功率因素和谐波纹波基本概念
- 格式:doc
- 大小:115.50 KB
- 文档页数:6
纹波(ripple)的定义1 纹波(ripple)的定义由于直流稳定电源一般是由交流电源经整流稳压等环节而形成的,这就不可避免地在直流稳定量中多少带有一些交流成份,这种叠加在直流稳定量上的交流分量就称 之为纹波。
纹波的成分较为复杂,它的形态一般为频率高于工频的类似正弦波的谐波,另一种则是宽度很窄的脉冲波。
对于不同的场合,对纹波的要求各不一样。
对 于电容器老练来说,无论是那一种纹波,只要不是太大,一般对电容器老练质量不会构成影响。
而对程控机电源或音响设备中所使用的电源,由于宽度很窄的脉冲没 有足够的能量来推动喇叭的纸盆或话机的听筒而形成杂音。
因此对于这种窄脉冲的要求可以放宽。
而对于音频范围内的类似正弦波的纹波信号,虽然其幅度不是太高,但其能量却使喇叭或听筒发生嗡嗡的杂音。
因此对这种形态的纹波应有一定的要求,而对于用于 一些控制的场合,由于窄脉冲达到一定的高度会干扰数字或逻辑控制部件,使设备运行的可靠性降低,因此对这种窄脉冲的幅度应有一定的限制,而对类似正弦波的 纹波,一般由于其幅度较低,对控制部件的干扰不大。
纹波的表示方法可以用有效值或峰值来表示,可以用绝对量,也可以用相对对量来表示。
例如一个电源工作在稳压状态,其输出为100V5A,测得纹波的有效值 为10mV,这10mV就是纹波的绝对量,而相对量即 纹波系数=纹波电压/输出电压=10mv/100V=0.01%,即等于万分之一。
2 纹波(ripple)的定义 补充纹波就是一个直流电压中的交流成分。
直流电压本来应该是一个固定的值, 但是很多时候它是通过交流电压整流、滤波后得来的,由于滤波不干净,就会有剩余的交流成分,即便如此,就是用电池供电也因负载的波动而产生波纹。
事实上, 即便是最好的基准电压源器件,其输出电压也是有波纹的。
要体验,可以用示波器来看,就会看到电压上下轻微波动,就 像水纹一样,所以叫做纹波。
一般使用交流毫伏表来测量纹波电压,因为交流毫伏表只对交流电压响应,并且灵敏度比较高,可测量很小的交流电压,而纹波往往是比较小的交流电压。
功率因素基本概念1、 功率因素PF 的基本定义PF (Power Factor )是指交流输入有功功率与视在功率的比值,定义如下:rms rmsP P PF S V I ==⋅(1) 式中,P 为交流输入有功功率,S 为电路的视在功率,rms V 为电网电压有效值,rms I 为电网电流有效值。
2、 总谐波失真THD 的基本定义THD (Total Harmonic Distortion )是指除基波电流以外的所有其他谐波电流有效值与基波电流有效值的比值。
定义如下:11h I THD I ==2)式中,h I 为基波电流以外的多有其他谐波电流有效值,1I 为基波电流有效值,从式中可知,输入电流中的高次谐波含量越小,则h I 越小,因此总谐波失真PFC 也越小。
3、 相移功率因素在线性电路中,阻抗Z R jX =+,其中,R 为电阻,X 为电抗,由正弦电路理论可知,无论X 为感抗或是容抗,均会是正弦电压和电流波形产生相位差。
当X 为感抗时,正弦电压超前电流波形一个相位角α;当X 为容抗时,正弦电压滞后电流一个相位角α.相移功率因素DPF (Displacement Power Factor )定义为:cos DPF α=,其中α为正弦电压和电流波形之间的相位差。
由定义可知DPF 使用来描述等效负载阻抗特性的.当α=0时,DPF =0,当0α>,01DPF <<.4、失真功率因素非线性负载与线性负载不同,当电源电压为正弦波时,输入电流波形为非正弦,即电流波形发生正弦畸变,此时电路的功率因素很低。
因此非线性负载电路的功率因素不仅与相移功率因素有关,而且与电流波形的失真程度有关。
失真功率因素(Distortion Power Factor )的定义:1I PF I ==失真(3)式中I 为失真波形电流的总有效值,1I 为失真波电流基波有效值.由总谐波失真公式可得:PF 失真(4)从上式可以看出,总谐波失真THD 越小,则失真功率因素PF 失真约接近1,因此整个电路输入端的功率因素越高.5、 总功率因素设AC/DC 变换电路的输入电压为正弦波i V (有效值为V ),输入电流为非正弦,其总电流有效值为I ,又设基波电流1I 与输入电压i V 之间相差α,则根据表达式(1)可得功率因素为:1cos cos VI P PF PF S V Iαα===⋅⋅失真(5) 对于线性负载,PF 失真=1,则PF =DPF =cos α,即线性电路的功率因素取决于电压和电流的相位差;对于非线性负载,一般1DPF ≈,则PF =PF 失真,即非线性电路的功率因素取决于电流波箱的谐波含量。
