四大波谱基本概念以及解析
- 格式:doc
- 大小:252.00 KB
- 文档页数:10
四大波谱基本概念以与解析早在20世纪,波谱学已经成为一门重要科学,用以研究和解释波的特性以及波的效应。
波谱分析在今天仍然是一门重要的科学,能够用来探索微观世界的信息,以及研究宏观世界的运动。
在物理和化学科学方面,有四个主要的波谱基本概念。
这些概念涉及四种不同类型的波:X射线谱、光谱、物质谱和声谱。
首先是X射线谱。
X射线谱是指X射线的光谱,它是一种高能量的电磁辐射。
由于X射线的高能量水平,它们通常用于诊断性检查,以提供内部解剖结构的信息。
此外,X射线谱也可用于识别分子及其结构,因为它们可以穿透岩石和其他光照障碍物,使得研究人员能够更清晰地看到深层结构。
其次是光谱学。
光谱学是一种用来研究和分析光线及其效应的学科。
根据波长的不同,光谱可以分为可见光谱,紫外光谱和红外光谱。
可见光波长的光被人看见,而紫外光波长的光被它的特殊属性产生区分,而且无法被人看见;红外光谱在可见光谱的另一端,由非常长的波长所组成。
光谱分析对于研究系统中物质的结构和性质非常有用,它们可用于研究星体、流星和大气,以及地球表面和内部的化学物质。
紧接着是物质谱。
物质谱是一种物理系统的波谱学,用以研究能量状态的改变。
它使用物质分解的信息来检测和分析各种物质的效应和变化。
物质谱可以用来研究物质的结构和组成,以及不同物质间的相互作用。
最后是声谱学。
声谱学是利用声音波的特性来研究和解释声音辐射的一门学科。
声学设备能够用来分析物体周围的声音,识别出声音及其特征,从而更深入地了解不同频率之间的关系,以及对物体和环境的影响。
在医学研究中,声谱可以用来评估心脏音及其强度,以及定位任何异常声音或波形信号,从而诊断疾病。
综上所述,X射线谱、光谱、物质谱和声谱是四种主要的波谱基本概念,它们用来研究和解析不同类型波的特性和效应。
每种方法都有自己独特的优势和应用,并在物理、化学等不同领域均有重要作用。
四大光谱法的解析原理及规律在检测领域,有四大名谱,也是检测领域的“四大天王”分别为色谱、光谱、质谱、波谱,在检测特色和适用范围上各有不同,但总有一款适合你!质谱:分析分子、原子、或原子团的质量的,可以推测物质的组成,一般用于定性分析较多,也可定量。
色谱:是一种兼顾分离与定量分析的手段,可分辨样品中的不同物质。
光谱:定性分析,确定样品中主要基团,确定物质类别。
从红外到X射线,都是光谱,其应用范围差别很大,是对分子或原子的光谱性质进行分析解析的。
波谱:通常指四大波谱,核磁共振(NMR),物质粒子的质量谱-质谱(MS),振动光谱-红外/拉曼(IR/Raman),电子跃迁-紫外(UV)。
光谱分析法光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成和相对含量。
光谱分析时,可利用发射光谱,也可以利用吸收光谱。
这种方法的优点是非常灵敏而且迅速。
某种元素在物质中的含量达10皮克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来。
光谱的分类按波长区域不同,光谱可分为红外光谱、可见光谱和紫外光谱。
按产生的本质不同,可分为原子光谱和分子光谱。
按产生的方式不同,可分为发射光谱、吸收光谱和散射光谱。
按光谱表现形态不同,可分为线光谱、带光谱和连续光谱。
分光光谱技术可用于:通过测定某种物质吸收或发射光谱来确定该物质的组成;通过测量适当波长的信号强度确定某种单独存在或其他物质混合存在的一种物质的含量;通过测量某一种底物消失或产物出现的量同时间的关系,示踪反应过程。
鉴定分子式、结构式的方法紫外光谱:反应分子中共轭体系状况;红外光谱:光能团鉴定、分子中环、双键数目。
光谱法的优缺点(1)分析速度较快原子发射光谱用于炼钢炉前的分析,可在l~2分钟内,同时给出二十多种元素的分析结果。
(2)操作简便有些样品不经任何化学处理,即可直接进行光谱分析,采用计算机技术,有时只需按一下键盘即可自动进行分析、数据处理和打印出分析结果。
