DAF ≌△BAI (SAS ),∴AF =AI ,∠DAF =∠BAI ,∴∠EAI =∠BAI +∠BAE =∠DAF +∠BAE =45°=∠EAF ,又∵AE 是△EAI 与△EAF 的公共边,∴△EAI ≌△EAF (SAS ),∴∠BEA =∠FEA .【点睛】本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解.28.(1)见解析;(2)152【分析】(1)由矩形的性质得到AB ∥CD ,再根据平行线的性质得到∠DFO=∠BEO 再证明△DOF ≌△BOE ,根据全等三角形的性质得到DF=BE ,从而得到四边形BEDF 是平行四边形;(2)先证明四边形BEDF 是菱形,再得到DE=BE ,EF ⊥BD ,OE=OF ,设AE=x ,则DE=BE=8-x 根据勾股定理求解即可.【详解】(1)证明:∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠DFO =∠BEO .在△DOF 和△BOE 中 DFO BEO DOF BOE OD OB ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△DOF ≌△BOE(AAS ).∴DF =BE .又∵DF ∥BE ,∴四边形BEDF 是平行四边形.(2)解:∵DE =DF ,四边形BEDF 是平行四边形,∴四边形BEDF 是菱形.∴DE =BE ,EF ⊥BD ,OE =OF .设AE =x ,则DE =BE =8-x ,在Rt △ADE 中,根据勾股定理,有AE 2+AD 2=DE 2,∴x 2+62=(8-x)2.解得x =74. ∴DE =8-74=254. 在Rt △ABD 中,根据勾股定理,有AB 2+AD 2=BD 2,∴BD=10.∴OD =12BD =5. 在Rt △DOE 中,根据勾股定理,有DE 2-OD 2=OE 2,∴OE =154. ∴EF =2OE =152. 【点睛】 考查了菱形的判定和性质、矩形的性质、平行四边形的判定和性质、全等三角形的判定和性质和勾股定理,解题关键是熟练掌握矩形的性质.29.(1)6;(2)3;(3)【分析】(1)利用二次根式的乘法法则运算;(2)利用二次根式的乘法法则运算;(3)利用二次根式的除法法则运算.【详解】(1=23×35=6;(2()260,0y xy x y ≥≥=3(3)=4﹣=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.30.(1)(31-,);(2)t=9,6y x =;(3)点P 、Q 的坐标为:P (132,0)、Q (32,4)或P (7,0)、Q (3,2)或P (-7,0)、Q (-3,-2). 【分析】(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,由正方形的性质结合同角的余角相等即可证出△ADE ≌△BAF ,从而得出DE=AF ,AE=BF ,再结合点A 、D 的坐标即可求出点B 的坐标;(2)设反比例函数为ky x=,根据平行的性质找出点B ′、D ′的坐标,再结合反比例函数图象上点的坐标特征即可得出关于k 、t 的二元一次方程组,解方程组解得出结论;(3)假设存在,设点P 的坐标为(m ,0),点Q 的坐标为(n ,6n ).分B ′D ′为对角线或为边考虑,根据平行四边形的性质找出关于m 、n 的方程组,解方程组即可得出结论.【详解】解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,如图1所示.∵四边形ABCD 为正方形,∴AD=AB ,∠BAD=90°,∵∠EAD+∠ADE=90°,∠EAD+∠BAF=90°,∴∠ADE=∠BAF .在△ADE 和△BAF 中,有90AED BFA ADE BAF AD BA ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BAF (AAS ),∴DE=AF ,AE=BF .∵点A (-6,0),D (-7,3),∴DE=3,AE=1,∴点B 的坐标为(-6+3,0+1),即(-3,1).故答案为:(-3,1).(2)设反比例函数为k y x=, 由题意得:点B ′坐标为(-3+t ,1),点D ′坐标为(-7+t ,3),∵点B ′和D ′在该比例函数图象上,∴33(7)k t k t =-+⎧⎨=⨯-+⎩, 解得:t=9,k=6,∴反比例函数解析式为6yx =.(3)假设存在,设点P的坐标为(m,0),点Q的坐标为(n,6n).以P、Q、B′、D′四个点为顶点的四边形是平行四边形分两种情况:①B′D′为对角线时,∵四边形B′PD′Q为平行四边形,∴63162nm n⎧-=⎪⎨⎪-=-⎩,解得:13232mn⎧=⎪⎪⎨⎪=⎪⎩,∴P(132,0),Q(32,4);②当B′D′为边时.∵四边形PQB′D′为平行四边形,∴626031m nn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=⎧⎨=⎩,∴P(7,0),Q(3,2);∵四边形B′QPD′为平行四边形,∴626031n mn-=-⎧⎪⎨-=-⎪⎩,解得:73mn=-⎧⎨=-⎩.综上可知:存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形,符合题意的点P、Q的坐标为:P(132,0)、Q(32,4)或P(7,0)、Q(3,2)或P(-7,0)、Q(-3,-2).【点睛】。
淮安市黄集中学2017-2018学年度第二学期第一次过程性检测八年级 数学试卷一、选择题(每题3分,共18分)1. 下列调查中,适宜采用普查方式的是 ( )A. 调查市场上酸奶的质量情况B. 调查我市中小学生的视力情况C. 调查某品牌圆珠笔芯的使用寿命D. 调查乘坐飞机的旅客是否携带危禁物品2. 今年某市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A. 这1000名考生是总体的一个样本B. 近4万名考生是总体C. 每位考生的数学成绩是个体D. 1000名学生是样本容量3. 四边形ABCD 中,对角线AC 与BD 交于点O ,下列条件不能..判定这个四边形是平行四边形的是( ) A. AD=BC ,AB=DC B. OA=OC ,OB=ODC. AB ∥DC ,AD=BCD. ∠A=∠C ,∠B=∠D4. 下列调查,比较适用普查而不适用抽样调查方式的是( )A. 调查全省食品市场上某种食品的色素含量是否符合国家标准B. 调查一批灯泡的使用寿命C. 调查你所在班级全体学生的身高D. 调查全国初中生每人每周的零花钱数5. 如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )A. B. C. D.6. 从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是( )A. 0B.C.D. 1二.填空题(每题3分,共30分)7. 池塘中放养了鲤鱼8000条,鲢鱼若干。