谐波的基础知识,什么是基波、谐波、谐波的种类及谐波频率计算1 谐波的基础知识(1)什么是基波?电⼒⽹络中呈周期性变化的电压或电流的频率即为基波(⼜称⼀次波),我国电⽹规定频率是50 Hz,所以基波是50 Hz。
(2)什么是谐波?电⼒⽹络中除基波(50 Hz)外,任⼀周期性的电压或电流信号,其频率⾼于基波(50 Hz)的,称为谐波。
电⽹或电路中,电压产⽣的谐波为电压谐波;电流产⽣的谐波为电流谐波。
(3)谐波有⼏种?整数谐波:指频率为整数(跃1)倍基波频率的谐波,即2、3、4、5、6、7、8、9、10 等次谐波。
偶次谐波:指频率为圆、源、6、8、10 等偶数倍基波频率的谐波。
奇次谐波:指频率为3、5、7、9、11 等奇数倍基波频率的谐波。
正序谐波:谐波次数为3k 1(k 为正整数)即4、7、10等次谐波。
负序谐波:谐波次数为3k-1(k 为正整数)即2、5、8等次谐波。
零序谐波:指频率为3的整数倍基波频率的谐波,例如3、6、9、12、15 次谐次。
⾼频谐波:指频率为圆耀怨kHz的谐波。
(4)谐波频率如何计算?谐波频率越谐波次数伊基波频率例:缘次谐波频率为缘伊缘园Hz越圆缘园Hz,苑次谐波频率为7伊50 Hz越猿缘园Hz等。
(5)哪些设备或电路容易产⽣谐波?1)⾮线性负载,例⼆极管整流电路(AC/DC)。
2)三相电压或电流不对称性负载。
3)逆变电路(DC/AC)。
4)UPS 电源(PC 机⽤),EPS 电源(⼤功率动⼒⽤),即不间断电源。
5)晶闸管调压装置或调速电路。
6)电镀设备。
7)电弧炉、矿热炉、锰矿炉、磷矿炉、电⽯炉、硅铁炉。
8)电解槽。
9)电焊机(弧焊、缝焊、点焊、碰焊、对焊)。
10)电池充电机。
11)变频器(低压或⾼压变频器)。
12)脉幅调制(PAM)调压电路或者是脉宽调制(PWM)调频电路。
13)谐波的次数与整流电路的相数有关,例三相、六相、⼗⼆相、⼗⼋相、⼆⼗四相,当相数越多并通过移相⽅式就可使谐波次数及谐波分量减⼩。
功率因数和谐波
功率因数和谐波是两个不同的概念,但它们之间存在一定的关系。
功率因数(PF)是衡量电能质量的重要指标之一,它表示有功功率(P)和视在功率(S)的比值,即PF=P/S。
在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示。
功率因数的大小与电路的负荷性质有关,当电路仅含有线性元件时,则功率因数为定值(cosΦ=1),当电路含有非线性元件时,则功率因数发生改变。
谐波是一个周期性电气量的正弦波分量,其频率是基波频率的整数倍。
在电力系统中,谐波的产生主要是由于非线性负荷的使用,例如计算机、打印机、复印机和用于荧光灯的LED驱动器等设备。
这些非线性负荷在工作时会产生谐波电流,这些谐波电流流入电源系统,会对电网造成污染,导致电压波形畸变,影响电能质量。
功率因数和谐波之间存在一定的关系。
当电路中的负载工作时,如含有非线性元件,则中性线的电流基本上为零。
但当系统中存在谐波时,高次谐波会引起电压、电流的非线性失真,使影响电压、电流的相位差呈现无规律的变化,导致功率因数降低。
同时,谐波的存在也会使设备产生超压运行,特别是对感性设备来说,超压运行容易使设备产生磁通饱和现象,加速无功消耗率,影响功率因数。
因此,在电力系统中,需要对非线性负荷产生的谐波进行治理,以改善电能质量和提高功率因数。
这可以通过加装滤波器或者采取其他抑制谐波的措施来实现。
供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。
谐波频率与基波频率的比值(n=fn/f1) 称为谐波次数。
电网中有时也存在非整数倍谐波,称为非谐波(Non-harmonics )或分数谐波。
谐波实际上是一种 干扰量,使电网受到“污染”。
目前公司常用测试输入电流谐波的仪器有TEK 系列示波器(可采用WAVESTAR 软件进行谐波分析),测试输出电压谐波的仪器有GW GAD-201G (失真仪)和TEK 系列示波器(可采用WAVESTAR 软件进行谐波分析)。
使用下面的方法计算信号的THD : () ++++++=272625242322211A A A A A A A THD 其中A 1是幅频特性中基波的幅值,而A 2 、A 3、A 4、A 5、……分别是2、3、4、5、……次谐波的幅值。
选取不同数量的谐波分量,可以计算出对应的THD 值。