四大波谱在中药化学中的应用中药化学是研究中药的化学成分和化学性质的学科,其中四大波谱技术(红外光谱、紫外光谱、质谱和核磁共振)在中药化学中有着广泛的应用。
下面将分别介绍这四大波谱在中药化学中的应用。
首先,红外光谱是一种通过物质对红外光的吸收,来研究其化学结构和功能的方法。
在中药化学中,红外光谱常被用于分析中药的主要活性成分。
通过红外光谱可以确定各种有机分子的化学键、官能团和官能团的化学环境,进而确定中药中的化合物种类和结构。
此外,红外光谱还可以用于鉴定中药的真伪,鉴定中药的含量和质量。
其次,紫外光谱是一种研究物质对紫外光的吸收和发射的方法,可用于研究物质的电子结构和分子间的相互作用。
在中药化学中,紫外光谱常被用于鉴定中药中的化学成分,并用于定量分析中药中特定成分的含量。
此外,紫外光谱还可以用于研究中药中的光敏物质和激发态动力学过程,进一步揭示中药的化学特性和功效。
第三,质谱技术是一种通过测量物质中离子的相对分子质量和相对分子结构来研究其化学性质的方法。
在中药化学研究中,质谱常被用于鉴定中药中的特定成分,并用于分析中药中的各种化学成分的含量和结构。
质谱的高灵敏度和高分辨率使得它能够发现和分析中药中的微量化合物,这对中药的质量控制非常重要。
最后,核磁共振谱是一种通过测量物质中核自旋的相对位置和相对强度来研究其化学结构和化学环境的方法。
在中药化学中,核磁共振谱常被用于鉴定复杂的化合物结构,确定中药中活性成分的结构和相对含量。
核磁共振谱的高分辨率和非破坏性的特点,使其成为研究中药中复杂混合物的理想工具。
综上所述,四大波谱技术在中药化学中均有广泛的应用,它们能够帮助研究人员鉴定中药的主要化学成分、确定中药的质量和纯度以及研究中药的化学结构和功能,为中药的研究和开发提供了有力的支持。
四大名谱(光谱、质谱、色谱、波谱)在检测领域,有四大名谱,分别为色谱、光谱、质谱、波谱,四大名谱都有各自的优缺点,为了能够最大限度的发挥每种分析仪器的最大优势,可将两种或三种仪器进行联用来分析样品,联用技术能够克服仪器单独使用时的缺陷。
是未来分析仪器发展的趋势所在。
四大名谱简介:质谱:分析分子或原子的质量,可以推测物质的组成,一般用于定性分析较多,也可定量。
色谱:是一种分离、定性分析与定量分析的手段,可分辨样品中的不同物质。
光谱:定性分析,确定样品中主要基团,确定物质类别。
从红外到X射线,都是光谱,其应用范围差别很大,是对分子或原子的光谱性质进行分析解析的。
波谱:通常指四大波谱,核磁共振(NMR),物质粒子的质量谱-质谱(MS),振动光谱-红外/拉曼(IR/Raman),电子跃迁-紫外(UV)。
1、质谱分析法➢质谱分析法是将不同质量的离子按质荷比(m/z)的大小顺序收集和记录下来,得到质谱图,用质谱图进行定性、定量分析及结构分析的方法。
➢质谱分析法是物理分析法,早期主要用于相对原子质量的测定和某些复杂化合物的鉴定和结构分析。
➢随着GC和HPLC等仪器和质谱仪联机成功以及计算机的飞速发展,使得质谱法成为分析、鉴定复杂混合物的最有效工具。
质谱仪种类非常多,工作原理和应用范围也有很大的不同。
从应用角度,质谱仪可以分为下面几类:有机质谱仪:由于应用特点不同又分为:①气象色谱-质谱联用仪(GC-MS)在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极质谱仪,气相色谱-飞行时间质谱仪,气相色谱-离子阱质谱仪等。
②液相色谱-质谱联用仪(LC-MS)同样,有液相色谱-四极质谱仪,液相色谱-离子阱质谱仪,液相色谱-飞行时间质谱仪,以及各种各样的液相色谱-质谱-质谱联用仪。
③其它有机质谱仪,主要有:基质辅助激光解吸飞行时间质谱仪(MALDI-TOFMS),傅里叶变换质谱仪(FT-MS)。
无机质谱仪,包括:①火花源双聚焦质谱仪。
四大谱图基本原理及图谱解析一.质谱1.基本原理:用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。