在几次随机捕捞中,共抓到鲤鱼320条,鲢鱼400条.估计池塘中原来放养了鲢鱼______条.8. 下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相除,商为负数;④异号两数相乘,积为正数.必然事件是__________.9. 如图,将△ABC绕着点C按顺时针方向旋转15°,B点落在位置,A点落在位置,若AC⊥,则的度数是________.学|科|网...10. 如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1:2,那么表示参加“其它”活动的人数占总人数的_______%.11. 如图所示是用相同的正方形砖铺成的地板,一宝物藏在某一块下面,宝物在白色区域的概率是_________.12. 口袋中有2个白球,1个黑球,从中任取一个球,摸到白球的概率为__________.13. 某校八年级共有学生400人,为了解这些学生的视力情况,抽查了20名学生的视力,对所得数据进行整理,在得到的频数分布表中,若数据在0.95~1.15这一小组频数为8,则可以估计该校八年级学生视力在0.95~1.15范围内的人数约为________人.14. 为了了解参加本学校运动会的1000名运动员的年龄情况,从中抽查了50名运动员的年龄,“某运动员被抽到”这一事件是_________事件.15. 已知平行四边形ABCD的两条对角线相交于直角坐标系的原点,点A,B的坐标分别为(-2,-3),(-1,2),则C、D的坐标分别为_________________.16. 如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是____________2.三、解答题(本大题共8题,共72分)17. 掷一枚均匀的正方体骰子,6个面上分别标有数字1-6,随意掷出这个正方体,求下列事件发生的概率.(1)掷出的数字恰好是奇数的概率(2)掷出的数字大于4的概率;(3)掷出的数字恰好是7的概率(4)掷出的数字不小于3的概率.18. (本题8分)△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)按要求作图:①画出△ABC关于原点O的中心对称图形△A1B1C1;②画出将△ABC绕点A逆时针旋转90°得到△AB2C2,(2)回答下列问题:①△A1B1C1中顶点A1坐标为;②若P(a,b)为△ABC边上一点,则按照(1)中①作图,点P对应的点P1的坐标为.19. (本题8分)某学校为了了解800名初中毕业生体育考试成绩的情况(满分30分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在18.5~21.5这一组的频率为0.12,请回答下列问题:(1)在这个问题中,总体是,样本容量是;(2)请补全成绩在21.5~24.5这一组的频数分布直方图;(3)如果成绩在18分以上的为“合格”,请估计该校初中毕业生中体育成绩为“合格”的人数.20. 如图,已知:E、F是平行四边形ABCD对角线AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.21. 保障房建设是民心工程,某市从2009年加快保障房建设工程.现统计该市从2009年到2013年这5年新建保障房情况,绘制成如图1、2所示的折线统计图和不完整的条形统计图.(1)小颖看了统计图后说:“该市2012年新建保障房的套数比2011年少了.”你认为小颖的说法正确吗?请说明理由;(2)求2012年新建保障房的套数.22. 如图,已知E、F是□ABCD对角线AC 上的两点,且BE⊥AC,DF⊥AC. 求证:BE=DF;23. 在四边形中,对角线AC与BD交于点O,△ABO≌△CDO.若∠ABO=∠DCO,求证:四边形为矩形.24. 如图,在□ABCD中,∠BCD的平分线交直线AD于点F,∠BAD的平分线交DC延长线于E.,交线段BC与H点(1)证明:四边形AHCF是平行四边形;(2)证明:AF=EC;(3)若∠BAD=90°,G为CF的中点(如右图),判断△BEG的形状,并证明;(4)在(3)的条件上,若已知AB=6,BC=7,试求△BEG的面积.。
2017-2018学年度第二学期期中测试卷八 年 级 数 学 2018年4月(满分:100分 考试时间:100分钟)一、选择题(每题2分,共20分)1.下列电视台的台标,是中心对称图形的是A .B .C .D .2.对于反比例函数xy 2=,下列说法不正确的是 A .点(21)--,在它的图像上B .它的图像在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小3.为了解我市老年人的健康状况,下列抽样调查最合理的是A.在公园调查部分老年人的健康状况B.在医院调查部分老年人的健康状况C.利用户籍网调查部分老年人的健康状况D.在周围邻居中调查部分老年人的健康状况 4.下列性质中,菱形具有而矩形不一定具有的是A.对角线互相平分B.对角线互相垂直C.对边平行且相等D.对角线相等 5.在反比例函数2ky x-=的图像上有两点11(,)A x y 、22(,)B x y 。
若120x x <<,12y y >,则k 取值范围是A. k>0B.2k >C.k<0D.2k <6.有三个事件,事件A :若a 、b 是实数,则+a b b a +=;事件B :打开电视正在播广告;事件C :同时掷两枚质地均匀地标有数字1-6的骰子,向上一面的点数之和是为13.这三个事件的概率分别记为()()()P A P B P C 、、,则()()()P A P B P C 、、的大小关系正确的是 A .()()()P C P A P B <<B .()()()P B P C P A << C .()()()P C P B P A <<D .()()()P B P A P C << 7.一次函数y ax b =+与反比例函数a by x-=,其中0,,ab a b <为常数,它们在同一坐标系中的图像可以是8.如图,在ABC ∆中,BF 平分ABC ∠,AF BF ⊥于点F ,D 为AB 的中点,连接DF 延长交AC 于点E .若AB=6,BC=10,则线段EF 的长为A. 1B.2C.2.5D. 3 9.如图,菱形ABCD 中,AB=4,120A ∠=︒,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任意一点,则PK QK +的最小值为A.4B.D.10.如图,在平面直角坐标系中,点(1,4)P 、(,)Q m n 在函数的图象上,当1m >时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B ,过点Q 分别作x 轴、y 轴的垂线,垂足为点C 、D . QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积 A.减小 B.增大 C.先减小后增大 D.先增大后减小 二、填空题(每题3分,共24分) 11.反比例函数ky x=的图像经过点(1,6)和(,3)m -,则m =. 12.为了估计暗箱里白球的数量(箱内只有白球),将5个红球放进去,随机摸出一个球,记下颜色后放回,搅匀后再摸出一个球记下颜色,多次重复后发现红球出现的频率约为0.2,那么可以估计暗箱里白球的数量大约为个.13.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF DC =, 若∠ADF=240,则∠EDC= °.14.