采用WAVESTAR 软件进行分析可以得到完整谐波分析数据,下图为分析得出的柱型图,从图中可以针对各次谐波异常的状况采取相应的对策进行改善: Harmonic magnitude as a % of the fundamental amplitude0.0%0.7%1.5%2.2%3.0%3.7%4.4%5.2%5.9%6.6%7.4%8.1%Voltage:Current: Ch 1# Harmonics: 20Type: Current Magnitude波峰因数定义为交流信号峰值与有效值之比(峰均比),典型的波峰因数是: 正弦波:1.414;方波: 1;25%的占空比的脉冲:2 。
波峰因数(CREST FACTOR )的概念在UPS 行业是用来衡量UPS 带非线性负载的能力,对线性负载(R LOAD )而言,正弦波电流峰值Ipeak 与均方根值Irms 之比为1.414:1;在非线性负载(RCD LOAD )时,波峰因数则被认定为:在相同的有功功率条件下,非线性负载的电流峰值与非线性负载电流均方根值之比。
1、什么是功率因素在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S。
简单的说,功率因素指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。
基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。
交换式电源供应器(开关稳压电源)上的功率因素校正器的工作原理是:通过控制调整交流电电流输入的时间与波型,使其与直流电电压波型尽可能一致,让功率因素趋近于1。
2、为什么要进行功率因素校正由于半导体变流技术的发展,电器产品对电能的利用效率得到了大幅地提高,但大量的开关电源和晶闸管的使用也导致了谐波电流的产生。
谐波电流具有十分严重的危害性,它一方面加重了电网中线负担,大量非线性负载产生的谐波电流将流过中线造成中线过负荷,严重情况下将烧毁中线,引发火灾;另一方面它又加重了电网高压电容的负担,电网用户变压器一般都接有高压电容用以滤除电网高频干扰,而高频的谐波电流流过电容将使温度上升甚至发生爆炸;另外,谐波电流还能引起电网电压波形畸变,从而危及其他电器的运行安全。
故功率因素校正对于大功率电子设备而言至关重要。
一般状况下,电子设备没有功率因素校正(Power Factor Correction,PFC)时,其PF 值约0.5。
而PFC 电路不但对180V—265V 间的电压波动有完全的控制能力,还可对电压的稳定起到保护和控制作用,减少因不稳定电流而引起的各种设备故障,彻底避免谐波电流带来的危害,有效提高公用电网的纯洁度,从而大幅提高电源的安全性能,并使用户利益得到切实保障。
3、有哪些国家出台了有关PFC 的考核规定2001 年1 月,欧盟开始对电子设备谐波进行考核,规定凡输出功率在75W~600W 范围间之电子设备产品,都必须通过谐波测试[Harmonics test(EN 61000-3-2)],测量待测物对电力系统所产生的谐波干扰;中国自2002 年5 月起,规定凡政府机关采购的功率大于75W 的电子设备,皆需考核功率因素;日本已着手研拟关于节约电力的各项方案。
第五讲:谐波电流、功率因数及PC电源的PFC技术1、电流相移与传统功率因数概念功率因数的概念起源是相当早的,人们对它的重视起源于交流供电和电动机时代,由于变压器的使用可以使电能非常方便、高效地利用交流供电来传输,所以全球所有国家和地区都采用了交流供电的方式。
电动机被广泛使用后,人们才开始重视功率因数的概念,因为这种呈感性的负载使得电网电流的相位滞后于电压相位,引起电网传输的有功功率(Real Power小于视在功率(ApparentPower。
所以引入功率因数PF的概念,定义为有功功率与视在功率的比值,如果线路中只存在相移的因素,则功率因数的值将等于电压与电流相位差角的余弦,即PF=cosθ。
这也就是功率因数传统的表达式。
相移的产生会使用电器功率因数的降低,从而加重了电网的负担,因为电力传输线上要传送更大的电流来传递所需功率。
2、电网负载补偿—传统功率因数矫正方法传统的提高功率因数的方法就是使用负载补偿的办法,即人为地在电网上增加容性负载来匹配呈感性的电力负荷,直到电网的整体负载接近阻性,也就是利用并联谐振的方法。
该方法通常会在变电站实施,可以对某一供电区进行整体的功率因数补偿。
