教科版高中物理选修范文全册学案
- 格式:docx
- 大小:316.06 KB
- 文档页数:60
1.2《单摆》学案[自学教材]1.单摆2.单摆的回复力(1)回复力的来源:摆球所受重力沿圆弧切线方向的分力。
(2)回复力的特点:在偏角很小时,单摆摆球所受的回复力与偏离平衡位置的位移成正比,方向总指向平衡位置,即F=-mgl x或F=-kx。
3.单摆做简谐运动的条件在偏角较小的情况下,单摆做简谐运动。
[重点诠释]1.单摆的特点(1)单摆的理想化特点:单摆是一个理想化模型。
实际摆在满足以下条件时可看成是单摆。
①摆线的形变量与摆线长度相比小得多,摆线的质量与摆球质量相比小得多,可把摆线看成是不可伸长且没有质量的。
②摆球的大小与摆线长度相比小得多,可把摆球看成是质点。
(2)单摆的运动特点:①摆线以悬点为圆心做变速圆周运动,因此在运动过程中只要速度v≠0,沿半径方向都受向心力。
②摆线同时以平衡位置为中心做往复运动,因此在运动过程中只要不在平衡位置,沿轨迹的切线方向都受回复力。
2.单摆的动力学特征 (1)任意位置:如图1-2-1所示,G 2=G cos θ,F -G 2的作用就是提供摆球绕O ′做变速圆周运动的向心力;G 1=G sin θ的作用是提供摆球以O 为中心做往复运动的回复力。
图1-2-1(2)平衡位置:摆球经过平衡位置时,G 2=G ,G 1=0,此时F 应大于G ,F -G 的作用是提供向心力;因在平衡位置,回复力F 回=0,与G 1=0相符。
(3)单摆做简谐运动的推证: 在θ很小时,sin θ≈tan θ=xl , G 1=G sin θ=mgl x ,G 1的方向与摆球位移方向相反,所以有回复力 F 回=G 1=-mgl x =-kx 。
因此,在摆角θ很小时,单摆做简谐运动。
(摆角一般不超过5°)1.关于单摆摆球在运动过程中的受力,下列结论正确的是( ) A .摆球受重力、摆线的张力、回复力、向心力作用B .摆球受的回复力最大时,向心力为零;回复力为零时,向心力最大C .摆球受的回复力最大时,摆线中的张力大小比摆球的重力大D .摆球受的向心力最大时,摆球的加速度方向沿摆球的运动方向 解析:单摆在运动过程中,摆球受重力和摆线的拉力作用,故A 错。
3光的波粒二象性一、康普顿效应1.光的散射光子在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射.2.康普顿效应美国物理学家康普顿在研究石墨对X射线的散射时,发现在散射的X射线中,除了与入射波长λ0相同的成分外,还有波长大于λ0的成分,这个现象称为康普顿效应.3.康普顿效应的意义康普顿效应表明光子除了具有能量之外,还具有动量,深入揭示了光的粒子性的一面.4.光子的动量(1)表达式:p=h λ.(2)说明:在康普顿效应中,入射光子与晶体中电子碰撞时,把一部分动量转移给电子,光子的动量变小.因此,有些光子散射后波长变大.二、光的波粒二象性1.光的波粒二象性(1)光的干涉和衍射现象说明光具有波动性,光电效应和康普顿效应说明光具有粒子性.(2)光子的能量ε=hν,光子的动量p=h λ.(3)光子既有粒子的特征,又有波的特征;即光具有波粒二象性.2.对光的波粒二象性的理解(1)大量光子产生的效果显示出波动性;个别光子产生的效果显示出粒子性.(2)光子的能量与其对应的频率成正比,而频率是描述波动性特征的物理量,因此ε=hν揭示了光的粒子性和波动性之间的密切联系.(3)频率低、波长长的光,波动性特征显著,而频率高、波长短的光,粒子性特征显著.(4)光在传播时体现出波动性,在与其他物质相互作用时体现出粒子性.光的粒子性和波动性组成一个有机的统一体.三、光是一种概率波在双缝干涉实验中,屏上亮纹的地方,是光子到达概率大的地方,暗纹的地方是光子到达概率小的地方.所以光波是一种概率波.即光波在某处的强度代表着光子在该处出现概率的大小.在生活中我们会拍很多照片,通常我们都认为,这是由人和景物发出或反射的光波经过照相机的镜头聚焦在底片上形成的.实际上照片上的图像也是由光子撞击底片,使上面的感光材料发生化学反应形成的.下图是用不同曝光量洗印的照片,请你根据自己对光的理解作出说明.用不同曝光量洗印的照片提示:光是一种概率波,在照片的有些地方光子出现的概率大,有些地方光子出现的概率小.在曝光量很小的情况下,在照片上出现的是一些随机分布的光点,随着曝光量的增大,图像逐渐清晰起来.考点一对康普顿效应的理解假定X射线光子与电子发生弹性碰撞,这种碰撞跟台球比赛中的两球碰撞很相似.按照爱因斯坦的光子说,一个X射线光子不仅具有能量E=hν,而且还有动量.如图所示.这个光子与静止的电子发生弹性斜碰,光子把部分能量转移给了电子,能量由hν减小为hν′,因此频率减小,波长增大.同时,光子还使电子获得一定的动量.这样就圆满地解释了康普顿效应.【例1】康普顿效应证实了光子不仅具有能量,也有动量.如图给出了光子与静止电子碰撞后,电子的运动方向,则碰后光子可能沿方向________运动,并且波长________(填“不变”“变短”或“变长”).根据碰撞过程中动量、能量均守恒以及动量是矢量分析此题.【解析】因光子与电子的碰撞过程动量守恒,所以碰撞之后光子和电子的总动量的方向与光子碰前动量的方向一致,可见碰后光子可能沿1方向运动,不可能沿2或3方向;通过碰撞,光子将一部分能量转移给电子,能量减少,由E=hν知,频率变小,再根据c=λν知,波长变长.【答案】1变长总结提能①宏观世界中物体间的相互作用过程中所遵循的规律,也适用于微观粒子的相互作用过程;②康普顿效应进一步揭示了光的粒子性,也再次证明了爱因斯坦光子说的正确性.科学研究证明,光子有能量也有动量,当光子与电子碰撞时,光子的一些能量转移给了电子.则在光子与电子的碰撞过程中,下列说法中正确的是(D)A.能量守恒,动量守恒,且碰撞后光子的波长变短B.能量不守恒,动量不守恒,且碰撞后光子的波长变短C.只有碰撞前后两者的运动方向在一条直线上,能量和动量才守恒,且碰撞后光子的波长变长D.能量守恒,动量守恒,且碰撞后光子的波长变长解析:不论碰撞前后光子和电子的运动方向是否在一条直线上,能量和动量均守恒;由于碰撞过程中光子的一部分能量转移给了电子,由E=hν可知,光子的能量E变小使得频率ν变小,由λ=c知ν波长λ变长.考点二光的波粒二象性1.大量光子产生的效果显示出波动性;个别光子产生的效果显示出粒子性.2.光子和电子、质子等实物粒子一样,具有能量和动量.和其他物质相互作用时,粒子性起主导作用;在光的传播过程中,光子在空间各点出现的可能性的大小(概率),由波动性起主导作用,因此称光波为概率波.3.频率低、波长长的光,波动性特征显著,而频率高、波长短的光,粒子性特征显著.4.光子的能量与其对应的频率成正比,而频率是描述波动性特征的物理量,因此ε=hν揭示了光的粒子性和波动性之间的密切联系.【例2】下列有关光的波粒二象性的说法中,正确的是() A.有的光是波,有的光是粒子B.光子与电子是同样的一种粒子C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著D.大量光子的行为往往显示出粒子性(1)在宏观现象中,波与粒子是对立的概念,而在微观世界中,波与粒子可以统一.(2)光具有波粒二象性是指光在传播过程中和其他物质作用时分别表现出波和粒子的特性.【解析】一切光都具有波粒二象性,光的有些行为(如干涉、衍射)表现出波动性,有些行为(如光电效应)表现出粒子性,所以,不能说有的光是波,有的光是粒子.虽然光子与电子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静止质量,光子不是实物粒子,没有静止质量,电子是以实物形式存在的物质,光子是以场形式存在的物质,所以,不能说光子与电子是同样的一种粒子.光的波粒二象性的理论和实验表明,大量光子的行为表现出波动性,个别光子的行为表现出粒子性.光的波长越长,衍射性越好,即波动性越显著,光的波长越短,其光子能量越大,个别或少数光子的作用就足以引起光接收装置的反应,所以其粒子性就很显著,故选项C正确,A、B、D错误.【答案】 C(多选)人类对光的本性的认识经历了曲折的过程.下列关于光的本性的陈述符合科学规律或历史事实的是(BCD)A.牛顿的“微粒说”与爱因斯坦的“光子说”本质上是一样的B.光的双缝干涉实验显示了光具有波动性C.麦克斯韦预言了光是一种电磁波D.光具有波粒二象性解析:牛顿的“微粒说”认为光是一种物质微粒,爱因斯坦的“光子说”认为光是一份一份不连续的能量,显然选项A错误;干涉、衍射是波的特性,光能发生干涉说明光具有波动性,选项B正确;麦克斯韦根据光的传播不需要介质以及电磁波在真空中的传播速度与光速近似相等,从而认为光是一种电磁波,后来赫兹用实验证实了光的电磁说,选项C正确;光具有波动性与粒子性,称为光的波粒二象性,选项D正确.考点三对概率波的理解1.单个粒子运动的偶然性我们可以知道粒子落在某点的概率,但不能预言粒子落在什么位置,即粒子到达什么位置是随机的,是预先不确定的.2.大量粒子运动的必然性由波动规律,我们可以准确地知道,大量粒子运动时的统计规律,因此我们可以对宏观现象进行预言.3.概率波体现了波粒二象性的和谐统一概率波的主体是光子、实物粒子,体现了粒子性的一面;同时粒子在某一位置出现的概率受波动规律支配,体现了波动性的一面,所以说,概率波将波动性和粒子性统一在一起.【例3】(多选)物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减弱光的强度,使光子只能一个一个地通过狭缝,实验结果表明,如果曝光时间不太长,底片上只出现一些不规则的点子;如果曝光时间足够长,底片上就出现了规则的干涉条纹,对这个实验结果有下列认识,其中正确的是() A.曝光时间不长时,光子的能量太小,底片上的条纹看不清楚,故出现不规则的点子B.单个光子的运动没有确定的轨道C.干涉条纹中明亮的部分是光子到达机会较多的地方D.只有大量光子的行为才能表现出波动性光是概率波,单个光子的运动具有偶然性,大量光子的运动具有必然性.【解析】光波是概率波,单个光子没有确定的轨道,其到达某点的概率受波动规律支配,大量光子的行为符合统计规律,受波动规律支配,才表现出波动性,出现干涉中的亮纹或暗纹,故A错误,B、D正确;干涉条纹中的亮纹处是光子到达机会多的地方,暗纹处是光子到达机会少的地方,但也有光子到达,故C正确.故选BCD.【答案】BCD总结提能物质波是一种概率波,但不能将实物粒子的波动性等同于宏观的机械波.更不能理解为粒子做曲线运动;单个光子到达的位置是不确定的,大量光子遵循波动规律.(多选)在单缝衍射实验中,中央亮纹的光强占从单缝射入的整个光强的95%以上,假设现在只让一个光子通过单缝,那么该光子(CD)A.一定落在中央亮纹处B.一定落在亮纹处C.可能落在暗纹处D.落在中央亮纹处的可能性最大解析:根据光是概率波的概念,对于一个光子通过单缝落在何处,是不可确定的,但概率最大的是落在中央亮纹处,可达95%以上,当然也可落在其他亮纹处,还可能落在暗纹处,不过,落在暗纹处的概率很小,故C、D选项正确.1.关于光的波粒二象性,下列说法中不正确的是(C)A.波粒二象性指光有时表现为波动性,有时表现为粒子性B.光波频率越高,粒子性越明显C.能量较大的光子其波动性越显著D.个别光子易表现出粒子性,大量光子易表现出波动性解析:光的波粒二象性是指光波同时具有波和粒子的双重性质,但有时表现为波动性,有时表现为粒子性,选项A正确;在光的波粒二象性中,频率越大的光,光子的能量越大,粒子性越显著,频率越小的光其波动性越显著,选项B正确,C错误;光既具有粒子性,又具有波动性,大量的光子波动性比较明显,个别光子粒子性比较明显,选项D正确.2.有关光的本性,下列说法正确的是(D)A.光既具有波动性,又具有粒子性,这是互相矛盾和对立的B.光的波动性类似于机械波,光的粒子性类似于质点C.大量光子才具有波动性,个别光子只具有粒子性D.由于光既具有波动性,又具有粒子性,无法只用其中一种去说明光的一切行为,只能认为光具有波粒二象性解析:19世纪初,人们成功地在实验中观察到了光的干涉、衍射现象,这属于波的特征,微粒说无法解释.但到了19世纪末又发现了光的新现象——光电效应,证实光具有粒子性.这种现象波动说不能解释,因此,光既具有波动性,又具有粒子性,但不同于宏观的机械波和机械粒子.波动性和粒子性是光在不同的情况下的不同表现,是同一物体的两个不同侧面,不同属性,我们无法用其中的一种去说明光的一切行为,只能认为光具有波粒二象性,选项D正确.3.光电效应和康普顿效应都包含有电子与光子的相互作用过程,对此下列说法正确的是(D)A.两种效应中电子与光子组成的系统都服从动量守恒定律和能量守恒定律B.两种效应都相当于电子与光子的弹性碰撞过程C.两种效应都属于吸收光子的过程D.光电效应是吸收光子的过程,而康普顿效应相当于光子和电子弹性碰撞的过程解析:光电效应吸收光子放出电子,其过程能量守恒,但动量不守恒,康普顿效应相当于光子与电子弹性碰撞的过程,并且遵守动量守恒定律和能量守恒定律,两种效应都说明光具有粒子性,故D正确.4.下列说法正确的是(B)A.概率波就是机械波B.物质波是一种概率波C.概率波和机械波的本质是一样的,都能发生干涉和衍射现象D.在光的双缝干涉实验中,若有一个光子,则能确定这个光子落在哪个点上解析:概率波与机械波是两个概念,本质不同,选项A、C错误;物质波是一种概率波,符合概率波的特点;在光的双缝干涉实验中,若有一个光子,则不能确定这个光子落在哪个点上,选项D错误,B正确.5.(多选)利用金属晶格(大小约10-10m)作为障碍物观察电子的衍射图样,方法是让电子通过电场加速后,让电子束照射到金属晶格上,从而得到电子的衍射图样,如图所示.已知电子质量为m,电荷量为e,初速度为0,加速电压为U,普朗克常量为h,则下列说法中正确的是(AB)A.该实验说明了电子具有波动性B.实验中电子束的德布罗意波的波长为λ=h2meUC.加速电压U越大,电子的衍射现象越明显D.若用相同动能的质子替代电子,衍射现象将更加明显解析:得到电子的衍射图样,说明电子具有波动性,故A项正确;由德布罗意波波长公式λ=hp,而动量p=2mE k=2meU,所以λ=h2meU,B项正确;从公式λ=h2meU可知,加速电压越大,电子波长越小,衍射现象就越不明显;用相同动能的质子替代电子,质子的波长变小,衍射现象相比电子不明显,故C、D项错误.。