已知直线y =kx(k>0)与双曲线y =3x交于A(x 1,y 1)、B(x 2,y 2)两点,则x 1y 2+x 2y 1的值为_______. 15.已知菱形的周长为16cm ,两邻角的比是1:3,则菱形的面积是_______16.有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④圆;⑤菱形.将卡片背面朝上洗匀,从中抽取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.17.如图,一次函数y kx b =+图象与反比例函数my x=的图象都经过点(2,6)A -和点(4,)B n .则不等式k y x=mkx b x+≤的解集为. 18.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE 、BF ,将BCF ∆沿BF 对折,得到BPF ∆,延长FP 交BA 的延长线于点Q .给出下列结论:①AE BF =;②AE BF ⊥;③BQF ∆是等边三角形;④若正方形ABCD 的边长为3,则线段AQ 的长为34其中,正确的结论有.(把你认为正确的结论的序号都填上) 三、解答题19.(本题7分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有_______人,并补全条形统计图;(2)在扇形统计图中___,___m n ==,表示区域C 的圆心角为____度;(3)全校学生中喜欢篮球的人数大约有多少?20.(本题7分)已知如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,DE∥AC,AE∥BD. (1)求证:四边形AODE 是矩形;(2)若AB=12,∠BCD=120°,求四边形AODE 的面积.21.(本题6分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在反比例函数y =(k >0,x >0)的图象上,点D 的坐标为(4,3).(1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在函数y = (k >0,x >0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.22.(本题7分)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y (mg/L)与时间x (天)的变化规律如图所示,其中线段AB 表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y 与时间x 成反比例关系. (1)求整改过程中硫化物的浓度y 与时间x 的函数表达式; (2)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1. 0 mg/L?为什么?23.(本题7分)如图,已知一次函数y kx b =+的图像与反比例函数my x=的图像交于点 (4,)A n 和点1(,3)3B n +,与y 轴交于点C .(1)求反比例函数和一次函数的表达式.(2)若在x 轴上有一点D ,其横坐标是1,连接AD 、CD , 求ACD ∆的面积.24.(本题满分7分)己知:如图,在四边形ABCD 中,3AB CD=,//ABCD ,//CE DA ,//DF CB .(1)求证:四边形CDEF 是平行四边形; (2)填空:①当四边形ABCD 必须满足条件时,四边形CDEF 是矩形; ②当四边形ABCD 必须满足条件时,四边形CDEF 是菱形.25.(本题7分)如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,顶点B 的坐标为(4,2).点M 是边BC 上的一个动点(不与B 、C 重合),反比例函数ky x=(0,0)k x >>的图象经过点M 且与边AB 交于点N ,连接MN . (1)当点M 是边BC 的中点时.①求反比例函数的表达式; ②求OMN ∆的面积;(2)在点M 的运动过程中,试证明:MBNB是一个定值.26.(本题8分)如图1,正方形ABCD 顶点A 、B 在函数y=kx(k ﹥0)的图像上,点C 、D 分别在x 轴、y 轴的正半轴上,当k 的值改变时,正方形ABCD 的大小也随之改变. (1)若点A 的横坐标为5,求点D 的纵坐标;(2)如图2,当k =2时,分别求出正方形A′B′C′D′的顶点A′、B′两点的坐标;(3)当变化的正方形ABCD 与(2)中的正方形A′B′C′D′有重叠部分时,求k 的取值范围.初二数学答案1-10. ACCBB CCBDB 11.-2 12.20 13.57 14.-6 1516.5317.-2≦x<0或x>4 18. ④ 19. (1)100 (2)30 10 144 (3)800 20. (1)略 (2)36321. (1)32 (2)320 22. (1)y=-2x+10 y=x12(2)能23. (1)y=x 4 y=-43x+4 (2) 62124. (1)略 (2) AD=BC AD ⊥BC 25. (1)y=x4 3 (2 ) 2 26. (1)5 (2) 621。
苏科版(完整版)八年级数学下册期中试卷及答案一、选择题1.下列调查中,适合采用普查的是( ) A .了解一批电视机的使用寿命 B .了解全省学生的家庭1周内丢弃塑料袋的数量C .为保证某种新研发的战斗机试飞成功,对其零部件进行检查D .了解扬州市中学生的近视率2.江苏移动掌上营业厅,推出“每日签到——抽奖活动”:每个手机号码每日只能签到1次,且只能抽奖1次,抽奖结果有流量红包、话费充值卷、惊喜大礼包、谢谢参与.小明的爸爸已经连续3天签到,且都抽到了流量红包,则“他第4天签到后,抽奖结果是流量红包”是() A .必然事件 B .不可能事件C .随机事件D .必然事件或不可能事件3.如图,在矩形ABCD 中,AB =4cm ,AD =12cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在这段时间内,线段PQ 平行于AB 的次数是( )A .2B .3C .4D .54.下列方程中,关于x 的一元二次方程是( )A .x 2﹣x (x +3)=0B .ax 2+bx +c =0C .x 2﹣2x ﹣3=0D .x 2﹣2y ﹣1=05.用配方法解一元二次方程2620x x --=,以下正确的是( )A .2(3)2x -=B .2(3)11x -=C .2(3)11x +=D .2(3)2x +=6.如图,在平面直角坐标系中,菱形OABC 的顶点A 的坐标为(4,3),点D 是边OC 上的一点,点E 在直线OB 上,连接DE 、CE ,则DE+CE 的最小值为( )A.5B.7+1C.25D.24 57.为了解我市八年级10000名学生的身高,从中抽取了500名学生,对其身高进行统计分析,以下说法正确的是()A.每个学生的身高是个体B.本次调查采用的是普查C.样本容量是500名学生D.10000名学生是总体8.下列调查中,适合普查方式的是()A.调查某市初中生的睡眠情况B.调查某班级学生的身高情况C.调查南京秦淮河的水质情况D.调查某品牌钢笔的使用寿命9.