3、谐波电流的产生与功率因数概念的变化半导体变流技术发展起来后,人们对电能的利用效率大大提高,但大量开关电源和晶闸管的使用带来了另一个问题,那就是谐波电流。
谐波电流的名称是一个数学上的概念,从直观的物理概念来理解的话,其含义就是电流波形相对于理想正弦波的变形。
从数学解析来讲,任何周期函数都可以写出它的傅利叶展开式,即:而且则f(t可改写为:式中F0为常数项,对应电流的直流分量,n=1的项为基波分量,其它各项则为基波的各次谐波分量。
而φn则为基波与各次谐波分量的相移。
对于理想电网电压波形,纯阻性负载的电流解析式中,仅含有基波分量且相移为零;对于含有电抗(包括感抗和容抗的线性负载,仍只有基波分量,但会产生相移;对于非线性负载则会产生谐波分量。
电源中的纹波、谐波和噪声
纹波:是附着于直流电平之上的包含周期性与随机性成分的杂波信号。
指在额定输出电压、电流的情况下,输出电压中的交流电压的峰值。
狭义上的纹波电压,是指输出直流电压中含有的工频交流成分。
纹波的产生:我们通常在产品中用的电源主要有线性电源和开关电源二大类,输出的直流电压是一个固定值,由交流电压经整流、滤波、稳压后得到。
由于滤波不干净,直流电压中含有交流成分,这就产生了纹波。
纹波是一种复杂的杂波信号,它是围绕输出直流电压上下来回波动的周期性信号,但周期和振幅不是定值,随时间而变。
纹波的危害:纹波电压高了,有可能使电子产品产生谐波、调制等,干扰正常的工作状态;导致电源效率降低;影响数字电路的逻辑关系;干扰信号的正常传递等等。
较强的纹波会产生浪涌电压或电流,有可能烧毁用电设备。
谐波:是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。
从广义上讲,由于交流电网有效分量为工频单一频率,因此任何与工频频率不同的成分都可以称之为谐波。
谐波产生的原因:由于正弦电压加压于非线性负载,当电流流经负载时,与所加的电压不呈线性关系,基波电流发生畸变就形成非正弦电流,即电路中有谐波产生。
主要非线性负载有UPS、开关电源、整流器、变频器、逆变。
纹波(ripple)的定义1 纹波(ripple)的定义由于直流稳定电源一般是由交流电源经整流稳压等环节而形成的,这就不可避免地在直流稳定量中多少带有一些交流成份,这种叠加在直流稳定量上的交流分量就称之为纹波。
纹波的成分较为复杂,它的形态一般为频率高于工频的类似正弦波的谐波,另一种则是宽度很窄的脉冲波。
对于不同的场合,对纹波的要求各不一样。
对于电容器老练来说,无论是那一种纹波,只要不是太大,一般对电容器老练质量不会构成影响。
而对程控机电源或音响设备中所使用的电源,由于宽度很窄的脉冲没有足够的能量来推动喇叭的纸盆或话机的听筒而形成杂音。
因此对于这种窄脉冲的要求可以放宽。
而对于音频范围内的类似正弦波的纹波信号,虽然其幅度不是太高,但其能量却使喇叭或听筒发生嗡嗡的杂音。
因此对这种形态的纹波应有一定的要求,而对于用于一些控制的场合,由于窄脉冲达到一定的高度会干扰数字或逻辑控制部件,使设备运行的可靠性降低,因此对这种窄脉冲的幅度应有一定的限制,而对类似正弦波的纹波,一般由于其幅度较低,对控制部件的干扰不大。
纹波的表示方法可以用有效值或峰值来表示,可以用绝对量,也可以用相对对量来表示。
例如一个电源工作在稳压状态,其输出为100V5A,测得纹波的有效值为10mV,这10mV就是纹波的绝对量,而相对量即纹波系数=纹波电压/输出电压=10m v/100V=0.01%,即等于万分之一。
2 纹波(ripple)的定义补充纹波就是一个直流电压中的交流成分。
直流电压本来应该是一个固定的值,但是很多时候它是通过交流电压整流、滤波后得来的,由于滤波不干净,就会有剩余的交流成分,即便如此,就是用电池供电也因负载的波动而产生波纹。
事实上,即便是最好的基准电压源器件,其输出电压也是有波纹的。
要体验,可以用示波器来看,就会看到电压上下轻微波动,就像水纹一样,所以叫做纹波。
一般使用交流毫伏表来测量纹波电压,因为交流毫伏表只对交流电压响应,并且灵敏度比较高,可测量很小的交流电压,而纹波往往是比较小的交流电压。
什么叫功率因素、功率因素的意义、提高功率因素的常用方法 - 电工基础首先,要说明一下,通常我们写作“功率因数”,它是个数,是个系数,不大于1的系数。
也就是原来可以做的功,但是实际做不到那么多,做了一些无用功,所以乘上一个系数。
看看百科的解释,基本上回答了你的问题。
在沟通电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感或电容性负载的电路功率因数都小于1。
功率因数是电力系统的一个重要的技术数据。