2017-2018学年高中物理第二章直流电路第1讲欧姆定律学案教科版选修3-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中物理第二章直流电路第1讲欧姆定律学案教科版选修3-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中物理第二章直流电路第1讲欧姆定律学案教科版选修3-1的全部内容。
第1讲欧姆定律[目标定位] 1。
知道形成电流的条件,理解电流的定义式I=错误!,并能分析相关问题。
2。
掌握欧姆定律的内容及其适用范围。
3.知道导体的伏安特性和I-U图像,并通过描绘小灯泡的伏安特性曲线掌握利用分压电路改变电压的技巧.一、电流1.自由电荷:导体中可自由运动的电荷,称为自由电荷.金属中的自由电荷是自由电子;电解质溶液中自由电荷是可自由运动的正负离子.2.形成电流的条件:导体中有自由电荷、导体内存在电场.3.电流(1)定义:通过导体横截面的电荷量q跟通过这些电荷所用时间t的比值.(2)定义式:I=错误!。
(3)单位:国际单位是安培(A);常用单位还有毫安(mA)和微安(μA)等,1 mA=10-3A,1 μA =10-6 A。
(4)方向:电流是标量,但有方向.导体内正电荷定向移动的方向为电流方向,即电流方向与负电荷定向移动的方向相反.(5)电流强度的微观解释①如图1所示,导体长为l,两端加一定的电压,导体中的自由电荷沿导体定向移动的速率为v,导体的横截面积为S,导体每单位体积内的自由电荷数为n,每个自由电荷的电荷量为q。
图1②导体AD中的自由电荷总数:N=nlS.总电荷量Q=Nq=nlSq.这些电荷都通过横截面D所需要的时间:t=错误!.由q=It可得,导体AD中的电流为I=错误!=nqSv,即导体中电流取决于n、q、S、v.4.直流和恒定电流方向不随时间改变的电流叫做直流,方向和强弱都不随时间改变的电流叫做恒定电流.深度思考判断下列说法是否正确,并说明理由.(1)电流有方向,所以说电流是矢量.(2)由于I=qt,所以说I与q成正比,与t成反比.答案(1)不正确,电流的计算遵循代数运算法则,所以是标量.(2)I=错误!是电流的定义式,电流与q无正比关系,与t无反比关系.例1在某种带有一价离子的水溶液中,正、负离子在定向移动,方向如图2所示.如果测得2 s内分别有1。
2018-2019版高中物理第二章机械波2 波速与波长、频率的关系学案教科版选修3-4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019版高中物理第二章机械波2 波速与波长、频率的关系学案教科版选修3-4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019版高中物理第二章机械波2 波速与波长、频率的关系学案教科版选修3-4的全部内容。
2 波速与波长、频率的关系[学习目标] 1。
理解波长、频率和波速的物理意义.2.理解波的周期、频率与质点振动周期和频率的关系.3。
理解波长、频率和波速之间的关系,并会进行有关计算。
一、波长、振幅和频率1.波长(1)定义:沿波的传播方向,任意两个相邻的同相振动的质点之间的距离(包含一个“完整的波”),叫做波的波长,常用λ表示。
(2)横波中任意两个相邻的波峰或波谷之间的距离就是横波的波长.纵波中任意两个相邻的密部或疏部之间的距离就是纵波的波长。
2.振幅(1)定义:在波动中,各质点离开平衡位置的最大距离,即其振动的振幅,也称为波的振幅.(2)波的振幅大小是波所传播能量的直接量度.3。
频率(1)定义:波在传播过程中,介质中质点振动的频率都相同,这个频率被称为波的频率.(2)波的频率等于波源振动的频率,与介质的种类无关。
(3)频率与周期的关系:f=错误!或f·T=1.二、波速1。
波速:机械波在介质中的传播速度。
2。
波速的决定因素:由介质本身的性质决定.3.波速、波长、周期(频率)的关系:v=错误!或v=λf.[即学即用]1.判断下列说法的正误.(1)在波的传播方向上位移始终相同的两质点间的距离等于波长。
第四章电磁感应4.1划时代的发现教学目标(一)知识与技能1.知道与电流磁效应和电磁感应现象的发现相关的物理学史。
2.知道电磁感应、感应电流的定义。
(二)过程与方法领悟科学探究中提出问题、观察实验、分析论证、归纳总结等要素在研究物理问题时的重要性。
(三)情感、态度与价值观1.领会科学家对自然现象、自然规律的某些猜想在科学发现中的重要性。
2.以科学家不怕失败、勇敢面对挫折的坚强意志激励自己。
教学重点、难点教学重点知道与电流磁效应和电磁感应现象的发现相关的物理学史。
领悟科学探究的方法和艰难历程。
培养不怕失败、勇敢面对挫折的坚强意志。
教学难点领悟科学探究的方法和艰难历程。
培养不怕失败、勇敢面对挫折的坚强意志。
教学方法教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。
教学手段计算机、投影仪、录像片教学过程一、奥斯特梦圆“电生磁”------电流的磁效应引导学生阅读教材有关奥斯特发现电流磁效应的内容。
提出以下问题,引导学生思考并回答:(1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景?(2)奥斯特的研究是一帆风顺的吗?奥斯特面对失败是怎样做的?(3)奥斯特发现电流磁效应的过程是怎样的?用学过的知识如何解释?(4)电流磁效应的发现有何意义?谈谈自己的感受。
学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。
二、法拉第心系“磁生电”------电磁感应现象教师活动:引导学生阅读教材有关法拉第发现电磁感应的内容。
提出以下问题,引导学生思考并回答:(1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的观点?(2)法拉第的研究是一帆风顺的吗?法拉第面对失败是怎样做的?(3)法拉第做了大量实验都是以失败告终,失败的原因是什么?(4)法拉第经历了多次失败后,终于发现了电磁感应现象,他发现电磁感应现象的具体的过程是怎样的?之后他又做了大量的实验都取得了成功,他认为成功的“秘诀”是什么?(5)从法拉第探索电磁感应现象的历程中,你学到了什么?谈谈自己的体会。
物理高中教科版全部教案
课时:第一课时
题目:物理学的基本概念
教学目标:让学生了解物理学的定义和基本方法,培养学生对物理学的兴趣和理解能力。
一、导入
教师通过展示各种物理现象的图片或视频,引发学生对物理学的兴趣和好奇心。
二、讲解
1. 物理学的定义和研究对象
2. 物理学的基本方法和实验手段
3. 物理学的基本概念:时间、空间、质量、力、能量等
三、练习
1. 列举几个日常生活中的物理现象,让学生尝试用物理学的知识解释。
2. 给出一些物理问题,让学生尝试解答。
四、总结
通过本课学习,学生应该明白物理学是研究物质运动和物质变化规律的科学,了解物理学的基本概念和方法。
课时:第二课时
题目:牛顿力学
教学目标:让学生了解牛顿三大运动定律,掌握牛顿运动定律的应用。
一、导入
教师通过展示牛顿三大运动定律的实验视频,引发学生对课题的兴趣和好奇心。
二、讲解
1. 牛顿第一运动定律
2. 牛顿第二运动定律
3. 牛顿第三运动定律
三、练习
1. 设计实验验证牛顿第一、二、三运动定律。
2. 完成相关练习题目,加深对牛顿运动定律的理解。
四、总结
通过本课学习,学生应该掌握牛顿三大运动定律的概念和应用方法,明白在解决物体运动问题时如何运用这三大定律。
以上为高中物理教科书教案范本,具体教学内容可根据教材实际情况进行调整。
教科版高中物理选修(3-2)第2章第4、5节《电容器在交流电路中的作用电感器在交流电路中的作用》学案电感器在交流电路中的作用[目标定位] 1.通过演示实验了解电感器和电容器对交变电流的阻碍和导通作用.2.知道感抗和容抗的物理意义以及与哪些因素有关.3.能够分析简单电路中的电容器、电感器的作用.一、电容器对交流电的阻碍作用[问题设计]如图1甲、乙所示,把灯泡和电容器串联起来,先把它们接到直流电源上,再把它们接到交流电源上,观察灯泡的发光情况.图1(1)分析电容器能通交流的原因.(2)若把图乙中的电容器去掉,变成图丙所示电路,会发生什么现象?说明了什么?(3)在图乙中,改变电容器的电容和电源频率,灯泡亮度会有什么变化?答案(1)把交流电源接到电容器两个极板上后,当电源电压升高时,电源给电容器充电,电荷向电容器极板上聚集,在电路中,形成充电电流;当电源电压降低时,电容器放电,电荷从极板上流出,在电路中形成放电电流.电容器交替进行充电和放电,电路中就有了电流,好像是交流“通过”了电容器,但实际上自由电荷并没有通过电容器两极板间的绝缘介质.(2)灯泡变得比乙中亮,说明电容器对交变电流有阻碍作用.(3)电容变大时,灯泡变亮;频率增大时,灯泡变亮.[要点提炼]1.容抗:电容器对交流电的阻碍作用.2.影响容抗的因素:电容器的电容越大,交流电的频率越高,容抗越小.3.注意:电容器能通交变电流,并不是电荷真的穿过了电容器.4.电容器在电路中的作用:通交流,隔直流;通高频,阻低频.二、电感器对交流电的阻碍作用[问题设计]如图2所示,把带铁芯的线圈L与小灯泡串联起来,先把它们接到直流电源上,再把它们接到交流电源上,取直流电源的电压与交流电压的有效值相等.图2(1)对比两种情况下灯泡的亮度有什么不同?说明了什么?(2)乙图中换用自感系数更大的线圈或调换频率更高的交流电源,灯泡的亮度有何变化?说明了什么?答案(1)甲图中灯泡比乙图中灯泡更亮,说明电感器对交变电流有阻碍作用.(2)不论是换用自感系数更大的线圈还是调换频率更高的交流电源,灯泡均变得更暗,说明线圈的自感系数越大,交流电的频率越高,线圈对交流电的阻碍作用越大.[要点提炼]1.感抗:电感器对交变电流的阻碍作用的大小.2.影响感抗的因素:线圈的自感系数越大,交流电的频率越高,感抗越大.3.注意:电感器的感抗是由变化的电流在线圈中产生的感应电动势引起的,与制成线圈导体的电阻无关.4.扼流圈是利用电感对交变电流的阻碍作用制成的电感线圈.(1)高频扼流圈高频扼流圈的自感系数很小,只对高频交变电流有较大的阻碍作用,对低频交变电流的阻碍作用较小,对直流电流的阻碍作用更小.它具有“通直流,通低频,阻高频”的作用.(2)低频扼流圈低频扼流圈的自感系数很大,既使交流的频率较低,它产生的感抗也很大.它具有“通直流,阻交流”的作用.三、电阻、感抗、容抗的作用及区别1.容抗的大小除了与电容自身的性质有关,还与交变电流的频率有关,频率越高,容抗越小.(填“大”或“小”)2.感抗的大小除了与电感线圈自身的性质有关外,还与交变电流的频率有关,频率越高,感抗越大.(填“大”或“小”)3.