三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的两根,则该三角形的周长为()A.13 B.15 C.18 D.13或1810.如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA 并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若DE=18m,则线段AB的长度是()A.9m B.12m C.8m D.10m二、填空题11.“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小球,标号为“4”,这个事件是______.(填“必然事件”、“不可能事件”或“随机事件”)12.在英文单词tomato中,字母o出现的频数是_____.13.若分式x3x3--的值为零,则x=______.14.为了了解我市八年级男生的体重分布情况,市教育局从各学校共随机抽取了500名八年级男生进行了测量.在这个问题中,样本是指_____.15.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是_____.16.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .17.如图,△ABC 中,∠A =60°,∠ABC =80°,将△ABC 绕点B 逆时针旋转,得到△DBE ,若DE ∥BC ,则旋转的最小度数为_____.18.根据某商场2019年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为800万元,则该商场全年的营业额为________万元.19.如图,反比例函数y =xk(x >0)的图象经过矩形OABC 的边AB 的中点D ,若矩形OABC 的面积为8,则k =_____.20.如图,边长为2的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是_____.三、解答题21.把一张矩形ABCD 纸片按如图方式折叠,使点A 与点E 重合,点C 与点F 重合(E 、F 两点均在BD 上),折痕分别为BH 、DG .(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG的长.22.某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:最喜爱的节目人数歌曲15舞蹈a小品12相声10其它b(1)在此次调查中,该校一共调查了名学生;(2)a=;b=;(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.23.如图,在正方形网格中,△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)作出△ABC关于原点O成中心对称的△A1B1C1;(2)直接写出:以A、B、C为顶点的平形四边形的第四个顶点D的坐标.24.如图,反比例函数ky x=的图像经过第二象限内的点(1,)A m -,AB x ⊥轴于点B ,AOB ∆的面积为2.若直线y ax b =+经过点A ,并且经过反比例函数ky x=的图像上另一点(,2)C n -.(1)求反比例函数ky x=与直线y ax b =+的解析式; (2)连接OC ,求AOC ∆的面积;(3)不等式0kax b x +-≥的解集为_________(4)若()11,D x y 在ky x=(0)k ≠图像上,且满足13y ≥-,则1x 的取值范围是_________.25.如图,在矩形ABCD 中,AB =1,BC =3.(1)在图①中,P 是BC 上一点,EF 垂直平分AP ,分别交AD 、BC 边于点E 、F ,求证:四边形AFPE 是菱形;(2)在图②中利用直尺和圆规作出面积最大的菱形,使得菱形的四个顶点都在矩形ABCD 的边上,并直接..标出菱形的边长.(保留作图痕迹,不写作法)26.为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次调查的总人数是 人; (2)请将条形统计图补充完整;(3)在扇形统计图中表示观点B 的扇形的圆心角度数为 度; (4)在扇形统计图中表示观点E 的百分比是 .27.如图,点P 为ABC ∆的BC 边的中点,分别以AB 、AC 为斜边作Rt ABD ∆和Rt ACE ∆,且BAD CAE α∠=∠=,DPE β∠=.(1)求证:PD PE =.(2)探究:α与β的数量关系,并证明你的结论.28.已知四边形ABCD 中,AB ⊥AD ,BC ⊥CD ,AB=BC ,∠ABC =120゜,∠MBN=60゜,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .(1)当∠MBN 绕B 点旋转到AE =CF 时(如图1),试猜想线段AE 、CF 、EF 之间存在的数量关系为 .(不需要证明);(2)当∠MBN 绕B 点旋转到AE ≠CF 时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE 、CF 、EF 又有怎样的数量关系?请写出你的猜想,不需证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据调查的实际情况逐项判断即可.【详解】解:A. 了解一批电视机的使用寿命,调查具有破坏性,适合抽样调查,不合题意;B. 了解全省学生的家庭1周内丢弃塑料袋的数量,调查费时费力,适合抽样调查,不合题意;C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查,考虑安全性,适合全面调查,符合题意;D. 了解扬州市中学生的近视率,调查费时费力,适合抽样调查,不合题意.故选:C【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.2.C解析:C【解析】分析:直接利用随机事件的定义进而得出答案.详解:∵有流量红包、话费充值卷、惊喜大礼包、谢谢参与四种等可能情况,∴他第4天签到后,抽奖结果是流量红包为随机事件.故选C.点睛:本题主要考查了随机事件,正确把握相关定义是解题的关键.解析:C【分析】当QP∥AB时,由AP∥BQ可得到ABQP为平行四边形,然后依据矩形的性质可得到AP=BQ,然后求得AP=BQ的次数即可.【详解】解:当QP∥AB时,∵在在矩形ABCD,AD∥BC,∴四边形ABQP为平行四边形,∴AP=BQ,∵点P运动的时间=12÷1=12秒,∴点Q运动的路程=4×12=48cm.∴点Q可在BC间往返4次.∴在这段时间内PQ与AB有4次平行.故选:C.【点睛】本题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.4.C解析:C【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A、x2﹣x(x+3)=0,化简后为﹣3x=0,不是关于x的一元二次方程,故此选项不合题意;B、ax2+bx+c=0,当a=0时,不是关于x的一元二次方程,故此选项不合题意;C、x2﹣2x﹣3=0是关于x的一元二次方程,故此选项符合题意;D、x2﹣2y﹣1=0含有2个未知数,不是关于x的一元二次方程,故此选项不合题意;故选:C.