功率因数是衡量电气设备效率凹凸的一个系数。
功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。
所以,供电部门对用电单位的功率因数有肯定的标准要求。
(1) 最基本分析:拿设备作举例。
例如:设备功率为100个单位,也就是说,有100个单位的功率输送到设备中。
然而,因大部分电器系统存在固有的无功损耗,只能使用70个单位的功率。
很不幸,虽然仅仅使用70个单位,却要付100个单位的费用。
在这个例子中,功率因数是0.7 (假如大部分设备的功率因数小于0.9时,将被罚款),这种无功损耗主要存在于电机设备中(如鼓风机、抽水机、压缩机等),又叫感性负载。
功率因数是马达效能的计量标准。
(2) 基本分析:每种电机系统均消耗两大功率,分别是真正的有用功(叫千瓦)及电抗性的无用功。
功率因数是有用功与总功率间的比率。
功率因数越高,有用功与总功率间的比率便越高,系统运行则更有效率。
(3) 高级分析:在感性负载电路中,电流波形峰值在电压波形峰值之后发生。
两种波形峰值的分隔可用功率因数表示。
功率因数越低,两个波形峰值则分隔越大。
保尔金能使两个峰值重新接近在一起,从而提高系统运行效率。
对于功率因数改善电网中的电力负荷如电动机、变压器、日光灯及电弧炉等,大多属于电感性负荷,这些电感性的设备在运行过程中不仅需要向电力系统吸取有功功率,还同时吸取无功功率。
纹波谐波1 纹波(ripple)的定义由于直流稳定电源一般是由交流电源经整流稳压等环节而形成的,这就不可避免地在直流稳定量中多少带有一些交流成份,这种叠加在直流稳定量上的交流分量就称之为纹波。
纹波的成分较为复杂,它的形态一般为频率高于工频的类似正弦波的谐波,另一种则是宽度很窄的脉冲波。
对于不同的场合,对纹波的要求各不一样。
对于电容器老练来说,无论是那一种纹波,只要不是太大,一般对电容器老练质量不会构成影响。
而对程控机电源或音响设备中所使用的电源,由于宽度很窄的脉冲没有足够的能量来推动喇叭的纸盆或话机的听筒而形成杂音。
因此对于这种窄脉冲的要求可以放宽。
而对于音频范围内的类似正弦波的纹波信号,虽然其幅度不是太高,但其能量却使喇叭或听筒发生嗡嗡的杂音。
因此对这种形态的纹波应有一定的要求,而对于用于一些控制的场合,由于窄脉冲达到一定的高度会干扰数字或逻辑控制部件,使设备运行的可靠性降低,因此对这种窄脉冲的幅度应有一定的限制,而对类似正弦波的纹波,一般由于其幅度较低,对控制部件的干扰不大。
纹波的表示方法可以用有效值或峰值来表示,可以用绝对量,也可以用相对对量来表示。
例如一个电源工作在稳压状态,其输出为100V5A,测得纹波的有效值为10mV,这10mV 就是纹波的绝对量,而相对量即纹波系数=纹波电压/输出电压=10mv/100V=0.01%,即等于万分之一。
2 纹波(ripple)的定义补充纹波就是一个直流电压中的交流成分。
直流电压本来应该是一个固定的值,但是很多时候它是通过交流电压整流、滤波后得来的,由于滤波不干净,就会有剩余的交流成分,即便如此,就是用电池供电也因负载的波动而产生波纹。
事实上,即便是最好的基准电压源器件,其输出电压也是有波纹的。
要体验,可以用示波器来看,就会看到电压上下轻微波动,就像水纹一样,所以叫做纹波。
一般使用交流毫伏表来测量纹波电压,因为交流毫伏表只对交流电压响应,并且灵敏度比较高,可测量很小的交流电压,而纹波往往是比较小的交流电压。
功率因素的基础知识1,电流相位超前电压相位称超前功率因数;电流相位滞后电压相位称滞后功率因数;功率因数不论超前还是滞后都是小于1的,都有损耗,只是形式不同。
2.功率因数是衡量电器设备效率高低的一个系数。
它是交流电路中有功功率与视在功率的比值,即功率因数=有功功率/视在功率,其大小与电路的负荷性质有关,如白炽灯,电阻炉等电热设备,功率因数为1,对具有电感的电器设备如日光灯、电动机等,功率因数小于1,从功率三角形的图中,运用数学三角关系可得出:有功功率P=U.I.cosøcosø即为功率因数。
功率因数低,说明电路中用于交变磁场呑吐转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。
3.因为在电容上建立电压首先需要有个充电过程,随着充电过程,电容上的电压逐步提高,这样就会先有电流,后建立电压的过程,通常我们叫电流超前电压90度(电容电流回路中无电阻和电感元件时,叫纯电容电路)。
电动机、变压器等有线圈的电感电路,因通过电感的电流不能突变的原因,它与电容正好相反,需要先在线圈两端建立电压,后才有电流(电感电流回路中无电阻和电容时,叫纯电感电路),纯电感电路的电流滞后电压90度。