电阻无论对直流还是交流,阻碍作用相同,只取决于电阻本身.一、对容抗的理解例1如图3所示,接在交流电源上的灯泡正常发光,以下说法正确的是 ( )图3A.把电介质插入电容器,灯泡变亮B.增大电容器两极板间的距离,灯泡变亮C.减小电容器两极板间的正对面积,灯泡变暗D.使交变电流频率减小,灯泡变暗解析把电介质插入电容器,电容变大,容抗变小,电容器对交变电流阻碍作用变小,所以灯泡变亮,故A正确;增大电容器两极板间的距离,电容变小,电容器对交变电流阻碍作用变大,所以灯泡变暗,故B错误;减小电容器两极板间的正对面积,电容变小,灯泡变暗,故C 正确;使交变电流频率减小,电容器对交变电流阻碍作用变大,灯泡变暗,故D正确.答案ACD二、对感抗的理解例2如图4所示的实验电路中,若直流电压和交变电压的有效值相等,S为双刀双掷开关,下列叙述正确的是( )图4A.当S掷向a、b时灯较亮,掷向c、d时灯较暗B.当S掷向a、b时灯较暗,掷向c、d时灯较亮C.S掷向c、d,把电感线圈中的铁芯抽出时灯变亮D.S掷向c、d,电源电压不变,而使频率减小时,灯变暗解析线圈对恒定电流无感抗,对交变电流有感抗,当交流电频率减小时,感抗变小,灯变亮,并且是有铁芯时感抗更大,故铁芯抽出时灯变亮,故A、C正确.答案AC三、电阻、感抗、容抗的对比例3如图5所示,电路中完全相同的三只灯泡L1、L2、L3分别与电阻R、电感L、电容C串联,然后再并联到220 V、50 Hz的交流电路上,三只灯泡亮度恰好相同.若保持交变电压不变,将交变电流的频率增大到60 Hz,则发生的现象是( )图5A.三灯亮度不变B.三灯均变亮C.L1亮度不变、L2变亮、L3变暗D.L1亮度不变、L2变暗、L3变亮解析当交变电流的频率变大时,线圈的感抗变大,电容器的容抗变小,因此L3变亮,L2变暗.又因为电阻在直流和交流电路中起相同的作用,故L1亮度不变,所以选D.答案 D四、电感器、电容器在电路中的应用例4在收音机线路中,经天线接收下来的电信号既有高频成分,又有低频成分,经放大后送到下一级,需要把低频成分和高频成分分开,只让低频成分输送到再下一级,可以采用如图6所示电路,其中a 、b 应选择的元件是 ()图6A .a 是电容较大的电容器,b 是低频扼流圈B .a 是电容较大的电容器,b 是高频扼流圈C .a 是电容较小的电容器,b 是低频扼流圈D .a 是电容较小的电容器,b 是高频扼流圈解析 电容器具有通高频、阻低频的作用,这样的电容器电容较小,所以a 处放电容较小的电容器,电感线圈在该电路中要求起到通低频、阻高频的作用,b 处接一个高频扼流圈,D 对. 答案D电容器和电感器在交流电路中的作用⎩⎪⎪⎨⎪⎪⎧电容⎩⎪⎨⎪⎧ 容抗:电容对交变电流阻碍作用的大小容抗的大小:C 越大、f 越高,容抗越小应用⎩⎪⎨⎪⎧ 隔直电容器:通交流,隔直流高频旁路电容器:通高频,阻低频电感⎩⎪⎨⎪⎧ 感抗:电感对交变电流阻碍作用的大小感抗的大小:L 越大、f 越高,感抗越大应用⎩⎪⎨⎪⎧ 低频扼流圈:通直流,阻交流高频扼流圈:通直流,通低频,阻高频1.(对容抗的理解)如图7所示,白炽灯和电容器串联后接在交流电源的两端,当交流电源的频率增大时 ( )图7A.电容器电容增大 B.电容器电容减小C.灯变暗 D.灯变亮答案 D解析电容器的电容是由电容器本身的特性决定的,与外加的交流电源的频率无关,选项A、B 错误.当交流电源的频率增大时,电容器充、放电的速度加快,电容器的容抗减小,电流增大,灯变亮,故选项C错误,D正确.2. (对感抗的理解)在如图8所示的电路中,L为电感线圈,灯泡的电阻为R,电流表内阻为零,电压表内阻无限大,交流电源的电压u=2202sin (100πt) V.若保持电压的有效值不变,只将电源频率改为100 Hz,下列说法正确的是( )图8A.电流表示数增大B.电压表示数增大C.灯泡变暗D.灯泡变亮答案BC解析由u=2202sin (100πt) V,可得电源原来的频率f=ω2π=100π2πHz=50 Hz,当电源频率由原来的50 Hz增为100 Hz时,线圈的感抗增大,在电压不变的情况下,电路中的电流减小,选项A错误;灯泡的电阻R是一定的,电流减小时,实际消耗的电功率(P=I2R)减小,灯泡变暗,选项C正确,D错误;电压表与电感线圈并联,其示数为线圈两端的电压U L,设灯泡两端电压为U R,则电源电压的有效值为U=U L+U R,因U R=IR,故电流I减小时,U R减小,因电源电压的有效值保持不变,故U L=U-U R增大,选项B正确.3. (电阻、感抗、容抗的对比)如图9所示,三个灯泡相同,而且足够耐压,电源内阻忽略(两电源的电动势相同).单刀双掷开关S接A时,三个灯亮度相同,那么S接B时( )图9A.三个灯亮度相同B.甲灯最亮,丙灯不亮C.甲灯和乙灯亮度相同,丙灯不亮D.只有丙灯不亮,乙灯最亮答案 D解析开关S接A时,甲、乙、丙三个支路均有交流电通过,开关S接B时,电路处于直流工作状态.电容器C“隔直流、通交流”;电感线圈L“阻交流、通直流”;R对交流电、直流电有相同的阻抗.可判断S接B时电路中I丙=0,I甲不变,I乙增大;又因为灯泡亮度与功率(P=I2R)成正比,所以只有丙灯不亮,乙灯最亮.题组一对容抗的理解1.对交变电流通过电容器的理解正确的是( )A.交变电流能够使电容器极板间的绝缘介质变成导体B.交变电流定向移动的电荷通过电容器两极板间的绝缘介质C.交变电流能够使电容器交替进行充电、放电,电路中就有了电流,表现为交变电流通过了电容器D.交变电流通过了电容器,实际上自由电荷并没有通过电容器极板间的绝缘介质(击穿除外) 答案CD解析电流能“通过”电容器,并非自由电荷真的通过电容器两极板间的绝缘介质,而是交变电流交替对电容器充、放电,电路中有了电流,表现为交变电流通过了电容器.2.有两个电容器的电容分别为C1=5 μF和C2=3 μF,分别加在峰值一定的正弦交流电源上,在下列各种情况下,哪一种情况通过电容器的电流最大( )A.在C1上所加交变电流频率为50 HzB.在C2上所加交变电流的频率为50 HzC.在C1上所加交变电流的频率为100 HzD.在C2上所加交变电流的频率为100 Hz答案 C解析电容越大,交变电流频率越大,容抗越小,电流越容易通过电容器.C1>C2,100 Hz>50 Hz,所以C正确.3.如图1所示的电路,F为一交流发电机,C为平行板电容器,为使电流表A的示数增大,可行的办法是 ( )图1A.使发电机F的转速增大B.使发电机F的转速减小C.在平行板电容器间换用介电常数较小的电介质D.使电容器两极板间的距离增大答案 A解析当发电机转速增大时,交变电流的频率增大,容抗减小,电流表A的读数增大,A项正确,B项错误;在平行板电容器间换用介电常数较小的电介质时,电容器的电容减小,电容器两极板间距离增大时电容也减小,当电容减小时,容抗增大,对交变电源的阻碍作用增大,电流表A示数减小,C、D两项均错误.题组二对感抗的理解4. 一个灯泡通过一个粗导线线圈与一交流电源相连接,如图2所示.一铁棒插进线圈后,该灯将( )图2A.变亮B.变暗C.对灯的亮度没影响D.无法判断答案 B解析在线圈内由于磁场变化而产生的感应电动势,总是阻碍电流变化,正是这种阻碍变化的特性,使线圈产生了感抗.加入铁芯改变了电感线圈的自感系数,使自感系数增大,感抗增大,降落的电压增大,灯泡两端的电压减小,所以灯变暗.5. 如图3所示,输入端a、b的输入电压既有直流成分,又有交流成分,以下说法中正确的是(L的直流电阻不为零但较小)( )图3A.直流成分只能从L通过B.交流成分只能从R通过C.通过R的既有直流成分又有交流成分D.通过L的直流成分比通过R的直流成分要大答案CD解析由于线圈L的直流电阻不为零,所以有直流通过R,而线圈对交流有阻碍作用,因此也有交流成分通过R,B错,C正确;由于R对交流也有阻碍作用,所以也有交流成分通过L,A 错;因为线圈的直流电阻较小,所以通过线圈的直流成分比通过R的要大,D正确.题组三电阻、感抗、容抗的对比6. 如图4所示,甲、乙是规格相同的灯泡,接线柱a、b接电压为U的直流电源时,无论电源的正极与哪一个接线柱相连,甲灯均能正常发光,乙灯完全不亮.当a、b接电压的有效值为U 的交流电源时,甲灯发出微弱的光,乙灯能正常发光,则下列判断正确的是( )图4A.与甲灯串联的元件x是电容器,与乙灯串联的元件y是电感线圈B.与甲灯串联的元件x是电感线圈,与乙灯串联的元件y是电容器C.与甲灯串联的元件x是二极管,与乙灯串联的元件y是电容器D.与甲灯串联的元件x是电感线圈,与乙灯串联的元件y是二极管答案 B解析由a、b接直流电流时的现象可知,元件x“通直流”,元件y“隔直流”,由a、b接交流电源时的现象可知,元件x“阻交流”,元件y“通交流”,根据电容器和电感线圈的特点,可判断元件x是电感线圈,元件y是电容器,选项B正确.7. 如图5所示,在电路两端加上正弦交流电,保持电压有效值不变,使频率增大,发现各灯的亮暗情况是:灯L1变亮,灯L2变暗,灯L3不变,则M、N、L中所接元件可能是 ( )图5A.M为电阻,N为电容器,L为电感线圈B.M为电感线圈,N为电容器,L为电阻C.M为电容器,N为电感线圈,L为电阻D.M为电阻,N为电感线圈,L为电容器答案 C解析题组四电感器、电容器在电路中的应用8. 在电子技术中,从某一装置输出的电流既有高频成分又有低频成分,如果只需把低频成分输送到下一级装置,如图6所示,则下列做法合理的是( )图6A.在a、b间接入一个电容器B.在a、b间接入一个低频扼流圈C.在a、b间接入一个高频扼流圈D.在a、b间接入一个电容器或高频或低频扼流圈都可以答案 C解析电容器是“通高频,阻低频”,低频扼流圈“通直流,阻交流”,而高频扼流圈“通直流,通低频,阻高频”,C对.9.如图7甲、乙所示是电子技术中的常用电路,a、b是各部分电路的输入端,其中输入的交流高频成分用“”表示,交流低频成分用“~”表示,直流成分用“-”表示.关于两图中负载电阻R上得到的电流特征,下列判断正确的是 ( )图7A.图甲中R得到的是交流成分B.图甲中R得到的是直流成分C.图乙中R得到的是低频成分D.图乙中R得到的是高频成分答案AC解析当交变电流加在电容器上时,有“通交流、隔直流,通高频、阻低频”的特性,题图甲中电容器隔直流,R得到的是交流成分,A正确,B错误;题图乙中电容器通过交流高频成分,阻碍交流低频成分,R得到的是低频成分,C正确,D错误.10.某一电学黑箱内可能有电容器、电感线圈、定值电阻等元件,在接线柱间以如图8甲所示的“Z”字形连接(两接线柱间只有一个元件).为了确定各元件种类,小华同学把DIS计算机辅助实验系统中的电流传感器(相当于电流表)与一直流电源、滑动变阻器、开关串联后,分别将AB、BC、CD接入电路,闭合开关,计算机显示的电流随时间变化的图像分别如图9a、b、c所示,则下列判断中正确的是( )图8图9A.AB间是电容器 B.BC间是电感线圈C.CD间是电容器 D.CD间是定值电阻答案ABD解析根据题图a可知,有瞬时充电电流,稳定后电路中无电流,说明AB间是电容器,充电完毕,电路为开路,故A正确.根据题图b可知,阻碍电流增大,但是稳定后电流恒定,符合电感线圈的特点,所以BC间为电感线圈,故B正确.根据题图c,接通电路后,电流马上达到稳定值,说明CD间为定值电阻,故C错误,D正确.。