其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。
在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。
在质谱计的离子源中有机化合物的分子被离子化。
丢失一个电子形成带一个正电荷的奇电子离子(M+·)叫分子离子。
它还会发生一些化学键的断裂生成各种碎片离子。
带正电荷离子的运动轨迹:经整理可写成:式中:m/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z表示质荷比;z表示带一个至多个电荷。
由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。
质谱的基本公式表明:(1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z ∝r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。
这就是磁场的重要作用,即对不同质荷比离子的色散作用。
(2)当加速电压(V)一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z∝H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。
(3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z∝1/V),表明加速电压越高,仪器所能测量的质量范围越小。
就测量的质量范围而言,希望质量范围大一些,这就必须降低加速电压。
从提高灵敏度和分辨率来讲,需要提高加速电压。
这是一对矛盾,解决的办法是在质量范围够用的情况下尽量提高加速电压,高分辨质谱计加速电压为8kV,中分辨为4~3kV。
四谱的应用
四谱分析,即核磁共振波谱(NMR)、紫外吸收光谱(UV)、红外吸收光谱(IR)和质谱(MS),是现代化学分析中常用的四种技术。
这四种技术在化学领域,尤其是在有机化学和生物化学领域,具有广泛的应用。
首先,核磁共振波谱(NMR)是一种通过测量原子核在外加的电磁场中的共振频率来确定分子结构的分析方法。
NMR可以提供分子的详细结构信息,对于解析分子的化学位移、偶合常数、分子对称性等有很高的分辨率。
因此,NMR被广泛应用于有机化合物的结构鉴定,特别是在药物化学、有机合成等领域。
其次,紫外吸收光谱(UV)是利用化合物在紫外区域内的吸收特性,通过测量吸收光的强度来推断化合物的分子结构。
UV可以提供关于分子中π电子系统的信息,如共轭系统的大小、电子迁移性等,对于鉴定分子中的芳香环、双键等具有很高的灵敏度。
UV在药物分析、食品分析等领域有广泛的应用。
再次,红外吸收光谱(IR)是通过测量化合物在特定波长红外光下的吸收强度,来推断化合物的分子结构和化学环境的一种技术。
IR可以提供关于分子中化学键的振动信息,对于鉴定分子中的功能团、化学键类型等具有很高的准确性。
因此,IR在化学、石油、材料等领域有广泛的应用。
最后,质谱(MS)是通过对分子进行质量分析,来推断分子的
结构和化学组成的一种技术。
MS可以提供关于分子的分子量、分子式、结构信息等,对于鉴定未知化合物、分析复杂样品等具有很高的效能。
因此,MS在药物分析、环境科学、生物化学等领域有广泛的应用。
总的来说,四谱分析是现代化学分析的重要手段,它们各有其独特的分析能力和应用领域,但又相互补充,共同为化学研究提供了强大的工具。
四大谱图基本原理及图谱解析一质谱1. 基本原理:用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。
其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。
在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。