由于功率是电压乘以电流,当电压与电流不同时产生时(如:当电容器上的电压最大时,电已充满,电流为0;电感上先有电压时,电感电流也为0),这样,得到的乘积(功率)也为0!这就是无功。
那么,电容的电压与电流之间的关系正好与电感的电压与电流的关系相反,就用电容来补偿电感产生的无功.4.当不补偿功率因数或功率因数过低时,发电和变电设备送出的有功功率会明显减小,而输出的无功功率的比例则增大,使电力供电设备得不到充分利用,功率因数过低,通过电力输送线的电流会增加,在线路上将引起较大的电压降落和功率损耗,不仅造成电能巨大浪费,而且会影响用电器的正常工作。
低功率因数的电子镇流器会产生很大的环流,不仅对光通量没有贡献,而且会在供电导线中产生热量,导线过热加速绝缘层的损坏,甚至引起建筑物的火灾事故。
谐波基础知识谐波是一个数学或物理学概念,是指周期函数或周期性的波形中能用常数、与原函数的最小正周期相同的正弦函数和余弦函数的线性组合表达的部分。
以下是由店铺整理关于谐波知识的内容,希望大家喜欢!谐波的定义谐波(harmonic wave),从严格的意义来讲,谐波是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量。
从广义上讲,由于交流电网有效分量为工频单一频率,因此任何与工频频率不同的成分都可以称之为谐波,这时“谐波”这个词的意义已经变得与原意有些不符。
正是因为广义的谐波概念,才有了“分数谐波”、“间谐波”、“次谐波”等等说法。
谐波产生的原因主要有:由于正弦电压加压于非线性负载,基波电流发生畸变产生谐波。
主要非线性负载有UPS、开关电源、整流器、变频器、逆变器等。
泛音是物理学上的谐波,但次数的定义稍许有些不同,基波频率2倍的音频称之为一次泛音,基波频率3倍的音频称之为二次泛音,以此类推。
谐波产生的原因在理想的干净供电系统中,电流和电压都是正弦波的。
在只含线性元件(如:电阻)的简单电路里,流过的电流与施加的电压成正比,流过的电流是正弦波。
用傅立叶分析原理,能够把非正弦曲线信号分解成基本部分和它的倍数。
在电力系统中,谐波产生的根本原因是由于非线性负载所致。
当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,即电路中有谐波产生。
由于半导体晶闸管的开关操作和二极管、半导体晶闸管的非线性特性,电力系统的某些设备如功率转换器会呈现比较大的背离正弦曲线波形。
谐波电流的产生是与功率转换器的脉冲数相关的。
6脉冲设备仅有5、7、11、13、17、19 …。
n倍于电网频率。
功率变换器的脉冲数越高,最低次的谐波分量的频率的次数就越高。
其他功率消耗装置,例如荧光灯的电子控制调节器产生大强度的3 次谐波( 150 赫兹)。
在供电网络阻抗( 电阻) 下这样的非正弦曲线电流导致一个非正弦曲线的电压降。
什么是电路的功率因数和谐波电路的功率因数和谐波是电路中重要的两个概念,它们对于电力系统的运行和电器设备的正常工作具有重要的影响。
本文将从理论和实际应用两个方面,介绍电路的功率因数和谐波的概念、计算方法以及对电路的影响。
一、功率因数的概念和计算方法功率因数是指交流电路中,有效功率与视在功率之比,通常用cosφ表示。
其中,有效功率为电路中供给有用功的功率,视在功率为电路中总功率,包括有用功和无用功。
计算功率因数的方法有多种,常见的方法包括:1. 直接计算法:根据电路中有功功率和视在功率的定义,直接计算功率因数。
公式为:功率因数=有功功率/视在功率。
2. 余弦定理法:通过计算电路中的有功功率和无功功率的比值,利用余弦定理来计算功率因数。
公式为:功率因数=cosφ=有功功率/(有功功率^2+无功功率^2)的开方。
功率因数的计算结果通常为0至1之间的数值,当功率因数接近1时,说明电路中有效功率占总功率的比例高,功率因数越低,说明有用功率占比更小,无用功率占比更大。
二、谐波的概念和计算方法谐波是指在电路中存在的频率为整数倍于基波频率的波形成分。
它们对于电力系统和设备可能产生的干扰和损坏具有重要影响。
在计算谐波时,常用的方法包括:1. 傅里叶级数展开法:将非正弦波信号展开成各谐波分量的和,通过傅里叶级数展开法计算谐波的振幅和相位。
2. 基波分析法:将非正弦波信号用基波和谐波的幅值、相位和频率表示,通过基波分析法计算谐波的幅值和相位。
谐波对电路的影响主要体现在以下方面:1. 电力系统中,谐波会导致电压和电流的波形畸变,使电力系统中的其他设备产生不稳定运行和损坏。