【点睛】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.5.B解析:B【分析】利用完全平方公式的特征在方程的两边同时加上11即可.解:2621111x x --+=,即26911x x -+=,所以2(3)11x -=. 故选:B. 【点睛】本题考查了配方法解一元二次方程,灵活利用完全平方公式是应用配方法解题的关键.6.D解析:D 【解析】 【分析】首先根据菱形的对角线性质得到DE+CE 的最小值=CF,再利用菱形的面积列出等量关系即可解题. 【详解】解:如下图,过点C 作CF ⊥OA 与F,交OB 于点E,过点E 作ED ⊥OC 与D, ∵四边形OABC 是菱形,由菱形对角线互相垂直平分可知EF=ED, ∴DE+CE 的最小值=CF, ∵A 的坐标为(4,3), ∴对角线分别是8和6,OA=5,∴菱形的面积=24,(二分之一对角线的乘积), 即24=CF×5, 解得:CF=245, 即DE+CE 的最小值=245, 故选D.【点睛】本题考查了菱形的性质,图形中的最值问题,中等难度,利用菱形的对称性找到点E 的位置并熟悉菱形面积的求法是解题关键.7.A解析:A 【分析】由总体、个体、样本、样本容量的概念,结合题意进行分析,即可得到答案. 【详解】解:A 、每个学生的身高是个体,故A 正确;B、本次调查是抽样调查,故B错误;C、样本容量是500,故C错误;D、八年级10000名学生的身高是总体,故D错误;故选:A.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8.B解析:B【分析】根据抽样调查和普查的特点作出判断即可.【详解】A、调查某市初中生的睡眠情况,调查的对象很多,普查的意义或价值不大,应选择抽样调查,故本项错误;B、调查某班级学生的身高情况,调查对象较少,适宜采取普查,故本项正确;C、调查南京秦淮河的水质,调查范围较广,不适宜采取普查,故本项错误;D、调查某品牌圆珠笔芯的使用寿命,普查,破坏性较强,应采用抽样调查,此选项错误;故选:B.【点睛】本题考查了普查和抽样调查的判断,掌握普查和抽样调查的特点是解题关键.9.A解析:A【解析】试题解析:解方程x2-13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13,故选A.考点:1.解一元二次方程-因式分解法;2.三角形三边关系.10.A解析:A【分析】根据三角形的中位线定理解答即可.【详解】解:∵A、B分别是CD、CE的中点,DE=18m,∴AB=12DE=9m,故选:A.【点睛】本题考查了三角形的中位线定理:三角形的中位线平行于第三边并且等于第三边的一半.二、填空题11.不可能事件.【解析】根据题意,可知这个袋子中有3个数字,抽取一个球时不可能抽到数字4,所以是不可能事件.故答案为不可能事件.解析:不可能事件.【解析】根据题意,可知这个袋子中有3个数字,抽取一个球时不可能抽到数字4,所以是不可能事件.故答案为不可能事件.12.2【分析】根据频数定义可得答案.【详解】解:字母o出现的频数是2,故答案为:2.【点睛】本题考查的是频数的含义,掌握频数的含义是解题的关键.解析:2【分析】根据频数定义可得答案.【详解】解:字母o出现的频数是2,故答案为:2.【点睛】本题考查的是频数的含义,掌握频数的含义是解题的关键.13.-3【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得|x|-3=0且x-3≠0,解得,x=-3.故答案是:-3.【点睛】考查了分式的值为零的条件.若分式的值为零解析:-3【分析】分式的值为零:分子等于零,且分母不等于零.【详解】依题意,得|x|-3=0且x-3≠0,解得,x=-3.故答案是:-3.【点睛】考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在解析:从各学校共随机抽取的500名八年级男生体重.【分析】所有考查对象的全体就是总体,而组成总体的每一个考查对象称为个体.研究中实际观测或调查的一部分个体称为样本,依据定义即可解答.【详解】解:在这个问题中,样本是指从各学校共随机抽取的500名八年级男生体重,故答案为:从各学校共随机抽取的500名八年级男生体重.【点睛】本题考查统计中的总体与样本,属于基本题型.15.【解析】【分析】根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度【详解】∵四边形ABCD 是菱形,∴CO=A 解析:245 【解析】 【分析】 根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度【详解】∵四边形ABCD 是菱形,∴CO =12AC =3cm ,BO =12BD =4cm ,AO ⊥BO , ∴BC =22AO BO +=5cm ,∴S 菱形ABCD =2BD AC ⋅==12×6×8=24cm 2, ∵S 菱形ABCD =BC ×AE ,∴BC ×AE =24, ∴AE =24245BC =cm . 故答案为:245 cm . 【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.16.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147. 考点:概率公式.17.40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点解析:40【分析】根据三角形的内角和和旋转的性质以及平行线的性质即可得到结论.【详解】∵在△ABC中,∠A=60°,∠ABC=80°,∴∠C=180°﹣60°﹣80°=40°,∵将△ABC绕点B逆时针旋转,得到△DBE,∴∠E=∠C=40°,∵DE∥BC,∴∠CBE=∠E=40°,∴旋转的最小度数为40°,故答案为:40°.【点睛】本题主要考查了旋转的性质以及平行线的性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.18.000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-解析:000【分析】用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用800除以它所占的百分比,即可求得商场全年的营业额.【详解】解:扇形统计图中二季度所占的百分比=1-35%-25%-20%=20%,∴该商场全年的营业额为:800÷20%=4000(万元),故答案为:4000.【点睛】本题考查了扇形统计图,由统计图得到二季度所占的百分比是解题关键.19.4【分析】设D 的坐标是,则B 的坐标是,根据D 在反比例函数图象上,即可求得ab 的值,从而求得k 的值.【详解】设D 的坐标是,则B 的坐标是,∵∴,∵D 在上,∴.故答案是:4.【点睛】解析:4【分析】设D 的坐标是()a b ,,则B 的坐标是()2a b ,,根据D 在反比例函数图象上,即可求得ab 的值,从而求得k 的值.【详解】设D 的坐标是()a b ,,则B 的坐标是()2a b ,, ∵OABC 8S =矩形∴28ab =,∵D 在k y x=上, ∴1842k ab ==⨯=. 