在质谱计的离子源中有机化合物的分子被离子化。
丢失一个电子形成带一个正电荷的奇电子离子(M+J叫分子离子。
它还会发生一些化学键的断裂生成各种r =£碎片离子。
带正电荷离子的运动轨迹:经整理可写成:m _ rjH2电"2比2式中:口/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z 表示质荷比;z表示带一个至多个电荷。
由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。
质谱的基本公式表明:(1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z x r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。
这就是磁场的重要作用,即对不同质荷比离子的色散作用。
(2)当加速电压(V) 一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z x H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。
(3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z x 1/V),表明加速电压越高,仪器所能测量的质量范围越小。
就测量的质量范围而言,希望质量范围大一些,这就必须降低加速电压。
从提高灵敏度和分辨率来讲,需要提高加速电压。
这是一对矛盾,解决的办法是在质量范围够用的情况下尽量提高加速电压,高分辨质谱计加速电压为8kV,中分辨为4〜3kV。
四大名谱在检测领域,有四大名谱,也是检测领域的“四大天王”分别为色谱、光谱、质谱、波谱,在检测特色和适用范围上各有不同,但总有一款适合你!质谱分析分子、原子、或原子团的质量的,可以推测物质的组成,一般用于定性分析较多,也可定量。
色谱是一种兼顾分离与定量分析的手段,可分辨样品中的不同物质。
光谱定性分析,确定样品中主要基团,确定物质类别。
从红外到X射线,都是光谱,其应用范围差别很大,是对分子或原子的光谱性质进行分析解析的。
波谱通常指四大波谱,核磁共振(NMR),物质粒子的质量谱-质谱(MS),振动光谱-红外/拉曼(IR/Raman),电子跃迁-紫外(UV)。
01光谱分析法光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成和相对含量。
光谱分析时,可利用发射光谱,也可以利用吸收光谱。
这种方法的优点是非常灵敏而且迅速。
某种元素在物质中的含量达10皮克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来。
光谱的分类按波长区域不同,光谱可分为红外光谱、可见光谱和紫外光谱。
按产生的本质不同,可分为原子光谱和分子光谱。
按产生的方式不同,可分为发射光谱、吸收光谱和散射光谱。
按光谱表现形态不同,可分为线光谱、带光谱和连续光谱。
分光光谱技术可用于:通过测定某种物质吸收或发射光谱来确定该物质的组成;通过测量适当波长的信号强度确定某种单独存在或其他物质混合存在的一种物质的含量;通过测量某一种底物消失或产物出现的量同时间的关系,示踪反应过程。
鉴定分子式、结构式的方法紫外光谱:反应分子中共轭体系状况;红外光谱:光能团鉴定、分子中环、双键数目。
光谱法的优缺点(1)分析速度较快原子发射光谱用于炼钢炉前的分析,可在l~2分钟内,同时给出二十多种元素的分析结果。
(2)操作简便有些样品不经任何化学处理,即可直接进行光谱分析,采用计算机技术,有时只需按一下键盘即可自动进行分析、数据处理和打印出分析结果。
光谱色谱质谱4大谱
光谱、色谱、质谱是化学分析中常用的三种分析方法,它
们各自有不同的原理和应用领域。
以下是对这四大谱的详
细解释:
1. 光谱谱学(Spectroscopy):光谱谱学是研究物质与电
磁辐射相互作用的科学。