2. 在电器设备中,谐波会导致设备发热、损耗增加,甚至引起设备故障和损坏。
因此,为了保障电力系统和设备的正常工作,减小谐波的影响,需要对谐波进行合理的控制和补偿。
结论通过本文的介绍,我们了解了电路的功率因数和谐波的概念、计算方法以及对电路运行和设备工作的影响。
功率因素基本概念
1、 功率因素PF 的基本定义
PF (Power Factor )是指交流输入有功功率与视在功率的比值,定义如下:
rms rms
P P PF S V I ==⋅(1) 式中,P 为交流输入有功功率,S 为电路的视在功率,rms V 为电网电压有效值,rms I 为
电网电流有效值。
2、 总谐波失真THD 的基本定义
THD (Total Harmonic Distortion )是指除基波电流以外的所有其他谐波电流有效值
与基波电流有效值的比值。
定义如下:
11h I THD I ==2)
式中,h I 为基波电流以外的多有其他谐波电流有效值,1I 为基波电流有效值,从式中
可知,输入电流中的高次谐波含量越小,则h I 越小,因此总谐波失真PFC 也越小。
3、 相移功率因素
在线性电路中,阻抗Z R jX =+,其中,R 为电阻,X 为电抗,由正弦电路理论可知,
无论X 为感抗或是容抗,均会是正弦电压和电流波形产生相位差。
当X 为感抗时,正弦电压超前电流波形一个相位角α;当X 为容抗时,正弦电压滞后电流一个相位角α。
相移功率因素DPF (Displacement Power Factor )定义为:cos DPF α=,其中α
为正弦电压和电流波形之间的相位差。
由定义可知DPF 使用来描述等效负载阻抗特性的。
当α=0时,DPF =0,当0α>,01DPF <<。
4、失真功率因素
非线性负载与线性负载不同,当电源电压为正弦波时,输入电流波形为非正弦,即电流
波形发生正弦畸变,此时电路的功率因素很低。
因此非线性负载电路的功率因素不仅与相移功率因素有关,而且与电流波形的失真程度有关。
失真功率因素(Distortion Power Factor )的定义:
1I PF I ==失真(3) 式中I 为失真波形电流的总有效值,1I 为失真波电流基波有效值。
由总谐波失真公式可
得:
PF 失真(4)
从上式可以看出,总谐波失真THD 越小,则失真功率因素PF 失真约接近1,因此整个
电路输入端的功率因素越高。
5、 总功率因素
设AC/DC 变换电路的输入电压为正弦波i V (有效值为V ),输入电流为非正弦,其总
电流有效值为I ,又设基波电流1I 与输入电压i V 之间相差α,则根据表达式(1)可得功率因素为:
1cos cos VI P PF PF S V I
αα===⋅⋅失真(5) 对于线性负载,PF 失真=1,则PF =DPF =cos α,即线性电路的功率因素取决于电
压和电流的相位差;
对于非线性负载,一般1DPF ≈,则PF =PF 失真,即非线性电路的功率因素取决于电
流波箱的谐波含量。
纹波和谐波
6、 纹波(ripple)的定义
由于直流稳定电源一般是由交流电源经整流稳压等环节而形成的,这就不可避免地在直流稳定量中多少带有一些交流成份,这种叠加在直流稳定量上的交流分量就称之为纹波。
纹波的成分较为复杂,它的形态一般为频率高于工频的类似正弦波的谐波,另一种则是宽度很窄的脉冲波。
对于不同的场合,对纹波的要求各不一样。
对于电容器老练来说,无论是那一种纹波,只要不是太大,一般对电容器老练质量不会构成影响。
而对程控机电源或音响设备中所使用的电源,由于宽度很窄的脉冲没有足够的能量来推动喇叭的纸盆或话机的听筒而形成杂音。
因此对于这种窄脉冲的要求可以放宽。
而对于音频范围内的类似正弦波的纹波信号,虽然其幅度不是太高,但其能量却使喇叭或听筒发生嗡嗡的杂音。
因此对这种形态的纹波应有一定的要求,而对于用于一些控制的场合,由于窄脉冲达到一定的高度会干扰数字或逻辑控制部件,使设备运行的可靠性降低,因此对这种窄脉冲的幅度应有一定的限制,而对类似正弦波的纹波,一般由于其幅度较低,对控制部件的干扰不大。
纹波的表示方法可以用有效值或峰值来表示,可以用绝对量,也可以用相对对量来表示。
例如一个电源工作在稳压状态,其输出为100V5A,测得纹波的有效值为10mV,这10mV 就是纹波的绝对量,而相对量即纹波系数=纹波电压/输出电压=10mv/100V=0.01%,即等于万分之一。
7、纹波(ripple)的定义补充
纹波就是一个直流电压中的交流成分。