学案2 描述交流电的物理量[学习目标定位] 1.掌握交变电流的周期、频率、线圈转动角速度三者之间的关系.2.能理解电流的有效值是与热效应有关的量,而平均值只是简单意义的平均.3.掌握交变电流有效值与峰值的关系,会进行有效值的计算.1.线圈在某一段时间内从一个位置转动到另一个位置的过程中产生的平均电动势为E =N ΔΦΔt. 2.恒定电流产生电热的计算遵循焦耳定律,Q =I 2Rt .一、周期和频率1.周期:交变电流作一次周期性变化所需的时间,叫做它的周期,通常用T 表示,单位 是s.2.频率:交变电流在1 s 内完成周期性变化的次数,叫做它的频率,通常用f 表示,单位是Hz.3.周期和频率互为倒数,即T =1f 或f =1T.4.线圈转动的角速度ω等于频率的2π倍,即ω=2πf . 二、峰值有效值1.峰值:U m 和I m 分别表示了在一个周期内电压和电流所能达到的最大值.2.交变电压的峰值不能超过(选填“超过”或“低于”)电容器、二极管等元器件所能承受的电压,否则就有被击穿而损坏的危险.3.有效值:交流电的有效值是根据电流的热效应来规定的,如果交流电与某一直流电通过同一电阻,在相同的时间内所产生的热量相等,则这个直流电的电流和电压值,就分别称为相应交流电的电流和电压的有效值.4.正弦式交变电流的有效值I 、U 与峰值I m 、U m 的关系:I =22I m ,U =22U m . 5.人们通常说的家庭电路的电压是220 V ,指的是有效值.使用交流电表测出的数值是正弦交流电的有效值.一、周期和频率[问题设计] 如图1所示,这个交变电流的周期是多少?频率是多少?图1答案 周期T =0.02 s ;频率f =50 Hz. [要点提炼]1.交流电变化越快,则周期越短,频率越大.2.角速度与周期的关系:ω=2πT.3.转速(n ):线圈单位时间(1 s 或1 min)转过的圈数,单位是r/s 或r/min.角速度与转速的关系:ω=2πn (n 单位为r/s)或ω=πn30(n 单位为r/min).4.我国电网中交变电流的周期是0.02 s ,频率是50 Hz. 二、峰值有效值 [问题设计]1.图2是通过一个R =1 Ω的电阻的电流i 随时间变化的曲线.这个电流不是恒定电流. (1)怎样计算1 s 内电阻R 中产生的热量?(2)如果有一个大小、方向都不变的恒定电流通过这个电阻R ,也能在1 s 内产生同样的热,这个电流是多大?图2答案 (1)Q =I 21Rt 1+I 22Rt 2=42×1×0.5 J +22×1×0.5 J =10 J(2)由Q =I 2Rt 得I = Q Rt = 101×1A =10 A2.某交流电压瞬时值表达式u =62sin (100πt ) V ,把标有“6 V ,2 W ”的小灯泡接在此电源上会不会被烧坏?把一个能承受的最大电压为6 V 的电容器接在此电源上会不会被击穿? 答案 小灯泡不会被烧坏,交流电压瞬时值表达式u =62sin (100πt ) V 中6 2 V 是最大值,其有效值为6 V ,而标有“6 V,2 W ”的小灯泡中的6 V 是有效值.电容器会被击穿. [要点提炼]1.峰值:也叫最大值,它是所有瞬时值中的最大值.(1)当线圈平面跟磁感线平行时,交流电动势最大,E m =NBSω(转轴垂直于磁感线). (2)电容器接在交流电路中,交变电压的最大值不能超过电容器的耐压值.2.有效值的应用(1)计算与电流热效应有关的量(如功率、热量)要用有效值.(2)交流电表的测量值,电气设备标注的额定电压、额定电流,通常提到的交流电的数值指有效值.3.有效值的计算(1)正弦式交变电流:根据E=E m2、U=U m2、I=I m2计算其有效值.(2)非正弦式交变电流:只能根据电流的热效应计算.计算时要注意三同:“相同电阻”上、“相同时间”内、产生“相同热量”.计算时,“相同时间”一般取一个周期.4.平均值的应用计算通过导体某一截面的电荷量时,只能用交变电流的平均值,即q=I·Δt=ERΔt=NΔΦR,这是平均值应用最多的一处.一、对描述交变电流物理量的认识例1一正弦交流电的电压随时间变化的规律如图3所示,由图可知()图3A.该交流电的电压的有效值为100 VB.该交流电的频率为25 HzC.该交流电压瞬时值的表达式为u=100sin 25t VD.并联在该电压两端的电压表指针不停摆动解析根据题图可知该交变电流电压的最大值为100 V,周期为4×10-2 s,所以频率为25 Hz,A错,B对;而ω=2πf=50π rad/s,所以u=100sin (50πt) V,C错;交流电压表的示数为交流电的有效值而不是瞬时值,不随时间变化,D错.答案 B二、正弦式交变电流有效值的计算例2一台小型发电机产生的电动势随时间变化的正弦规律图像如图4甲所示.已知发电机线圈内阻为5.0 Ω,外接一只电阻为95.0 Ω的灯泡,如图乙所示,则()图4A .电压表的示数为220 VB .电路中的电流方向每秒钟改变50次C .灯泡实际消耗的功率为484 WD .发电机线圈内阻每秒钟产生的焦耳热为24.2 J解析 电压表示数为灯泡两端电压的有效值,由题图知电动势的最大值E m =220 2 V ,有效值E =220 V ,灯泡两端电压U =RER +r =209 V ,A 错;由题图甲知T =0.02 s ,一个周期内电流方向变化两次,可知1 s 内电流方向变化100次,B 错;灯泡的实际功率P =U 2R =209295 W =459.8 W ,C 错;电流的有效值I =ER +r =2.2 A ,发电机线圈内阻每秒钟产生的焦耳热为Q r =I 2rt =2.22×5×1J =24.2 J .D 对. 答案 D三、非正弦式交变电流有效值的计算例3 如图5所示是一交变电流随时间变化的图像,求此交变电流的有效值.图5解析 设该交变电流的有效值为I ′,直流电的电流强度为I ,让该交变电流和直流电分别通过同一电阻(阻值为R ),在一个周期(T =0.2 s)内,该交变电流产生的热量:Q ′=I 21Rt 1+I 22Rt 2=(42)2R ×0.1+(-32)2R ×0.1=5R 在一个周期内直流电通过该电阻产生的热量 Q =I 2RT =0.2I 2R .由Q =Q ′得,0.2I 2R =5R ,解得I =5 A ,即此交变电流的有效值I ′=I =5 A 答案 5 A四、有效值、瞬时值、平均值的区别应用例4 在水平方向的匀强磁场中,有一正方形闭合线圈绕垂直磁感线的轴匀速转动,已知线圈的匝数为n =100匝,边长为20 cm ,电阻为10 Ω,转动频率f =50 Hz ,磁场的磁感应强度为0.5 T ,求:(1)外力驱动线圈转动的功率.(2)转至线圈平面与中性面的夹角为30°时,线圈产生的感应电动势及感应电流的瞬时值大小.(3)线圈由中性面转至与中性面成30°夹角的过程中,通过线圈横截面的电荷量. 解析 (1)线圈中交变电动势的最大值E m =nBSω=100×0.5×(0.2)2×2π×50 V =628 V .交变电动势的有效值E =E m2=314 2 V.外力驱动线圈转动的功率与线圈中交变电流的功率相等. 即P 外=E 2R =(3142)210W =1.97×104 W.(2)线圈转到与中性面成30°角时,其电动势的瞬时值 e =E m sin 30°=314 V ,交变电流的瞬时值 i =e R =31410A =31.4 A. (3)在线圈从中性面转过30°角的过程中,线圈中的平均感应电动势E =n ΔΦΔt,平均感应电流I =ER =n ΔΦR ·Δt, 通过线圈横截面的电荷量为q ,则q =I Δt =n ΔΦR =nBl 2(1-cos 30°)R=100×0.5×0.22×(1-0.866)10 C=2.68×10-2 C.答案 (1)1.97×104 W (2)314 V 31.4 A (3)2.68×10-2 C1.(对描述交变电流物理量的认识)如图6是某种正弦式交变电压的波形图,由图可确定该电压的 ( )图6A .周期是0.01 sB .最大值是220 VC .有效值是220 VD .表达式为u =220sin (100πt ) V 答案 C解析 由题图可知,该交变电压的周期为0.02 s ,最大值为311 V ,而有效值U =U m 2=3112 V=220 V ,故A 、B 错误,C 正确.正弦交变电压的瞬时值表达式u =U m sin ωt =311sin (2π0.02t ) V =311sin (100πt ) V ,故D 选项错误.2.(正弦式交变电流有效值的计算)一个矩形线圈在匀强磁场中绕垂直于磁场的轴匀速转动,周期为T .从中性面开始计时,当t =112T 时,线圈中感应电动势的瞬时值为2 V ,则此交变电流的有效值为( ) A .2 2 V B .2 VC. 2 VD.22V 答案 A解析 先用代入法求出感应电动势的最大值:由e =E m sin ωt 得2 V =E m sin (2πT ×T12),由此得E m =4 V ,因此有效值为2 2 V .选项A 正确.3.(非正弦式交变电流有效值的计算)通过一阻值R =100 Ω的电阻的交变电流如图7所示,其周期为1 s .电阻两端电压的有效值为 ( )图7A .12 VB .410 VC .15 VD .8 5 V答案 B解析 根据电流的热效应计算电流的有效值.由(0.1)2R ×0.4×2+(0.2)2R ×0.1×2=I 2R ×1可得,流过电阻的电流的有效值I=1025A,电阻两端电压的有效值为U=IR=410 V,B正确.题组一对描述交变电流物理量的认识1.下列提到的交流电,不是指有效值的是()A.交流电压表的读数B.保险丝熔断电流C.电容器击穿电压D.220 V交流电压答案 C解析电容器击穿电压指电容器两端允许加的电压的最大值.2.以下说法正确的是()A.交变电流的有效值就是它的平均值B.任何交变电流的有效值都是它最大值的1 2C.如果交变电流接在电阻R上产生的热量为Q,那么该交变电流的有效值为Q RD.以上说法均不正确答案 D解析有效值是根据电流的热效应来定义的,平均值并不是有效值,例如线圈在匀强磁场中转动一圈,其平均电动势为零,故A错.在正弦(余弦)式交变电流中,其有效值为最大值的12,对于其他交变电流并不一定满足此关系,故B错.交变电流要产生热量需要一定的时间,C选项中没有告诉时间,因此是错误的.3.下列关于交变电流的说法正确的是()A.若交变电流的峰值为5 A,则它的最小值为-5 AB.用交流电流表测交变电流时,指针来回摆动C.我国工农业生产和生活用的交变电流频率为50 Hz,故电流方向每秒改变100次D.正弦交变电流i=20sin (10πt) A的峰值为20 A,频率为100 Hz答案 C解析电流的负值表示电流方向与规定正方向相反,不表示大小,A项错误;交流电流表测交变电流时,指针不会来回摆动,B项错误;我国工农业生产和生活用的交变电流,周期为0.02 s,交流电方向一个周期改变两次,所以每秒改变100次,C项正确;由ω=2πf得正弦交变电流i=20sin (10πt) A的频率为5 Hz,D项错误.题组二非正弦式交变电流有效值的计算4.阻值为1 Ω的电阻上通以交变电流,其i-t关系如图1所示,则在0~1 s内电阻上产生的热量为 ( )图1A .1 JB .1.5 JC .2 JD .2.8 J答案 D解析 因为所加的电流为交变电流,大小在变化,所以只能分时间段来求热量.在0~1 s 内有效电流的瞬时值大小为1 A 和2 A 的时间段分别为t 1=0.4 s ,t 2=0.6 s ,所以Q =I 21Rt 1+I 22Rt 2=2.8 J.5.某一交变电流的电压波形如图2所示,求这一交变电流的电压的有效值U .图2答案 210 V解析 假设让一直流电压U 和如题图所示的交流电压分别加在同一电阻两端,交变电流在一个周期内产生的热量Q 1=2(U 21R ·T 4+U 22R ·T4)=82R ·T 2+42R ·T 2.直流电在一个周期内产生的热量Q 2=U 2R ·T .由交变电流有效值的定义知Q 1=Q 2,即82R ·T 2+42R ·T 2=U 2R ·T .解得U =210 V.题组三 正弦式交变电流有效值的计算6.如图3甲是小型交流发电机的示意图,两磁极N 、S 间的磁场可视为水平方向的匀强磁场,为交流电流表.线圈绕垂直于磁场方向的水平轴OO ′沿逆时针方向匀速转动,从图示位置开始计时,产生的交变电流随时间变化的图像如图乙所示,以下判断正确的是 ( )图3A .电流表的示数为10 AB .线圈转动的角速度为50π rad/sC .0.01 s 时线圈平面与磁场方向平行D .0.02 s 时电阻R 中电流的方向自右向左答案 AC7.电阻R 1、R 2与交流电源按照如图4甲所示方式连接,R 1=10 Ω、R 2=20 Ω.合上开关S 后,通过电阻R 2的正弦交变电流i 随时间t 变化的情况如图乙所示.则( )图4A .通过R 1的电流的有效值是1.2 AB .R 1两端的电压有效值是6 VC .通过R 2的电流的最大值是1.2 2 AD .R 2两端的电压最大值是6 2 V 答案 B解析 由题图乙可得,正弦交变电流的最大值I m =0.6 2 A ,所以电流的有效值I =I m2=0.6 A ,电阻R 1、R 2串联,所以电流的最大值均为0.6 2 A ,有效值均为0.6 A .由欧姆定律U =IR 得,U 1=IR 1=6 V ,所以U 1m =2U 1=6 2 V ;U 2=IR 2=12 V ,U 2m =2U 2=12 2 V. 8.在图5所示电路中,A 是熔断电流I 0=2 A 的保险丝,电阻可不计,R 是可变电阻,S 是交流电源.交流电源的内电阻不计,其电动势随时间变化的规律是e =2202sin 314t V .为了不使保险丝熔断,可变电阻的阻值应该大于( )图5A .110 2 ΩB .110 ΩC .220 ΩD .220 2 Ω答案 B解析 E =220 V ,R min =E I 0=2202Ω=110 Ω.9.