故答案是:4.【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.20.1【分析】由题可知△DEO≌△BFO,阴影面积就等于△BOC 面积,根据三角形面积公式求得△BOC 面积即可.【详解】解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,阴影面积=解析:1【分析】由题可知△DEO ≌△BFO ,阴影面积就等于△BOC 面积,根据三角形面积公式求得△BOC 面积即可.【详解】解:由题意可知△DEO ≌△BFO ,∴S △DEO =S △BFO ,阴影面积=△BOC 面积=12×2×1=1. 故答案为:1.【点睛】本题考查正方形的性质以及全等三角形的判定,根据全等三角形的性质将阴影部分的面积转化为△BOC 面积是解题的关键. 三、解答题21.(1)见解析 (2)3cm【分析】1)先根据矩形的性质得出∠ABD=∠BDC ,再由图形折叠的性质得出∠1=∠2,∠3=∠4,∠A=∠HEB=90°,∠C=∠DFG=90°,进而可得出△BEH ≌△DFG ;(2)先根据勾股定理得出BD 的长,进而得出BF 的长,由图形翻折变换的性质得出CG=FG ,设FG=x ,则BG=8﹣x ,再利用勾股定理即可求出x 的值.【详解】(1)如图,ABCD 四边形是矩形,AB CD ∴=,90A C ∠=∠=︒,ABD BDC ∠=∠.BEH ∆是BAH ∆翻折而成的,1=2∴∠∠,==90A HEB ∠∠︒,AB BE =.DGF DGC ∆∆是翻折而成的,3=4∴∠∠,90C DFG ∠=∠=︒,CD DF =,∴在BEH ∆和DFG ∆中,HEB DFG ∠=∠,BE DF =,2=3∠∠,BHE DGF ∴∆∆≌.(2)四边形ABCD 是矩形,6AB =,8BC =,6AB CD ∴==,8AD BC ==,10BD ∴=,又由(1)知,DF CD =,CG FG =,=1064BF ∴-=. 设FG x =,则8BG x =-,在Rt BGF ∆中,222BG BF FG =+,即()22284x x -=+,3x ∴=,即3FG =.【点睛】本题主要考查矩形的折叠问题,涉及知识点有全等三角形的证明与性质,勾股定理,折叠性质等知识点,解题关键在于能够灵活运用勾股定理22.(1)50;(2)8,5;(3)108°;(4)240人.【分析】(1)从表格和统计图中可以得到喜欢“小品”的人数为12人,占调查人数的24%,可求出调查人数,(2)舞蹈占50人的16%可以求出a的值,进而从总人数中减去其他组的人数得到b的值,(3)先计算“歌曲”所占的百分比,用360°去乘即可,(4)样本估计总体,用样本喜欢“相声”的百分比估计总体的百分比,进而求出人数.【详解】(1)12÷24%=50人故答案为50.(2)a=50×16%=8人,b=50﹣15﹣8﹣12﹣10=5人,故答案为:8,5.(3)360°×1550=108°答:“歌曲”所在扇形的圆心角的度数为108°;(4)1200×1050=240人答:该校1200名学生中最喜爱“相声”的学生大约有240人.【点睛】考查扇形统计图、频数统计表的制作方法,明确统计图表中的各个数据之间的关系是解决问题的关键.23.(1)作图见解析;(2)D(1,1),(-5,3),(-3,-1)【分析】(1)根据关于原点对称的点的坐标特征分别写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)分类讨论:分别以AB、AC、BC为对角线画平行四边形,根据网格的特点,确定对角线后找对边平行,即可写出D点的坐标.【详解】解:(1)如图,点A、B、C的坐标分别为(1,0),(4,1),(2,2)---,根据关于原点对称的点的坐标特征,则点A、B、C关于原点对称的点分别为(1,0),(4,1),(2,2)--,描点连线,△A1B1C1即为所作:(2)分别以AB、AC、BC为对角线画平行四边形,如下图所示:则由图可知D点的坐标分别为:(3,1),(1,1),(5,3)---,故答案为:(1,1),(5,3),(3,1)---.【点睛】本题考查了中心对称作图即平行四边形存在问题,在直角坐标系中,已知平行四边形的三个点的坐标,确定第四个点的坐标,以对角线作为分类讨论,不容易漏掉平行四边形的各种情况.24.(1)4yx-=;22y x=-+(2)3 (3)1x≤-或02x<≤(4)43x≥或x<0【分析】(1)根据k的几何意义即可求出k;求出k后利用交点C即可求出一次函数(2)利用割补法即可求出面积(3)根据A,C的坐标,结合图象即可求解;(4)先求出3y =-时,43x =,再观察图像即可求解. 【详解】 (1)∵点(1,)A m -在第二象限内,∴AB m =,1OB =, ∴122ABO S AB BO ∆=⋅=即:1122m ⨯=,解得4m =, ∴(1,4)A -,∵点(1,4)A -,在反比例函数k y x =的图像上, ∴41k =-,解得4k =-, ∵反比例函数为4y x-=, 又∵反比例函数4y x -=的图像经过(,2)C n -, ∴42n--=,解得2n =, ∴(2,2)C -,∵直线y ax b =+过点(1,4)A -,(2,2)C -,∴422a b a b=-+⎧⎨-=+⎩解方程组得22a b =-⎧⎨=⎩, ∴直线y ax b =+的解析式为;22y x =-+;(2)24y x =-+当0y =时,220x -+=,1x =,∴22y x =-+与x 轴的交点坐标为(1,0)设直线22y x =-+与x 轴的交点为E ,则1OE =∴AOC AOE COE S S S =+11141222=⨯⨯+⨯⨯ 3=(3)由题:k ax b x+≥ 由图像可知:当1x ≤-或02x <≤时,符合条件;故答案为:1x ≤-或02x <≤;(4)3y =-时,43x =,结合图像可知:当13y ≥-,则1x 的取值范围是43x ≥或x <0.故答案为:43x 或x<0.【点睛】本题主要考查了反比例函数,待定系数法求函数解析式,综合性较强,但只要细心分析题目难度不大.25.(1)见解析;(2)见解析【分析】(1)根据矩形的性质和EF垂直平分AP推出AF=PF=AE=PE即可判断;(2)以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,此时的菱形即为矩形ABCD内面积最大的菱形.【详解】(1)证明:如图①∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠2,∵EF垂直平分AP,∴AF=PF,AE=PE,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=PF=AE=PE,∴四边形AFPE是菱形;(2)如图②,以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,连接各个点,所得的菱形即为矩形ABCD内面积最大的菱形;此时设菱形边长为x,则可得12+(3-x)2=x2,解得x=53,所以菱形的边长为53.【点睛】本题考查了矩形的性质,菱形的性质和判定,掌握知识点是解题关键.26.(1)5000;(2)条形统计图见解析;(3)18;(4)4%.