它通过测量物质对不同波长(或
频率)的电磁辐射的吸收、发射、散射等现象,来确定物
质的结构、组成、浓度等信息。
常见的光谱谱学包括紫外
可见光谱(UV-Vis)、红外光谱(IR)、拉曼光谱等。
2. 色谱谱学(Chromatography):色谱谱学是一种基于物
质在固定相和流动相之间分配行为的分离技术。
它通过物
质在固定相和流动相之间的相互作用力的差异,使得样品
中的组分能够在固定相中以不同的速度移动,从而实现分
离和分析。
常见的色谱谱学包括气相色谱(GC)、液相色
谱(LC)、高效液相色谱(HPLC)等。
3. 质谱谱学(Mass Spectrometry):质谱谱学是一种通
过测量物质中离子的质量和相对丰度来确定物质的结构和
组成的分析技术。
它通过将样品中的分子转化为离子,并
对离子进行分析和检测,从而得到物质的质谱图谱。
质谱
谱学可以提供物质的分子量、分子结构、元素组成等信息。
常见的质谱谱学包括气相质谱(GC-MS)、液相质谱(LC-MS)、飞行时间质谱(TOF-MS)等。
综上所述,光谱谱学、色谱谱学和质谱谱学是化学分析中
非常重要的三种分析方法,它们在不同的应用领域中发挥着重要的作用。
有机四大谱的原理及应用1. 什么是有机四大谱有机四大谱,指的是质谱、红外光谱、紫外光谱和核磁共振谱这四种常用的有机化合物分析技术。
它们通过不同的原理和方法,可对有机化合物的结构、功能和性质进行分析和表征。
2. 质谱质谱是一种通过测量分子或原子在电离后的质荷比,从而获得样品中化合物的信息的技术。
其原理是将样品分子电离生成离子,并根据其在磁场中的运动轨迹和质荷比进行分析。
质谱可用于确定分子的分子量、元素组成以及化合物的结构等。
在有机化学中,质谱常用于鉴定有机化合物的结构和分析有机反应的机理。
通过质谱,可以准确地确定化合物的分子量,并确定分子中含有的各种官能团和基团。
此外,质谱还可用于分析复杂混合物中的组分和确定有机化合物的相对含量。
在质谱实验中,常用的方法有电子轰击质谱(EI质谱)和化学电离质谱(CI质谱)等。
3. 红外光谱红外光谱是通过测量有机化合物与红外辐射的相互作用来获得有机化合物的结构信息的一种技术。
红外光谱的原理是有机化合物分子中的各种化学键在特定频率范围内的振动吸收。
通过比较样品吸收红外辐射的频率和强度与标准库中的数据,可以确定化合物中含有的官能团和基团。
红外光谱广泛应用于有机化学研究中,可用于鉴定和确认有机化合物的结构、官能团以及含氢基团的位置。
此外,红外光谱还可以用于分析化学反应的机理和动力学以及确定有机化合物的组分和含量。
4. 紫外光谱紫外光谱是一种通过测量有机化合物在紫外光区的吸收和散射来获得有关分子结构和功能的信息的技术。
紫外光谱的原理是有机化合物中的π电子跃迁所引起的吸收。
通过分析吸收的波长和强度,可以确定化合物的电子结构、键合特性以及共轭体系的存在。
在有机化学中,紫外光谱可用于确定有机分子的电荷转移性质、键合长度以及溶剂和温度对电子特性的影响。
此外,紫外光谱还广泛应用于生物化学、药物化学和环境分析等领域,可用于定量分析、药物研发和环境监测等。
5. 核磁共振谱核磁共振谱是通过测量有机分子中原子核在外加磁场下的共振吸收信号来获得分子结构和官能团信息的一种技术。
四大波谱的原理应用1. 简介波谱技术是一种通过测量物质与电磁波的相互作用来获取信息的方法。
根据电磁波的不同特性以及与物质的相互作用方式,可以将波谱分为四大类,包括紫外可见(UV-Vis)光谱、红外(IR)光谱、核磁共振(NMR)光谱和质谱。
本文将介绍这四大波谱的原理、应用以及在科学研究和工业生产中的重要性。
2. 紫外可见光谱 (UV-Vis)紫外可见光谱是一种用于分析物质的吸收和荧光特性的波谱技术。
其原理是通过测量物质对紫外和可见光的吸收或发射来研究物质的结构和性质。
UV-Vis光谱广泛应用于化学、生物化学、环境科学等领域。
在化学分析中,可以利用紫外可见光谱确定样品的化合物类型、浓度以及分子结构。
例如,在药物分析中,可以通过测量药物在特定波长下的吸光度来快速确定药物的质量和纯度。