把U 0=10 V 的直流电压加在阻值为R 的电阻上,其发热功率跟另一个正弦交变电压加在阻值为R2上的电功率相同,则这个交变电流的电压的峰值为 ( )A .10 VB .10 2 VC .20 VD .20 2 V答案 A解析 直流电压U 0加在阻值为R 的电阻上,而交变电流加在阻值为R2的电阻上,它们联系的桥梁是发热功率相等.设这个交变电压的有效值为U ,则由电功率公式得U 20R T =U 2R2T ,U=2U 02,故U m = 2U =U 0=10 V .正确答案为A.题组四 瞬时值、峰值、有效值、平均值的区别应用10.矩形线圈在匀强磁场中匀速转动,从中性面开始转动180°的过程中,平均感应电动势和最大感应电动势之比为( ) A .π/2B .2/πC .2πD .π答案 B11.如图6所示,线圈abcd 的面积是0.05 m 2,共100匝,线圈电阻为1 Ω,外接电阻R =9 Ω,匀强磁场的磁感应强度为B =1πT ,当线圈以300 r/min 的转速匀速转动时,求:图6(1)电路中交流电压表和交流电流表的示数;(2)线圈从图示位置转过90°的过程中通过电阻R 的电荷量. 答案 (1)31.86 V 3.54 A (2)0.16 C 解析 (1)E m =NBSω=100×1π×0.05×2π×30060 V =50 VE =E m2=25 2 V ≈35.4 V.电流表示数I =ER +r =3.54 A ,电压表示数U =IR =3.54×9 V =31.86 V. (2)从图示位置转过90°的过程中, E =N ΔΦΔt ,又因为I =E R +r ,q =I Δt ,联立得q =N ΔΦR +r =NBSR +r≈0.16 C.12.如图7所示,矩形线圈面积为S ,匝数为N ,线圈电阻为r ,在磁感应强度为B 的匀强磁场中绕OO ′轴以角速度ω匀速转动,外电路电阻为R .当线圈由图示位置转过90°的过程中,求:教案全集、尽在百度教学资料、应有尽有图7(1)通过电阻R 的电荷量q ;(2)电阻R 上所产生的热量Q .答案 (1)NBS R +r (2)πN 2B 2S 2ωR 4(R +r )2解析 本题考查交变电流平均值、有效值的应用,关键要知道求电荷量用交变电流的平均值,求热量用交变电流的有效值.(1)依题意磁通量的变化量ΔΦ=BS ,线圈转过90°的时间为Δt =T 4=2π4ω=π2ω,平均感应电动势为E =N ΔΦΔt =2NBSωπ.平均感应电流为I =E R +r =2NBSωπ(R +r ).通过电阻R 的电荷量为q =I ·Δt =NBS R +r. (2)线圈中感应电动势有效值和最大值E m 的关系是E =E m 2=NBSω2,电路中电流的有效值为I =E R +r =NBSω2(R +r ). 电阻R 上产生的热量为Q =I 2Rt =πN 2B 2S 2ωR 4(R +r )2.。
第一章静电场第1节电荷及其守恒定律接触起电的电荷分配原则两个完全相同的金属球接触后电荷会重新进行分配,如图1-1-2所示.电荷分配的原则是:两个完全相同的金属球带同种电荷接触后平分原来所带电荷量的总和;带异种电荷接触后先中和再平分.图1-1-21.“中性”与“中和”之间有联系吗?“中性”和“中和”是两个完全不同的概念,“中性”是指原子或者物体所带的正电荷和负电荷在数量上相等,对外不显电性,表现为不带电的状态.可见,任何不带电的物体,实际上其中都带有等量的异种电荷;“中和”是指两个带等量异种电荷的物体,相互接触时,由于正负电荷间的吸引作用,电荷发生转移,最后都达到中性状态的一个过程.2.电荷守恒定律的两种表述方式的区别是什么?(1)两种表述:①电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移的过程中,电荷的总量保持不变.②一个与外界没有电荷交换的系统,电荷的代数和总是保持不变的.(2)区别:第一种表述是对物体带电现象规律的总结,一个原来不带电的物体通过某种方法可以带电,原来带电的物体也可以使它失去电性(电的中和),但其实质是电荷的转移,电荷的数量并没有减少.第二种表述则更具有广泛性,涵盖了包括近代物理实验发现的微观粒子在变化中遵守的规律,近代物理实验发现,由一个高能光子可以产生一个正电子和一个负电子,一对正负电子可同时湮灭,转化为光子.在这种情况下,带电粒子总是成对产生或湮灭,电荷的代数和不变,即正负电子的产生和湮灭与电荷守恒定律并不矛盾.一、电荷基本性质的理解【例1】绝缘细线上端固定,图1-1-3下端悬挂一个轻质小球a,a的表面镀有铝膜;在a的近旁有一绝缘金属球b,开始时,a、b都不带电,如图1-1-3所示.现使a、b分别带正、负电,则()A.b将吸引a,吸引后不放开B.b先吸引a,接触后又与a分开C.a、b之间不发生相互作用D.b立即把a排斥开答案 B解析因a带正电,b带负电,异种电荷相互吸引,轻质小球a将向b靠拢并与b接触.若a、b原来所带电荷量不相等,则当a与b接触后,两球先中和一部分原来电荷,然后将净余的电荷重新分配,这样就会带上同种电荷(正电或负电),由于同种电荷相互排斥,两球将会被排斥开.若a、b原来所带电荷量相等,则a、b接触后完全中和而都不带电,a、b自由分开.二、元电荷的理解【例2】关于元电荷的下列说法中正确的是()A.元电荷实质上是指电子和质子本身B.所有带电体的电荷量一定等于元电荷的整数倍C.元电荷的数值通常取作e=×10-19 CD.电荷量e的数值最早是由美国科学家密立根用实验测得的答案BCD解析元电荷实际上是指电荷量,数值为×10-19 C,不要误以为元电荷是指某具体的带电物质,如电子.元电荷是电荷量值,没有正负电性的区别.宏观上所有带电体的电荷量一定是元电荷的整数倍.元电荷的具体数值最早是由密立根用油滴实验测得的,测量精度相当高.1.在图1-1-1中的同学的带电方式属于()A.接触起电B.感应起电C.摩擦起电D.以上说法都不对答案 A解析该演示中采用了接触的方法进行带电,属于接触起电.2.当把用丝绸摩擦过的玻璃棒去接触验电器的金属球后,金属箔片张开.此时,金属箔片所带的电荷的带电性质和起电方式是()A.正电荷B.负电荷C.接触起电D.感应起电答案AC解析金属箔片的带电性质和相接触的玻璃棒带电性质是相同的.金属箔片的起电方式为接触起电.3.当把用丝绸摩擦过的玻璃棒去靠近验电器的金属球后,金属箔片张开.此时,金属箔片所带的电荷的带电性质和起电方式是()A.正电荷B.负电荷C.感应起电D.摩擦起电答案AC解析注意该题目和上题的区别.在该题目中,玻璃棒没有接触到金属球,属于感应起电,和玻璃棒靠近的一端(金属球)带电性质和玻璃棒相反,带负电,和玻璃棒相距较远的一端(金属箔片)带电性质和玻璃棒相同,带正电荷.金属箔片的起电方式为感应起电.4.带电微粒所带的电荷量不可能是下列值中的()A.×10-19 C B.-×10-19 CC.-×10-18 C D.×10-17 C答案 A解析任何带电体的电荷量都只能是元电荷电荷量的整数倍,元电荷电荷量为e=×10-19 C.选项A中电荷量为3/2倍,B中电荷量为4倍,C中电荷量为10倍.D中电荷量为250倍.也就是说B、C、D选项中的电荷量数值均是元电荷的整数倍.所以只有选项A是不可能的.题型一常见的带电方式如图1所示,图1有一带正电的验电器,当一金属球A靠近验电器的小球B(不接触)时,验电器的金箔张角减小,则()A.金属球A可能不带电B.金属球A可能带负电C.金属球A可能带正电D.金属球A一定带负电思维步步高金属箔片的张角为什么减小?金属箔片上所带电荷的性质和金属球上带电性质有何异同?如果A带正电会怎样?不带电会怎样?带负电会怎样?解析验电器的金箔之所以张开,是因为它们都带有正电荷,而同种电荷相排斥.张开角度的大小决定于它们电荷量的多少.如果A球带负电,靠近验电器的B球时,异种电荷相互吸引,使金箔上的正电荷逐渐“上移”,从而使两金箔夹角减小.如果A球不带电,在靠近B球时,发生静电感应现象使A 球电荷发生极性分布,靠近B球的端面出现负的感应电荷,而背向B球的端面出现正的感应电荷.A球上的感应电荷与验电器上的正电荷发生相互作用.因距离的不同而表现为吸引作用,从而使金箔张角减小.答案AB拓展探究如果该题中A带负电,和B接触后张角怎么变化?答案张角变小.题型二电荷守恒定律有两个完全相同的带电绝缘金属小球A、B,分别带有电荷量为Q A=×10-9 C,Q B=-×10-9 C,让两绝缘金属小球接触,在接触过程中,电子如何转移并转移了多少?思维步步高为什么要求两个小球完全相同?当带异种电荷的带电体接触后会产生什么现象?接触后各个小球的带电性质和带电荷量有何特点?转移的电子个数和电荷量有什么关系?解析在接触过程中,由于B球带负电,其上多余的电子转移到A球,这样中和A球上的一部分电荷直至B球为中性不带电,同时,由于A球上有净余正电荷,B球上的电子会继续转移到A球,直至两球带上等量的正电荷.在接触过程中,电子由球B转移到球A.接触后两小球各自的带电荷量:Q A′=Q B′=Q A+Q B2=错误!C=×10-9 C共转移的电子电荷量为ΔQ=-Q B+Q B′=×10-9 C+×10-9 C=×10-9 C转移的电子数n=ΔQe=错误!=×1010个答案电子由球B转移到球A×1010个拓展探究如果该题中两个电荷的带电性质相同,都为正电荷,其他条件不变,其结论应该是什么?答案电子由球B转移到球A×1010个解析接触后带电荷量平分,每个小球的带电荷量为错误!=×10-9 C,转移的电荷量为×10-9C,转移的电子数为×1010个.一、选择题1.有一个质量很小的小球A,用绝缘细线悬挂着,当用毛皮摩擦过的硬橡胶棒B靠近它时,看到它们互相吸引,接触后又互相排斥,则下列说法正确的是()A.接触前,A、B一定带异种电荷B.接触前,A、B可能带异种电荷C.接触前,A球一定不带任何电荷D.接触后,A球一定带电荷答案BD2.如图2所示,图2在真空中,把一个绝缘导体向带负电的球P慢慢靠近.关于绝缘导体两端的电荷,下列说法中正确的是()A.两端的感应电荷越来越多B.两端的感应电荷是同种电荷C.两端的感应电荷是异种电荷D.两端的感应电荷电荷量相等答案ACD解析由于导体内有大量可以自由移动的电子,当带负电的球P慢慢靠近它时,由于同种电荷相互排斥,导体上靠近P的一端的电子被排斥到远端,从而显出正电荷,远离P的一端带上了等量的负电荷.导体离P球距离越近,电子被排斥得越多,感应电荷越多.3.下列说法正确的是()A.摩擦起电是创造电荷的过程B.接触起电是电荷转移的过程C.玻璃棒无论和什么物体摩擦都会带正电D.带等量异种电荷的两个导体接触后,电荷会消失,这种现象叫做电荷的湮灭答案 B解析在D选项中,电荷并没有消失或者湮灭,只是正负电荷数目相等,表现为中性.4.为了测定水分子是极性分子还是非极性分子(极性分子就是该分子是不显电中性的,它通过电场会发生偏转,非极性分子不偏转),可做如下实验:在酸式滴定管中注入适量蒸馏水,打开活塞,让水慢慢如线状流下,将用丝绸摩擦过的玻璃棒接近水流,发现水流向靠近玻璃棒的方向偏转,这证明()A.水分子是非极性分子B.水分子是极性分子C.水分子是极性分子且带正电D.水分子是极性分子且带负电答案BD解析根据偏转,可判断出水分子是极性分子;根据向玻璃棒偏转,可以判断出其带负电.5.在上题中,如果将用毛皮摩擦过的橡胶棒接近水流.则()A.水流将向远离橡胶棒的方向偏离B.水流将向靠近橡胶棒的方向偏离C.水流先靠近再远离橡胶棒D.水流不偏转答案 A解析用毛皮摩擦过的橡胶棒和用丝绸摩擦过的玻璃棒的带电性质相反.6.有甲、乙、丙三个小球,将它们两两靠近,它们都相互吸引,如图3所示.那么,下面的说法正确的是()图3A.三个小球都带电B.只有一个小球带电C.有两个小球带同种电荷D.有两个小球带异种电荷答案 D7.如图4所示,图4a、b、c、d为四个带电小球,两球之间的作用分别为a吸引d,b排斥c,c排斥a,d吸引b,则关于它们的带电情况()A.仅有两个小球带同种电荷B.仅有三个小球带同种电荷C.c、d两小球带同种电荷D.c、d两小球带异种电荷答案BD解析根据它们之间的相互吸引和排斥的关系可知a、b、c带同种电荷,d和其它三个小球带电性质不同.在解决该题时可以先假设其中一个带电小球的带电性质.二、计算论述题8.如图5所示,图5将两个气球充气后挂起来,让它们碰在一起,用毛织品分别摩擦两个气球相互接触的地方.放开气球后,你可能观察到什么现象?你能解释这个现象吗?答案 发现两个气球分开,这是因为两个气球带同种电荷,同种电荷相互排斥,所以会分开.9.有三个完全一样的绝缘金属球,A 球所带电荷量为Q ,B 、C 不带电.现要使B 球带有38Q 的电荷量,应该怎么办?