【分析】(1)根据选A 的人数和所占的百分比,可以求得本次调查的总人数;(2)根据(1)中的结果,可以求得选C 的人数,从而可以将条形统计图补充完整; (3)根据选B 的人数为250,调查的总人数为5000,即可计算出在扇形统计图中表示观点B 的扇形的圆心角度数;(4)根据统计图中的数据,可以计算出在扇形统计图中表示观点E 的百分比.【详解】解:(1)本次调查的总人数是:2300÷46%=5000(人),故答案为:5000;(2)选用C 的学生有:5000×30%=1500(人),补充完整的条形统计图如图所示;(3)在扇形统计图中表示观点B 的扇形的圆心角度数为:360°×2505000=18°, 故答案为:18;(4)在扇形统计图中表示观点E 的百分比是:2005000×100%=4%, 故答案为:4%.【点睛】 本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.27.(1)详见解析;(2)2180αβ+=︒,证明见解析.【分析】(1)如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE ,根据三角形的中位线定理和直角三角形的性质可得PM NE =,DM PN =,根据等腰三角形的性质、三角形的外角性质和已知条件可得BMD CNE ∠=∠,根据平行线的性质可得BMP BAC ∠=∠=CNP ∠,进而可得DMP PNE ∠=∠,于是可根据SAS 证明MDP NPE ∆≅∆,从而可得结论;(2)根据平行线的性质可得BMP MPN ∠=∠,根据全等三角形的性质可得EPN MDP ∠=∠,然后在DMP ∆中利用三角形的内角和定理和等量代换即可得出结论.【详解】(1)证明:如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE . 点P 为ABC ∆的边BC 的中点, ∴12PM AC =, NE 为Rt AEC ∆斜边上的中线, ∴12NE AN AC ==, PM NE ∴=,同理可得:DM PN =,12DM AM AB ==, ADM BAD ∴∠=∠,2BMD BAD ∴∠=∠,同理,2CNE CAE ∠=∠,又BAD CAE α∠=∠=,BMD CNE ∴∠=∠,又PM 、PN 都是ABC ∆的中位线,//PM AC ∴,//PN AB ,BMP BAC ∴∠=∠,CNP BAC ∠=∠,BMP CNP ∴∠=∠,∴DMP PNE ∠=∠,MDP NPE ∴∆≅∆(SAS),PD PE ∴=;(2)解:α与β的数量关系是:2180αβ+=︒;证明://PN AB ,BMP MPN ∴∠=∠,∵MDP NPE ∆≅∆,EPN MDP ∴∠=∠,在DMP ∆中,∵180MDP DPM DMP ∠+∠+∠=︒,∴180MDP DPM DMB PMB ∠+∠+∠+∠=︒,而22DMB BAD α∠=∠=,2180EPN DPM MPN α∴∠+∠++∠=︒,DPE DPM MPN EPN β∠=∠+∠+∠=,2180αβ∴+=︒.【点睛】本题考查了三角形的中位线定理、全等三角形的判定和性质、直角三角形的性质、等腰三角形的性质、平行线的性质、三角形的外角性质和三角形的内角和定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.28.(1)AE+CF=EF ;(2)如图2,(1)中结论成立,即AE+CF=EF ;如图3,(1)中结论不成立,AE=EF+CF .【分析】(1)根据题意易得△ABE ≌△CBF ,然后根据全等三角形的性质可得∠ABE=∠CBF=30°,进而根据30°角的直角三角形及等边三角形的性质可求解;(2)如图2,延长FC 到H ,使CH=AE ,连接BH ,根据题意可得△BCH ≌△BAE ,则有BH=BE ,∠CBH=∠ABE ,进而可证△HBF ≌△EBF ,推出HF=EF ,最后根据线段的等量关系可求解;如图3,在AE 上截取AQ=CF ,连接BQ ,根据题意易得△BCF ≌△BAQ ,推出BF=BQ ,∠CBF=∠ABQ ,进而可证△FBE ≌△QBE ,推出EF=QE 即可.【详解】解:(1)如图1,AE+CF=EF ,理由如下:∵AB ⊥AD ,BC ⊥CD ,∴∠A=∠C=90°,∵AB=BC ,AE=CF ,∴△ABE ≌△CBF (SAS ),∴∠ABE=∠CBF ,BE=BF ,∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°, ∴11,22AE BE CF BF ==, ∵∠MBN=60°,BE=BF ,∴△BEF 是等边三角形, ∴1122AE CF BE BF BE EF +=+==, 故答案为AE+CF=EF ; (2)如图2,(1)中结论成立;理由如下:延长FC 到H ,使CH=AE ,连接BH ,∵AB ⊥AD ,BC ⊥CD ,∴∠A=∠BCH=90°,∴△BCH≌△BAE(SAS),∴BH=BE,∠CBH=∠ABE,∵∠ABC=120°,∠MBN=60°,∴∠ABE+∠CBF=120°-60°=60°,∴∠HBC+∠CBF=60°,∴∠HBF=∠MBN=60°,∴∠HBF=∠EBF,∴△HBF≌△EBF(SAS),∴HF=EF,∵HF=HC+CF=AE+CF,∴EF=AE+CF,如图3,(1)中的结论不成立,为AE=EF+CF,理由如下:在在AE上截取AQ=CF,连接BQ,∵AB⊥AD,BC⊥CD,∴∠A=∠BCF=90°,∵AB=BC,∴△BCF≌△BAQ(SAS),∴BF=BQ,∠CBF=∠ABQ,∵∠MBN=60°=∠CBF+∠CBE,∴∠CBE+∠ABQ=60°,∵∠ABC=120°,∴∠QBE=120°-60°=60°=∠MBN,∴∠FBE=∠QBE,∴△FBE≌△QBE(SAS),∴EF=QE,∵AE=QE+AQ=EF+CE,∴AE=EF+CF.【点睛】本题主要考查全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质,熟练掌握全等三角形的性质与判定、含30°角的直角三角形的性质及等边三角形的性质是解题的关键.。
江苏省洪泽县黄集中学2017-2018学年八年级数学下学期期中试题(考试时间90分钟,试卷总分120分)一、选择题(每小题3分,共24分)1.下列汽车标志中,不是中心对称图形的是()ABC D2 .“三次投掷一枚硬币,三次正面朝上”这一事件是()A.必然事件B.随机事件C.不可能事件D.确定事件3 .甲校女生占全校总人数的54%,乙校女生占全校总人数的50%,则女生人数()A.甲校多于乙校B.甲校少于乙校C.不能确定D.两校一样多4)A.4B.14C.13和15D.25.把分式的a、b、c的值都扩大为原来的3倍,则分式的值()A.不变 B.变为原来的3倍 C.变为原来的 D.变为原来的6.下列是最简分式的是()A.B.C.D.7 .若依次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形 B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形8.如图,在正方形O A BC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=25,若∠EOF=45°,则F点的纵坐标是()A.43B.1 C. 2 D.5-1ABCOEFy(第6题)二、填空题(每小题3分,共24分)9 .