直流电压本来应该是一个固定的值,但是很多时候它是通过交流电压整流、滤波后得来的,由于滤波不干净,就会有剩余的交流成分,即便如此,就是用电池供电也因负载的波动而产生波纹。
事实上,即便是最好的基准电压源器件,其输出电压也是有波纹的。
要体验,可以用示波器来看,就会看到电压上下轻微波动,就像水纹一样,所以叫做纹波。
一般使用交流毫伏表来测量纹波电压,因为交流毫伏表只对交流电压响应,并且灵敏度比较高,可测量很小的交流电压,而纹波往往是比较小的交流电压。
如果没有交流毫伏表,也可使用示波器来测量。
将示波器的输入设置为交流耦合,调整Y轴增益,使波形大小合适,读出电压值,可估算出纹波电压的大小。
纹波电压会影响系统的工作,带来噪声。
所以电源要有足够的滤波措施,以将纹波限制在一定的幅度以内。
8、纹波(ripple)与谐波的比较谐波与纹波的比较
谐波简单地说,就是一定频率的电压或电流作用于非线性负载时,会产生不同于原频率的其它频率的正弦电压或电流的现象。
纹波是指在直流电压或电流中,叠加在直流稳定量上的交流分量。
它们虽然在概念上不是一回事,但它们之间有联系。
如电源上附加的纹波在用电器上很容易产生各频率的谐波;电源中各频率谐波的存在无疑导致电源中纹波成分的增加。
除了在电路中我们所需要产生谐波的情况以外,它主要有以下主要危害:
1、使电网中发生谐振而造成过电流或过电压而引发事故;
2、增加附加损耗,降低发电、输电及用电设备的效率和设备利用率;
3、使电气设备(如旋转电机、电容器、变压器等)运行不正常,加速绝缘老化,从而缩短它们的使用寿命;
4、使继电保护、自动装置、计算机系统及许多用电设备运转不正常或不能正常动作或操作;
5、使测量和计量仪器、仪表不能正确指示或计量;
6、干扰通信系统,降低信号的传输质量,破坏信号的正常传递,甚至损坏通信设备。
纹波的害处:
1、容易在用电器上产生谐波,而谐波会产生较多的危害;
2、降低了电源的效率;
3、较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器;
4、会干扰数字电路的逻辑关系,影响其正常工作;
5、会带来噪音干扰,使图像设备、音响设备不能正常工作。
总之,它们在我们不需要的地方出现都是有害的,需要我们避免的。
对于如何抑制和去除谐波和纹波的方式方法有很多,但想完全消除,似乎是很难办到的,我们只有将其控制在一个允许的范围之内,不对环境和设备产生影响就算达到了我们的目的。
电网谐波来自于3个方面:一是发电源质量不高产生谐波:发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。
二是输配电系统产生谐波:输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。
它的大小与磁路的结构形式、铁心的饱和程度有关。
铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流0.5%。
三是用电设备产生的谐波:晶闸管整流设备。
由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。
我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。
如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。
如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。
经统计表
明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
变频装置。
变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。
电弧炉、电石炉。
由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。
其中主要是2 7次的谐波,平均可达基波的8% 20%,最大可达45%。
气体放电类电光源。
荧光灯、高压汞灯、高压钠灯与金属卤化物灯等属于气体放电类电光源。
分析与测量这类电光源的伏安特性,可知其非线性十分严重,有的还含有负的伏安特性,它们会给电网造成奇次谐波电流。
家用电器。
电视机、录像机、计算机、调光灯具、调温炊具等,因具有调压整流装置,会产生较深的奇次谐波。
在洗衣机、电风扇、空调器等有绕组的设备中,因不平衡电流的变化也能使波形改变。
这些家用电器虽然功率较小,但数量巨大,也是谐波的主要来源之一。