答案 见解析解析 由于两个完全相同的金属球接触时,剩余电荷量平均分配,因此,可由以下四种方法: ①A 与C 接触分开,再让B 与C 接触分开,然后A 与B 接触分开; ②A 与C 接触分开,再让A 与B 接触分开,然后B 与C 接触分开; ③A 与B 接触分开,再让B 与C 接触分开,然后A 与B 接触分开;④A 与B 接触分开,再让A 与C 接触分开,然后B 与C 接触分开.10.两块不带电的金属导体A 、B 均配有绝缘支架,现有一个带正电的小球C . (1)要使两块金属导体带上等量异种电荷,则应如何操作?哪一块带正电? (2)要使两块金属导体都带上正电荷,则应如何操作? (3)要使两块金属导体都带上负电荷,则应如何操作?答案 (1)先将两块导体A 、B 紧靠在一起,然后将带电体C 从一端靠近导体,再将两导体分开,最后移走带电体C .远离带电体C 的一块带正电.(2)先将两块导体A 、B 紧靠在一起,然后将带电体C 接触导体A (或B ),再将导体C 移走,再将两导体A 、B 分开,则A 、B 都带上了正电.(3)先将两块导体A 、B 紧靠在一起,然后将带电体C 从一端靠近导体,用手接触一下A (或B ),再将两导体A 、B 分开,最后移走带电体C ,则A 、B 都带上了负电.第2节 库仑定律.要点一 点电荷点电荷:当带电体间的距离比它们自身的大小大得多,以至带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看作带电的点,叫做点电荷.(1)点电荷是只有电荷量,没有大小、形状的理想化模型,类似于力学中的质点,实际中并不存在.(2)一个带电体能否看作点电荷,是相对于具体问题而言的,不能单凭其大小和形状确定,例如,一个半径为10 cm 的带电圆盘,如果考虑它和相距10 m 处某个电子的作用力,就完全可以把它看作点电荷,而如果这个电子离带电圆盘只有1 mm ,那么这一带电圆盘又相当于一个无限大的带电平面.要点二 库仑定律的理解1.适用条件:适用于真空中的点电荷.真空中的电荷若不是点电荷,如图1-2-2所示.同种电荷时,实际距离会增大,如图(a)所示;异种电荷时,实际距离会减小,如图(b)所示.图1-2-22.对公式122q q F kr =的理解:有人根据公式122q q F k r =,设想当r →0时,得出F →∞的结论.从数学角度这是必然的结论,但从物理的角度分析,这一结论是错误的,其原因是,当r →0时,两电荷已失去了点电荷的前提条件,何况实际的电荷都有一定的大小和形状,根本不会出现r =0的情况,也就是说,在r →0时不能再用库仑定律计算两电荷间的相互作用力.3.计算库仑力的大小与判断库仑力的方向分别进行.即用公式计算库仑力的大小时,不必将电荷q 1、q 2的正、负号代入公式中,而只将电荷量的绝对值代入公式中计算出力的大小,力的方向根据同种电荷相斥、异种电荷相吸加以判断即可.4.式中各量的单位要统一用国际单位,与k =×109 N·m 2/C 2统一.5.如果一个点电荷同时受到另外的两个或更多的点电荷的作用力,可由静电力叠加的原理求出合力.6.两个点电荷间的库仑力为相互作用力,同样满足牛顿第三定律.1.么简捷,却揭示了自然界中深奥的道理,这就是自然界和谐多样的美.特别提醒(1)库仑力和万有引力是不同性质的力.(2)万有引力定律适用时,库仑定律不一定适用.2.三个点电荷如何在一条直线上平衡?当三个共线的点电荷在库仑力作用下均处于平衡状态时.(1)三个电荷的位置关系是“同性在两边,异性在中间”.如果三个电荷只在库仑力的作用下且在同一直线上能够处于平衡状态,则这三个电荷一定有两个是同性电荷,一个是异性电荷,且两个同性电荷分居在异性电荷的两边.(2)三个电荷中,中间电荷的电荷量最小,两边同性电荷谁的电荷量小,中间异性电荷就距离谁近一些.一、库仑定律的理解【例1】对于库仑定律,下面说法正确的是()A.库仑定律适用于真空中两个点电荷之间的相互作用力B.两个带电小球即使相距非常近,也能用库仑定律C.相互作用的两个点电荷,不论它们的电荷量是否相同,它们之间的库仑力大小一定相等D.当两个半径为r的带电金属球中心相距为4r时,对于它们之间的静电力大小,只取决于它们各自所带的电荷量答案AC解析由库仑定律的适用条件知,选项A正确;两个小球若距离非常近则不能看作点电荷,库仑定律不成立,B项错误;点电荷之间的库仑力属作用力和反作用力,符合牛顿第三定律,故大小一定相等,C项正确;D项中两金属球不能看作点电荷,它们之间的静电力大小不仅与电荷量大小有关,而且与电性有关,若带同种电荷,则在斥力作用下,电荷分布如图(a)所示;若带异种电荷,则在引力作用下电荷分布如图(b)所示,显然带异种电荷时相互作用力大,故D项错误.综上知,选项A、C正确.二、点电荷的理解【例2】下列关于点电荷的说法中,正确的是()A.只有体积很小的带电体才能看成是点电荷B.体积很大的带电体一定不能看成是点电荷C.当两个带电体的大小远小于它们之间的距离时,可将这两个带电体看成点电荷D.一切带电体都可以看成是点电荷答案 C解析本题考查点电荷这一理想模型.能否把一个带电体看成点电荷,关键在于我们分析时是否考虑它的体积大小和形状.能否把一个带电体看作点电荷,不能以它的体积大小而论,应该根据具体情况而定.若它的体积和形状可不予考虑时,就可以将其看成点电荷.故选C.1.下列关于点电荷的说法正确的是()A.点电荷可以是带电荷量很大的带电体B.带电体体积很大时不能看成点电荷C .点电荷的所带电荷量可能是×10-20 CD .大小和形状对作用力影响可以忽略的带电体可以看作点电荷 答案 AD2.如图1-2-3所示,图1-2-3两个半径均为r 的金属球放在绝缘支架上,两球面最近距离为r ,带等量异种电荷,电荷量绝对值均为Q ,两球之间的静电力为( )A .等于k Q 29r 2B .大于k Q 29r 2C .小于k Q 29r 2D .等于k Q 2r2答案 B3.(1)通过对氢核和核外电子之间的库仑力和万有引力大小的比较,你能得到什么结论? (2)你怎样确定两个或两个以上的点电荷对某一点电荷的作用力?答案 (1)微观粒子间的万有引力远小于库仑力,因此在研究微观带电粒子的相互作用力时,可忽略万有引力.(2)两个点电荷之间的作用力不因第三个点电荷的存在而有所改变.因此,两个或两个以上的点电荷对某一个点电荷的作用力等于各点电荷单独对这个电荷的作用力的矢量和.4.关于库仑扭秤图1-2-4问题1:1785年,库仑用自己精心设计的扭秤(如图1-2-4所示)研究了两个点电荷之间的排斥力与它们间距离的关系.通过学习库仑巧妙的探究方法,回答下面的问题.(1)库仑力F 与距离r 的关系. (2)库仑力F 与电荷量的关系.问题2:写出库仑定律的数学表达式,并说明静电力常量k 的数值及物理意义.答案 问题1:(1)F ∝1r2 (2)F ∝q 1q 2问题2:F =k q 1q 2r2,k =9×109 N·m 2/C 2.物理意义:两个电荷量为1 C 的点电荷,在真空中相距1 m 时,它们之间的库仑力为1 N. 题型一 库仑定律的应用 如图1所示,两个正电荷q 1、q 2的电荷量都是3 C ,静止于真空中,相距r =2 m.图1(1)在它们的连线AB 的中点O 放入正电荷Q ,求Q 受的静电力. (2)在O 点放入负电荷Q ,求Q 受的静电力.(3)在连线上A 点左侧的C 点放上负点电荷q 3,q 3=1 C 且AC =1 m ,求q 3所受的静电力.思维步步高库仑定律的表达式是什么?在这个表达式中各个物理量的物理意义是什么?在直线上的各个点如果放入电荷q ,它将受到几个库仑力的作用?这几个力的方向如何?如何将受到的力进行合成?解析 在A 、B 连线的中点上,放入正电荷受到两个电荷库仑力的作用,这两个力大小相等,方向相反,所以合力为零.如果在O 点放入负电荷,仍然受到两个大小相等,方向相反的力,合力仍然为零.在连线上A 的左侧放入负电荷,则受到q 1和q 2向右的吸引力,大小分别为F 1=kq 3q 1x 2和F 2=kq 3q 2(r +x )2,其中x 为AC 之间的距离.C 点受力为二力之和,代入数据为3×1010 N ,方向向右.答案 (1)0 (2)0 (3)3×1010 N ,方向向右拓展探究在第三问中如果把q 3放在B 点右侧距离B 为1 m 处,其他条件不变,求该电荷受到的静电力?答案 3×1010 N 方向向左解析 求解的方法和第三问相同,只不过电荷在该点受到两个电荷的库仑力的方向都向左,所以合力方向向左,大小仍然是3×1010 N.在教学过程中,强调不管在O点放什么性质的电荷,该电荷受到的静电力都为零,为下一节电场强度的叠加做好准备.另外还可以把电荷q3放在AB连线的中垂线上进行研究.题型二库仑定律和电荷守恒定律的结合甲、乙两导体球,甲球带有×10-16 C的正电荷,乙球带有×10-16 C的负电荷,放在真空中相距为10 cm的地方,甲、乙两球的半径远小于10 cm.(1)试求两球之间的静电力,并说明是引力还是斥力?(2)将两个导体球相互接触一会儿,再放回原处,其作用力能求出吗?是斥力还是引力?思维步步高为什么题目中明确两球的直径远小于10 cm?在应用库仑定律时带电体所带电荷的正负号怎样进行处理的?当接触后电荷量是否中和?是否平分?解析(1)因为两球的半径都远小于10 cm,因此可以作为两个点电荷考虑.由库仑定律可求:F=k q1q2r2=×109×错误!N=×10-19 N两球带异种电荷,它们之间的作用力是引力.(2)将两个导体球相互接触,首先正负电荷相互中和,还剩余-×10-16 C的正电荷,这些正电荷将重新在两导体球间分配,由于题中并没有说明两个导体球是否完全一样,因此我们无法求出力的大小,但可以肯定两球放回原处后,它们之间的作用力变为斥力.答案(1)×10-19 N引力(2)不能斥力拓展探究如果两个导体球完全相同,接触后放回原处,两球之间的作用力如何?答案×10-21 N斥力解析如果两个导体球完全相同,则电荷中和后平分,每个小球的带电荷量为×10-16 C,代入数据得两个电荷之间的斥力为F=×10-21 N.两个导体相互接触后,电荷如何分配,跟球的形状有关,只有完全相同的两金属球,电荷才平均分配.一、选择题1.下列说法正确的是()A.点电荷就是体积很小的带电体B.点电荷就是体积和所带电荷量很小的带电体C 根据F=k q1q2r2可知,当r→0时,有F→∞D.静电力常量的数值是由实验得出的答案 D解析当r→0时,电荷不能再被看成点电荷,库仑定律不成立.2.两个半径相同的金属小球,带电荷量之比为1∶7,相距r,两者相互接触后,再放回原来的位置,则相互作用力可能是原来的()答案CD解析由库仑定律可知,库仑力与电荷量的乘积成正比,设原来两小球分别带电荷量为q1=q、q2=7q.若两小球原来带同种电荷,接触后等分电荷量,则q1′=4q,q2′=4q,则D正确.若两小球原来带异种电荷,接触后到q1″=3q,q2″=3q,则由库仑定律可知,C正确.3.如图2所示,图2在绝缘的光滑水平面上,相隔一定距离有两个带同种电荷的小球,从静止同时释放,则两个小球的加速度和速度大小随时间变化的情况是()A.速度变大,加速度变大B.速度变小,加速度变小C.速度变大,加速度变小D.速度变小,加速度变大答案 C解析 根据同种电荷相斥,每个小球在库仑斥力的作用下运动,由于力的方向与运动方向相同,均做加速直线运动,速度变大;再由库仑定律F =k q 1q 2r 2知随着距离的增大,库仑斥力减小,加速度减小,所以只有选项C 正确.4.如图3所示,图3两个带电金属小球中心距离为r ,所带电荷量相等为Q ,则关于它们之间电荷的相互作用力大小F 的说法正确的是( )A .若是同种电荷,F <k Q 2r 2B .若是异种电荷,F >k Q 2r 2C .若是同种电荷,F >k Q 2r 2D .不论是何种电荷,F =k Q 2r2答案 AB 解析 净电荷只能分布在金属球的外表面,若是同种电荷则互相排斥,电荷间的距离大于r ,如图所示,根据库仑定律F=k q 1q 2r 2,它们之间的相互作用力小于k Q 2r2.若是异种电荷则相互吸引,电荷间的距离小于r ,则相互作用力大于k Q 2r2.故选项A 、B 正确.5.如图4所示,图4悬挂在O 点的一根不可伸长的绝缘细线下端有一个带电荷量不变的小球A .在两次实验中,均缓慢移动另一带同种电荷的小球B ,当B 到达悬点O 的正下方并与A 在同一水平线上,A 处于受力平衡时,悬线偏离竖直方向的角度为θ.若两次实验中B 的电荷量分别为q 1和q 2,θ分别为30°和45°,则q 2/q 1为( )A .2B .3C .2 3D .3 3 答案 C解析 A 处于平衡状态,则库仑力F =mg tan θ.当θ1=30°时,有kq 1qr 21=mg tan 30°,r 1=l sin 30°;当θ2=45°时,有k q 2q r 22=mg tan 45°,r 2=l sin 45°,联立得q 2q 1=2 3.6.如图5所示,图5把一个带电小球A 固定在光滑的水平绝缘桌面上,在桌面的另一处放置带电小球B .现给B 一个沿垂直AB 方向的水平速度v 0,B 球将( )A .若A 、B 为异种电性的电荷,B 球一定做圆周运动B .若A 、B 为异种电性的电荷,B 球可能做加速度、速度均变小的曲线运动C .若A 、B 为同种电性的电荷,B 球一定做远离A 球的变加速曲线运动D .若A 、B 为同种电性的电荷,B 球的动能一定会减小 答案 BC解析 (1)若两个小球所带电荷为异种电荷,则B 球受到A 球的库仑引力,方向指向A .因v 0⊥AB ,当B 受到A 的库仑力恰好等于向心力,即k q 1q 2r 2=m v 20r 时,解得初速度满足v 0=kq 1q 2mr,B 球做匀速圆周运动;当v >v 0时,B 球将做库仑力、加速度、速度都变小的离心运动;当v <v 0时,B 球将做库仑力、加速度、速度逐渐增大的向心运动.(2)若两个小球所带电荷为同种电荷,B 球受A 球的库仑斥力而做远离A 的变加速曲线运动(因为A 、B 距离增大,故斥力变小,加速度变小,速度增加).。
