【大学课件】应用数理统计
- 格式:ppt
- 大小:388.50 KB
- 文档页数:118
3各自的样本:ξ11=μ1+ε11,…, ξ17=μ1+ε17ξ21=μ2+ε21,…, ξ25=μ2+ε25ξ31=μ3+ε31,…, ξ38=μ3+ε38ξ41=μ4+ε41,…, ξ46=μ4+ε46理论上总平均:μ= (7μ1+5μ2+8μ3+6μ4)A 1的效应α1=μ1-μ,A 2的效应α2=μ2-μ,A 3的效应α3=μ3-μ,A 4的效应α4=μ4-μ,4个样本:单因素4水平的统计模型261(双下标71637.3076168016621636.251568.33168016801680168016801680 16801662 1662 1662166216621636.251636.251636.251636.251636.251636.251636.251636.251568.331568.331568.331568.331568.331568.33A 1A 2A 3A 41 2 3 4 5 6 7 8 寿命灯ξij 泡灯丝ξξi8(A 的)组间偏差平方和:2)(∑∑−=ijiA S ξξ(纵向偏差=灯丝不同带来误差+试验误差)2()ri i in ξξ=−∑222)1680(...)1680()1680(ξξξ−++−+−=(7项22)1662(...)1662(ξξ−++−+(522)25.1636(...)25.1636(ξξ−++−+(822)3.1568(...)3.1568(ξξ−++−+((抹平了横向波动,只剩下纵向波动)10Theorem 2.在一个因素的方差分析模型中,有E (S A ) = (r -1)σ2+ ∑n i αi 2 E (S e ) = (n -r)σ2Theorem 3.在一个因素的方差分析中,组内误差与总体方差之比服从χ2 分布,即S e / σ2~χ2(n -r )Theorem 4.在一个因素的方差分析中,当假设H 0 成立时有:(1) S A/σ2~χ2 (r -1)(2) S e 与S A 相互独立,因而)()1(r n S r S F e A −−=~F (r -1, n -r )13eA S S F =AT e S S S −=rn −rn S e−方差来源平方和S自由度ƒ均方和F 值显著性因素A误差e总和表6-3 一个因素差分析表(394页)∑=•−=ri i iA n TT n S 12211−r S Ar -1∑∑−=i jij T n TS 22ξn -1∑∑∑===•==rin j ri n j ji iji T T 111,ξξ其中14表6-4 例1 的计算表(p395)灯丝使用寿命T i•T 2i•A 1A 2A 3A 416001610 1650 1680 1700 1720 18001580 1640 1640 1700 175014601550 1600 1620 1640 1740 1660 18201510 1520 1530 1570 1680 16001176083101309094101382976006905610017134810088548100,4=r 126,rii n n===∑∑∑===ri n j iji112;69895900ξ()2212941013090831011760261.1+++=⎟⎠⎞⎜⎝⎛=∑=ri i T n n T ()==2642570269700188.461554.19571146.6970018869895900 =−=T S 7.44360 46.697001882.69744549 46.69700188 1 14122241=−=−=−=∑∑=••=i i ii i i A T n nTT n S 8. 151350=−=A T e S S S ()().15.222/8.1513503/7.44360/1/==−−=r n S r S F e A 0.10,F α=查分布表得()()(),22 ,3 35.215.2 35.222 ,3 ,1 10.0110.0111−−−−=<===−−=F F F r n r F F a α16在这个问题中,四个总体均值的点估计分别为:1680ˆ11==ξμ1662ˆ22==ξμ25.1636ˆ33==ξμ1568ˆ44==ξμ习题六---4, 5; Prep: §6.2将上述计算结果列成方差分析表:表6-5 例1的方差分析表方差来源平方和S 自由度ƒ均方和F 值显著性因素A 影响误差e 44360.7151350.832214786.96879.592.15(F 1−α=2.35)无显著影响195711.5425总和似乎配方1好,但方差分析表明各方案差别不算大.17。