一个袋中装有6个红球,5个黄球,3个白球,每个球除颜色外都相同,任意摸出一球,摸到 球的可能性最大.10 .当x _____时,分式11x x +-无意义;当x = 时,分式112+-x x 的值为0.11.在菱形ABCD 中,对角线AC =6,BD =8,则菱形ABCD 的周长是12.若m n=3,则2m nn -=_________.13.计算:=+-+3932a a a _______ 14.从1984年起,我国参加了多届夏季奥运会,取得了骄人的成绩.如图是根据第23届至30届夏季奥运会我国获得的金牌数绘制的折线统计图,观察统计图可得:与上一届相比增长量最大的是第 届夏季奥运会.15.如图,为某冷饮店一天售出各种口味雪糕数量的扇形统计图,其中售出红豆口味的雪糕200支,那么售出奶油口味雪糕的数量是 支. 16.如图,在△ABC 中,AB =2,AC =2,∠BAC =105°,△ABD 、△ACE 、△BCF 都是等边三角形,则四边形AEFD 的面积为 .三、解答题(本大题共9小题,72分) 17.(每小题6分,共12分)计算:①;②18.(6分)某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社金牌数/枚(第14题) 巧克力 奶油30% 其它 红豆40% (第15题) (第16题) A B C D E F团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表. 社团名称 人数 文学社团 18 科技社团 a 书画社团 45 体育社团 72 其他 b请解答下列问题:(1)a= ,b= ;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为 ; (3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.19.(本题6分)在如图所示的网格纸中,建立了平面直角坐标系xOy ,点P (1,2),点A (2,5),B (-2,5),C (-2,3).(1) 以点P 为对称中心,画出△A′B′C′,使△A′B′C′与△ABC 关于点P 对称,并写出下列点的坐标:B′ ,C′ ;(2) 多边形ABCA′B′C′的面积是 .20.(6分)先化简4412112+--÷⎪⎭⎫ ⎝⎛-+x x x x ,再从1、2、3三个数中选一个合适..的数作为x 的值,代入求值。
xyC OBAP21.(8分)已知:如图,在矩形ABCD 中,点E 、F 在边AD 上,且AE =DF , 求证:BF =CE22、(8分)如图所示,有一个转盘,转盘被分成4个相同的扇形,颜色分为红、绿、黄三 种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率:(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.23.(8分)如图,△ABC 中,AB =AC ,E 、F 分别是BC 、AC 的中点,以AC 为斜边作Rt△ADC .(1)求证:FE =FD ;(2)若∠CAD =∠CAB =24°,求∠EDF 的度数.24.(8分)解方程①;②.25.(10分)如图,在Rt △ABC 中,∠B=90°,AC=60cm ,∠A=60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm/s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts .过点D 作DF ⊥BC 于点F ,连接DE 、EF .(第23题)A B C D E F红 红 黄 绿 第22题图(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.八年级期中数学参考答案一、选择题(每题3分,共24分)题号 1 2 3 4 5 6 7 8答案 B B C B A B C A二、填空题 (每小题3分,共24分)9.红 10.1;1 11.20 12.513.a-3 14.29 15.150 16.12三、解答题 (共68分)17.【解答】解:①原式=﹣==2;②原式=﹣••=.18.(1)调查的总人数是72÷40%=180(人),则a=180×20%=36(人),则b=180﹣18﹣45﹣72﹣36=9.故答案是:36,9;(2)“书画社团”所对应的扇形圆心角度数是360×=90°;(3)估计该校学生中选择“文学社团”的人数是3000×=300(人).考点:统计表;扇形统计图.19.解:(1)B ′(4,-1),C ′(4,1),图,……4分(其中图2分)(2)28.……6分20.试题解析:原式===,当x=1和x=2时,原式无意义,当x=3时,原式=3﹣2=1.21.试题分析:由ABCD 是矩形得出∠A=∠D=90°,AB=DC ,再证出AF=DE ,由SAS 证明△ABF ≌△DCE ,得出对应边相等即可. 试题解析:∵四边形ABCD 是矩形,∴∠A=∠D=90°,AB=DC ,∵AE=DF ,∴AF=DE ,在△ABF 和△DCE 中,∵AB=DC ,∠A=∠D ,AF=DE ,∴△ABF ≌△DCE (SAS ),∴BF=CE . 考点:1.全等三角形的判定与性质;2.矩形的性质.22.解:转一次转盘,它的可能结果有4种:红、红、绿、黄,且各种结果发生的可能性相等.(1)(指针指向绿色);(2)(指针指向红色或黄色);(3)(指针不指向红色).23.(1)证明:∵E 、F 分别是BC 、AC 的中点,∴FE=21AB .∵F 是AC 的中点,∠ADC =90°,∴FD=21AC . ∵AB=AC ,∴FE=FD .(2)解:∵E 、F 分别是BC 、AC 的中点,∴FE ∥AB , ∴∠EFC=∠BAC=24°.∵F 是AC 的中点,∠ADC=90°,∴FD=AF . ∴∠ADF=∠DAF=24°.∴∠DFC=48°. ∴∠EFD =72°.∵FE=FD ,∴∠FED=∠EDF=54°.24.【解答】解:①去分母得:x 2+2x+1﹣4=x 2﹣1, 解得:x=1,经检验x=1是增根,分式方程无解;②方程整理得: =,即=,去分母得:x2﹣5x+6=x2+x﹣2,解得:x=,经检验x=是分式方程的解.25.(10分)【解答】(1)证明:∵在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,∴∠C=90°﹣∠A=30°.∵CD=4tcm,AE=2tcm,又∵在直角△CDF中,∠C=30°,∴DF=CD=2tcm,∴DF=AE;(2)解:∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)解:当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4tcm,∴DF=AE=2tcm,∴AD=2AE=4tcm,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t(cm),AE=DF=CD=2tcm,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).。