第一章静电场第1节电荷及其守恒定律接触起电的电荷分配原则两个完全相同的金属球接触后电荷会重新进行分配,如图1-1-2所示.电荷分配的原则是:两个完全相同的金属球带同种电荷接触后平分原来所带电荷量的总和;带异种电荷接触后先中和再平分.图1-1-21.“中性”与“中和”之间有联系吗?“中性”和“中和”是两个完全不同的概念,“中性”是指原子或者物体所带的正电荷和负电荷在数量上相等,对外不显电性,表现为不带电的状态.可见,任何不带电的物体,实际上其中都带有等量的异种电荷;“中和”是指两个带等量异种电荷的物体,相互接触时,由于正负电荷间的吸引作用,电荷发生转移,最后都达到中性状态的一个过程.2.电荷守恒定律的两种表述方式的区别是什么?(1)两种表述:①电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移的过程中,电荷的总量保持不变.②一个与外界没有电荷交换的系统,电荷的代数和总是保持不变的.(2)区别:第一种表述是对物体带电现象规律的总结,一个原来不带电的物体通过某种方法可以带电,原来带电的物体也可以使它失去电性(电的中和),但其实质是电荷的转移,电荷的数量并没有减少.第二种表述则更具有广泛性,涵盖了包括近代物理实验发现的微观粒子在变化中遵守的规律,近代物理实验发现,由一个高能光子可以产生一个正电子和一个负电子,一对正负电子可同时湮灭,转化为光子.在这种情况下,带电粒子总是成对产生或湮灭,电荷的代数和不变,即正负电子的产生和湮灭与电荷守恒定律并不矛盾.一、电荷基本性质的理解【例1】绝缘细线上端固定,图1-1-3下端悬挂一个轻质小球a,a的表面镀有铝膜;在a的近旁有一绝缘金属球b,开始时,a、b都不带电,如图1-1-3所示.现使a、b分别带正、负电,则()A.b将吸引a,吸引后不放开B.b先吸引a,接触后又与a分开C.a、b之间不发生相互作用D.b立即把a排斥开答案 B解析因a带正电,b带负电,异种电荷相互吸引,轻质小球a将向b靠拢并与b接触.若a、b原来所带电荷量不相等,则当a与b接触后,两球先中和一部分原来电荷,然后将净余的电荷重新分配,这样就会带上同种电荷(正电或负电),由于同种电荷相互排斥,两球将会被排斥开.若a、b原来所带电荷量相等,则a、b接触后完全中和而都不带电,a、b自由分开.二、元电荷的理解【例2】关于元电荷的下列说法中正确的是()A.元电荷实质上是指电子和质子本身B.所有带电体的电荷量一定等于元电荷的整数倍C.元电荷的数值通常取作e=×10-19 CD.电荷量e的数值最早是由美国科学家密立根用实验测得的答案BCD解析元电荷实际上是指电荷量,数值为×10-19 C,不要误以为元电荷是指某具体的带电物质,如电子.元电荷是电荷量值,没有正负电性的区别.宏观上所有带电体的电荷量一定是元电荷的整数倍.元电荷的具体数值最早是由密立根用油滴实验测得的,测量精度相当高.1.在图1-1-1中的同学的带电方式属于()A.接触起电B.感应起电C.摩擦起电D.以上说法都不对答案 A解析该演示中采用了接触的方法进行带电,属于接触起电.2.当把用丝绸摩擦过的玻璃棒去接触验电器的金属球后,金属箔片张开.此时,金属箔片所带的电荷的带电性质和起电方式是()A.正电荷B.负电荷C.接触起电D.感应起电答案AC解析金属箔片的带电性质和相接触的玻璃棒带电性质是相同的.金属箔片的起电方式为接触起电.3.当把用丝绸摩擦过的玻璃棒去靠近验电器的金属球后,金属箔片张开.此时,金属箔片所带的电荷的带电性质和起电方式是()A.正电荷B.负电荷C.感应起电D.摩擦起电答案AC解析注意该题目和上题的区别.在该题目中,玻璃棒没有接触到金属球,属于感应起电,和玻璃棒靠近的一端(金属球)带电性质和玻璃棒相反,带负电,和玻璃棒相距较远的一端(金属箔片)带电性质和玻璃棒相同,带正电荷.金属箔片的起电方式为感应起电.4.带电微粒所带的电荷量不可能是下列值中的()A.×10-19 C B.-×10-19 CC.-×10-18 C D.×10-17 C答案 A解析任何带电体的电荷量都只能是元电荷电荷量的整数倍,元电荷电荷量为e=×10-19 C.选项A中电荷量为3/2倍,B中电荷量为4倍,C中电荷量为10倍.D中电荷量为250倍.也就是说B、C、D选项中的电荷量数值均是元电荷的整数倍.所以只有选项A是不可能的.题型一常见的带电方式如图1所示,图1有一带正电的验电器,当一金属球A靠近验电器的小球B(不接触)时,验电器的金箔张角减小,则()A.金属球A可能不带电B.金属球A可能带负电C.金属球A可能带正电D.金属球A一定带负电思维步步高金属箔片的张角为什么减小?金属箔片上所带电荷的性质和金属球上带电性质有何异同?如果A带正电会怎样?不带电会怎样?带负电会怎样?解析验电器的金箔之所以张开,是因为它们都带有正电荷,而同种电荷相排斥.张开角度的大小决定于它们电荷量的多少.如果A球带负电,靠近验电器的B球时,异种电荷相互吸引,使金箔上的正电荷逐渐“上移”,从而使两金箔夹角减小.如果A球不带电,在靠近B球时,发生静电感应现象使A 球电荷发生极性分布,靠近B球的端面出现负的感应电荷,而背向B球的端面出现正的感应电荷.A球上的感应电荷与验电器上的正电荷发生相互作用.因距离的不同而表现为吸引作用,从而使金箔张角减小.答案AB拓展探究如果该题中A带负电,和B接触后张角怎么变化?答案张角变小.题型二电荷守恒定律有两个完全相同的带电绝缘金属小球A、B,分别带有电荷量为Q A=×10-9 C,Q B=-×10-9 C,让两绝缘金属小球接触,在接触过程中,电子如何转移并转移了多少?思维步步高为什么要求两个小球完全相同?当带异种电荷的带电体接触后会产生什么现象?接触后各个小球的带电性质和带电荷量有何特点?转移的电子个数和电荷量有什么关系?解析在接触过程中,由于B球带负电,其上多余的电子转移到A球,这样中和A球上的一部分电荷直至B球为中性不带电,同时,由于A球上有净余正电荷,B球上的电子会继续转移到A球,直至两球带上等量的正电荷.在接触过程中,电子由球B转移到球A.接触后两小球各自的带电荷量:Q A′=Q B′=Q A+Q B2=错误!C=×10-9 C共转移的电子电荷量为ΔQ=-Q B+Q B′=×10-9 C+×10-9 C=×10-9 C转移的电子数n=ΔQe=错误!=×1010个答案电子由球B转移到球A×1010个拓展探究如果该题中两个电荷的带电性质相同,都为正电荷,其他条件不变,其结论应该是什么?答案电子由球B转移到球A×1010个解析接触后带电荷量平分,每个小球的带电荷量为错误!=×10-9 C,转移的电荷量为×10-9C,转移的电子数为×1010个.一、选择题1.有一个质量很小的小球A,用绝缘细线悬挂着,当用毛皮摩擦过的硬橡胶棒B靠近它时,看到它们互相吸引,接触后又互相排斥,则下列说法正确的是()A.接触前,A、B一定带异种电荷B.接触前,A、B可能带异种电荷C.接触前,A球一定不带任何电荷D.接触后,A球一定带电荷答案BD2.如图2所示,图2在真空中,把一个绝缘导体向带负电的球P慢慢靠近.关于绝缘导体两端的电荷,下列说法中正确的是()A.两端的感应电荷越来越多B.两端的感应电荷是同种电荷C.两端的感应电荷是异种电荷D.两端的感应电荷电荷量相等答案ACD解析由于导体内有大量可以自由移动的电子,当带负电的球P慢慢靠近它时,由于同种电荷相互排斥,导体上靠近P的一端的电子被排斥到远端,从而显出正电荷,远离P的一端带上了等量的负电荷.导体离P球距离越近,电子被排斥得越多,感应电荷越多.3.下列说法正确的是()A.摩擦起电是创造电荷的过程B.接触起电是电荷转移的过程C.玻璃棒无论和什么物体摩擦都会带正电D.带等量异种电荷的两个导体接触后,电荷会消失,这种现象叫做电荷的湮灭答案 B解析在D选项中,电荷并没有消失或者湮灭,只是正负电荷数目相等,表现为中性.4.为了测定水分子是极性分子还是非极性分子(极性分子就是该分子是不显电中性的,它通过电场会发生偏转,非极性分子不偏转),可做如下实验:在酸式滴定管中注入适量蒸馏水,打开活塞,让水慢慢如线状流下,将用丝绸摩擦过的玻璃棒接近水流,发现水流向靠近玻璃棒的方向偏转,这证明()A.水分子是非极性分子B.水分子是极性分子C.水分子是极性分子且带正电D.水分子是极性分子且带负电答案BD解析根据偏转,可判断出水分子是极性分子;根据向玻璃棒偏转,可以判断出其带负电.5.在上题中,如果将用毛皮摩擦过的橡胶棒接近水流.则()A.水流将向远离橡胶棒的方向偏离B.水流将向靠近橡胶棒的方向偏离C.水流先靠近再远离橡胶棒D.水流不偏转答案 A解析用毛皮摩擦过的橡胶棒和用丝绸摩擦过的玻璃棒的带电性质相反.6.有甲、乙、丙三个小球,将它们两两靠近,它们都相互吸引,如图3所示.那么,下面的说法正确的是()图3A.三个小球都带电B.只有一个小球带电C.有两个小球带同种电荷D.有两个小球带异种电荷答案 D7.如图4所示,图4a、b、c、d为四个带电小球,两球之间的作用分别为a吸引d,b排斥c,c排斥a,d吸引b,则关于它们的带电情况()A.仅有两个小球带同种电荷B.仅有三个小球带同种电荷C.c、d两小球带同种电荷D.c、d两小球带异种电荷答案BD解析根据它们之间的相互吸引和排斥的关系可知a、b、c带同种电荷,d和其它三个小球带电性质不同.在解决该题时可以先假设其中一个带电小球的带电性质.二、计算论述题8.如图5所示,图5将两个气球充气后挂起来,让它们碰在一起,用毛织品分别摩擦两个气球相互接触的地方.放开气球后,你可能观察到什么现象?你能解释这个现象吗?答案 发现两个气球分开,这是因为两个气球带同种电荷,同种电荷相互排斥,所以会分开.9.有三个完全一样的绝缘金属球,A 球所带电荷量为Q ,B 、C 不带电.现要使B 球带有38Q 的电荷量,应该怎么办?答案 见解析解析 由于两个完全相同的金属球接触时,剩余电荷量平均分配,因此,可由以下四种方法: ①A 与C 接触分开,再让B 与C 接触分开,然后A 与B 接触分开; ②A 与C 接触分开,再让A 与B 接触分开,然后B 与C 接触分开; ③A 与B 接触分开,再让B 与C 接触分开,然后A 与B 接触分开;④A 与B 接触分开,再让A 与C 接触分开,然后B 与C 接触分开.10.两块不带电的金属导体A 、B 均配有绝缘支架,现有一个带正电的小球C . (1)要使两块金属导体带上等量异种电荷,则应如何操作?哪一块带正电? (2)要使两块金属导体都带上正电荷,则应如何操作? (3)要使两块金属导体都带上负电荷,则应如何操作?答案 (1)先将两块导体A 、B 紧靠在一起,然后将带电体C 从一端靠近导体,再将两导体分开,最后移走带电体C .远离带电体C 的一块带正电.(2)先将两块导体A 、B 紧靠在一起,然后将带电体C 接触导体A (或B ),再将导体C 移走,再将两导体A 、B 分开,则A 、B 都带上了正电.(3)先将两块导体A 、B 紧靠在一起,然后将带电体C 从一端靠近导体,用手接触一下A (或B ),再将两导体A 、B 分开,最后移走带电体C ,则A 、B 都带上了负电.第2节 库仑定律.要点一 点电荷点电荷:当带电体间的距离比它们自身的大小大得多,以至带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看作带电的点,叫做点电荷.(1)点电荷是只有电荷量,没有大小、形状的理想化模型,类似于力学中的质点,实际中并不存在.(2)一个带电体能否看作点电荷,是相对于具体问题而言的,不能单凭其大小和形状确定,例如,一个半径为10 cm 的带电圆盘,如果考虑它和相距10 m 处某个电子的作用力,就完全可以把它看作点电荷,而如果这个电子离带电圆盘只有1 mm ,那么这一带电圆盘又相当于一个无限大的带电平面.要点二 库仑定律的理解1.适用条件:适用于真空中的点电荷.真空中的电荷若不是点电荷,如图1-2-2所示.同种电荷时,实际距离会增大,如图(a)所示;异种电荷时,实际距离会减小,如图(b)所示.图1-2-22.对公式122q q F kr =的理解:有人根据公式122q q F k r =,设想当r →0时,得出F →∞的结论.从数学角度这是必然的结论,但从物理的角度分析,这一结论是错误的,其原因是,当r →0时,两电荷已失去了点电荷的前提条件,何况实际的电荷都有一定的大小和形状,根本不会出现r =0的情况,也就是说,在r →0时不能再用库仑定律计算两电荷间的相互作用力.3.计算库仑力的大小与判断库仑力的方向分别进行.即用公式计算库仑力的大小时,不必将电荷q 1、q 2的正、负号代入公式中,而只将电荷量的绝对值代入公式中计算出力的大小,力的方向根据同种电荷相斥、异种电荷相吸加以判断即可.4.式中各量的单位要统一用国际单位,与k =×109 N·m 2/C 2统一.5.如果一个点电荷同时受到另外的两个或更多的点电荷的作用力,可由静电力叠加的原理求出合力.6.两个点电荷间的库仑力为相互作用力,同样满足牛顿第三定律.1.么简捷,却揭示了自然界中深奥的道理,这就是自然界和谐多样的美.特别提醒(1)库仑力和万有引力是不同性质的力.(2)万有引力定律适用时,库仑定律不一定适用.2.三个点电荷如何在一条直线上平衡?当三个共线的点电荷在库仑力作用下均处于平衡状态时.(1)三个电荷的位置关系是“同性在两边,异性在中间”.如果三个电荷只在库仑力的作用下且在同一直线上能够处于平衡状态,则这三个电荷一定有两个是同性电荷,一个是异性电荷,且两个同性电荷分居在异性电荷的两边.(2)三个电荷中,中间电荷的电荷量最小,两边同性电荷谁的电荷量小,中间异性电荷就距离谁近一些.一、库仑定律的理解【例1】对于库仑定律,下面说法正确的是()A.库仑定律适用于真空中两个点电荷之间的相互作用力B.两个带电小球即使相距非常近,也能用库仑定律C.相互作用的两个点电荷,不论它们的电荷量是否相同,它们之间的库仑力大小一定相等D.当两个半径为r的带电金属球中心相距为4r时,对于它们之间的静电力大小,只取决于它们各自所带的电荷量答案AC解析由库仑定律的适用条件知,选项A正确;两个小球若距离非常近则不能看作点电荷,库仑定律不成立,B项错误;点电荷之间的库仑力属作用力和反作用力,符合牛顿第三定律,故大小一定相等,C项正确;D项中两金属球不能看作点电荷,它们之间的静电力大小不仅与电荷量大小有关,而且与电性有关,若带同种电荷,则在斥力作用下,电荷分布如图(a)所示;若带异种电荷,则在引力作用下电荷分布如图(b)所示,显然带异种电荷时相互作用力大,故D项错误.综上知,选项A、C正确.二、点电荷的理解【例2】下列关于点电荷的说法中,正确的是()A.只有体积很小的带电体才能看成是点电荷B.体积很大的带电体一定不能看成是点电荷C.当两个带电体的大小远小于它们之间的距离时,可将这两个带电体看成点电荷D.一切带电体都可以看成是点电荷答案 C解析本题考查点电荷这一理想模型.能否把一个带电体看成点电荷,关键在于我们分析时是否考虑它的体积大小和形状.能否把一个带电体看作点电荷,不能以它的体积大小而论,应该根据具体情况而定.若它的体积和形状可不予考虑时,就可以将其看成点电荷.故选C.1.下列关于点电荷的说法正确的是()A.点电荷可以是带电荷量很大的带电体B.带电体体积很大时不能看成点电荷C .点电荷的所带电荷量可能是×10-20 CD .大小和形状对作用力影响可以忽略的带电体可以看作点电荷 答案 AD2.如图1-2-3所示,图1-2-3两个半径均为r 的金属球放在绝缘支架上,两球面最近距离为r ,带等量异种电荷,电荷量绝对值均为Q ,两球之间的静电力为( )A .等于k Q 29r 2B .大于k Q 29r 2C .小于k Q 29r 2D .等于k Q 2r2答案 B3.(1)通过对氢核和核外电子之间的库仑力和万有引力大小的比较,你能得到什么结论? (2)你怎样确定两个或两个以上的点电荷对某一点电荷的作用力?答案 (1)微观粒子间的万有引力远小于库仑力,因此在研究微观带电粒子的相互作用力时,可忽略万有引力.(2)两个点电荷之间的作用力不因第三个点电荷的存在而有所改变.因此,两个或两个以上的点电荷对某一个点电荷的作用力等于各点电荷单独对这个电荷的作用力的矢量和.4.关于库仑扭秤图1-2-4问题1:1785年,库仑用自己精心设计的扭秤(如图1-2-4所示)研究了两个点电荷之间的排斥力与它们间距离的关系.通过学习库仑巧妙的探究方法,回答下面的问题.(1)库仑力F 与距离r 的关系. (2)库仑力F 与电荷量的关系.问题2:写出库仑定律的数学表达式,并说明静电力常量k 的数值及物理意义.答案 问题1:(1)F ∝1r2 (2)F ∝q 1q 2问题2:F =k q 1q 2r2,k =9×109 N·m 2/C 2.物理意义:两个电荷量为1 C 的点电荷,在真空中相距1 m 时,它们之间的库仑力为1 N. 题型一 库仑定律的应用 如图1所示,两个正电荷q 1、q 2的电荷量都是3 C ,静止于真空中,相距r =2 m.图1(1)在它们的连线AB 的中点O 放入正电荷Q ,求Q 受的静电力. (2)在O 点放入负电荷Q ,求Q 受的静电力.(3)在连线上A 点左侧的C 点放上负点电荷q 3,q 3=1 C 且AC =1 m ,求q 3所受的静电力.思维步步高库仑定律的表达式是什么?在这个表达式中各个物理量的物理意义是什么?在直线上的各个点如果放入电荷q ,它将受到几个库仑力的作用?这几个力的方向如何?如何将受到的力进行合成?解析 在A 、B 连线的中点上,放入正电荷受到两个电荷库仑力的作用,这两个力大小相等,方向相反,所以合力为零.如果在O 点放入负电荷,仍然受到两个大小相等,方向相反的力,合力仍然为零.在连线上A 的左侧放入负电荷,则受到q 1和q 2向右的吸引力,大小分别为F 1=kq 3q 1x 2和F 2=kq 3q 2(r +x )2,其中x 为AC 之间的距离.C 点受力为二力之和,代入数据为3×1010 N ,方向向右.答案 (1)0 (2)0 (3)3×1010 N ,方向向右拓展探究在第三问中如果把q 3放在B 点右侧距离B 为1 m 处,其他条件不变,求该电荷受到的静电力?答案 3×1010 N 方向向左解析 求解的方法和第三问相同,只不过电荷在该点受到两个电荷的库仑力的方向都向左,所以合力方向向左,大小仍然是3×1010 N.在教学过程中,强调不管在O点放什么性质的电荷,该电荷受到的静电力都为零,为下一节电场强度的叠加做好准备.另外还可以把电荷q3放在AB连线的中垂线上进行研究.题型二库仑定律和电荷守恒定律的结合甲、乙两导体球,甲球带有×10-16 C的正电荷,乙球带有×10-16 C的负电荷,放在真空中相距为10 cm的地方,甲、乙两球的半径远小于10 cm.(1)试求两球之间的静电力,并说明是引力还是斥力?(2)将两个导体球相互接触一会儿,再放回原处,其作用力能求出吗?是斥力还是引力?思维步步高为什么题目中明确两球的直径远小于10 cm?在应用库仑定律时带电体所带电荷的正负号怎样进行处理的?当接触后电荷量是否中和?是否平分?解析(1)因为两球的半径都远小于10 cm,因此可以作为两个点电荷考虑.由库仑定律可求:F=k q1q2r2=×109×错误!N=×10-19 N两球带异种电荷,它们之间的作用力是引力.(2)将两个导体球相互接触,首先正负电荷相互中和,还剩余-×10-16 C的正电荷,这些正电荷将重新在两导体球间分配,由于题中并没有说明两个导体球是否完全一样,因此我们无法求出力的大小,但可以肯定两球放回原处后,它们之间的作用力变为斥力.答案(1)×10-19 N引力(2)不能斥力拓展探究如果两个导体球完全相同,接触后放回原处,两球之间的作用力如何?答案×10-21 N斥力解析如果两个导体球完全相同,则电荷中和后平分,每个小球的带电荷量为×10-16 C,代入数据得两个电荷之间的斥力为F=×10-21 N.两个导体相互接触后,电荷如何分配,跟球的形状有关,只有完全相同的两金属球,电荷才平均分配.一、选择题1.下列说法正确的是()A.点电荷就是体积很小的带电体B.点电荷就是体积和所带电荷量很小的带电体C 根据F=k q1q2r2可知,当r→0时,有F→∞D.静电力常量的数值是由实验得出的答案 D解析当r→0时,电荷不能再被看成点电荷,库仑定律不成立.2.两个半径相同的金属小球,带电荷量之比为1∶7,相距r,两者相互接触后,再放回原来的位置,则相互作用力可能是原来的()答案CD解析由库仑定律可知,库仑力与电荷量的乘积成正比,设原来两小球分别带电荷量为q1=q、q2=7q.若两小球原来带同种电荷,接触后等分电荷量,则q1′=4q,q2′=4q,则D正确.若两小球原来带异种电荷,接触后到q1″=3q,q2″=3q,则由库仑定律可知,C正确.3.如图2所示,图2在绝缘的光滑水平面上,相隔一定距离有两个带同种电荷的小球,从静止同时释放,则两个小球的加速度和速度大小随时间变化的情况是()A.速度变大,加速度变大B.速度变小,加速度变小C.速度变大,加速度变小D.速度变小,加速度变大答案 C解析 根据同种电荷相斥,每个小球在库仑斥力的作用下运动,由于力的方向与运动方向相同,均做加速直线运动,速度变大;再由库仑定律F =k q 1q 2r 2知随着距离的增大,库仑斥力减小,加速度减小,所以只有选项C 正确.4.如图3所示,图3两个带电金属小球中心距离为r ,所带电荷量相等为Q ,则关于它们之间电荷的相互作用力大小F 的说法正确的是( )A .若是同种电荷,F <k Q 2r 2B .若是异种电荷,F >k Q 2r 2C .若是同种电荷,F >k Q 2r 2D .不论是何种电荷,F =k Q 2r2答案 AB 解析 净电荷只能分布在金属球的外表面,若是同种电荷则互相排斥,电荷间的距离大于r ,如图所示,根据库仑定律F=k q 1q 2r 2,它们之间的相互作用力小于k Q 2r2.若是异种电荷则相互吸引,电荷间的距离小于r ,则相互作用力大于k Q 2r2.故选项A 、B 正确.5.如图4所示,图4悬挂在O 点的一根不可伸长的绝缘细线下端有一个带电荷量不变的小球A .在两次实验中,均缓慢移动另一带同种电荷的小球B ,当B 到达悬点O 的正下方并与A 在同一水平线上,A 处于受力平衡时,悬线偏离竖直方向的角度为θ.若两次实验中B 的电荷量分别为q 1和q 2,θ分别为30°和45°,则q 2/q 1为( )A .2B .3C .2 3D .3 3 答案 C解析 A 处于平衡状态,则库仑力F =mg tan θ.当θ1=30°时,有kq 1qr 21=mg tan 30°,r 1=l sin 30°;当θ2=45°时,有k q 2q r 22=mg tan 45°,r 2=l sin 45°,联立得q 2q 1=2 3.6.如图5所示,图5把一个带电小球A 固定在光滑的水平绝缘桌面上,在桌面的另一处放置带电小球B .现给B 一个沿垂直AB 方向的水平速度v 0,B 球将( )A .若A 、B 为异种电性的电荷,B 球一定做圆周运动B .若A 、B 为异种电性的电荷,B 球可能做加速度、速度均变小的曲线运动C .若A 、B 为同种电性的电荷,B 球一定做远离A 球的变加速曲线运动D .若A 、B 为同种电性的电荷,B 球的动能一定会减小 答案 BC解析 (1)若两个小球所带电荷为异种电荷,则B 球受到A 球的库仑引力,方向指向A .因v 0⊥AB ,当B 受到A 的库仑力恰好等于向心力,即k q 1q 2r 2=m v 20r 时,解得初速度满足v 0=kq 1q 2mr,B 球做匀速圆周运动;当v >v 0时,B 球将做库仑力、加速度、速度都变小的离心运动;当v <v 0时,B 球将做库仑力、加速度、速度逐渐增大的向心运动.(2)若两个小球所带电荷为同种电荷,B 球受A 球的库仑斥力而做远离A 的变加速曲线运动(因为A 、B 距离增大,故斥力变小,加速度变小,速度增加).。