此外,在环境科学领域,通过测量水样品中有机物质的吸收率,可以评估水的质量和污染程度。
3. 红外光谱 (IR)红外光谱是一种用于分析物质的分子结构和化学键特性的波谱技术。
其原理是通过测量物质对红外辐射的吸收来研究物质的官能团和键的类型。
红外光谱广泛应用于有机化学、材料科学、生物化学等领域。
在有机化学中,红外光谱常用于确定化合物中的官能团和分子结构。
例如,通过分析某化合物在红外光谱中的峰位和峰型,可以判断化合物中是否存在酯、醇、醚等官能团。
另外,在材料科学中,红外光谱可以用于研究材料的组分、结构和性质。
4. 核磁共振光谱 (NMR)核磁共振光谱是一种用于分析物质的分子结构和化学环境的波谱技术。
其原理是通过测量物质在磁场中的核自旋状态的变化来研究物质的结构和性质。
核磁共振光谱广泛应用于有机化学、生物化学、药物研究等领域。
在有机化学中,核磁共振光谱可以用于确定化合物的结构和确定化合物中的官能团。
通过分析化合物在核磁共振光谱中的峰位和峰型,可以判断分子中的键的类型以及它们相对于邻近原子的化学环境。
此外,核磁共振光谱还可以用于研究天然产物的结构和反应机理。
四大谱图基本原理及图谱解析一.质谱1.基本原理:用来测量质谱的仪器称为质谱仪,可以分成三个部分:离子化器、质量分析器与侦测器。
其基本原理是使试样中的成分在离子化器中发生电离,生成不同荷质比的带正电荷离子,经加速电场的作用,形成离子束,进入质量分析器。
在质量分析器中,再利用电场或磁场使不同质荷比的离子在空间上或时间上分离,或是透过过滤的方式,将它们分别聚焦到侦测器而得到质谱图,从而获得质量与浓度(或分压)相关的图谱。
在质谱计的离子源中有机化合物的分子被离子化。
丢失一个电子形成带一个正电荷的奇电子离子(M+·)叫分子离子。
它还会发生一些化学键的断裂生成各种碎片离子。
带正电荷离子的运动轨迹:经整理可写成:式中:m/e为质荷比是离子质量与所带电荷数之比;近年来常用m/z表示质荷比;z表示带一个至多个电荷。
由于大多数离子只带一个电荷,故m/z就可以看作离子的质量数。
质谱的基本公式表明:(1)当磁场强度(H)和加速电压(V)一定时,离子的质荷比与其在磁场中运动半径的平方成正比(m/z ∝r2m),质荷比(m/z)越大的离子在磁场中运动的轨道半径(rm)也越大。
这就是磁场的重要作用,即对不同质荷比离子的色散作用。
(2)当加速电压(V)一定以及离子运动的轨道半径(即收集器的位置)一定时,离子的质荷比(m/z)与磁场强度的平方成正比(m/z∝H2)改变H即所谓的磁场扫描,磁场由小到大改变,则由小质荷比到大质荷比的离子依次通过收集狭缝,分别被收集、检出和记录下来。
(3)若磁场强度(H)和离子的轨道半径(rm)一定时,离子的质荷比(m/z)与加速电压(V)成反比(m/z∝1/V),表明加速电压越高,仪器所能测量的质量范围越小。
就测量的质量范围而言,希望质量范围大一些,这就必须降低加速电压。
从提高灵敏度和分辨率来讲,需要提高加速电压。
这是一对矛盾,解决的办法是在质量范围够用的情况下尽量提高加速电压,高分辨质谱计加速电压为8kV,中分辨为4~3kV。
2.解析方法:质谱的表示方法有质谱图和质谱表两种,最常用的为质谱图。
质谱图的横座标是离子的质荷比(m/z)。
当离子所带的电荷z=l时,质荷比就是离子的质量质谱的纵坐标表示相对强度或相对丰度。
以质谱图中最强峰的强度为100%,称为基峰。
质谱中的分子离子(M+·)和碎片离子(A+)都是由天然丰度最大的轻同位素组成的。
比分子离子(M+·)或碎片离子(A+)峰高1~3质量数处可观察到一些小峰,它们来自重同位素的贡献,称为同位素峰。
由于各种元素同位素的天然丰度不同,它们同位素峰的强度也不相同,同位素峰的强度不仅与重同位素天然丰度有关,还与分子所含元素的数目有关。
所以,由质谱确定相对分子质量、分子式比其他方法准确度高,测定速度快、样品量少。
分子离子峰的质荷比(m/z)就是该化合物的相对分子质量,再根据同位素峰的相对强度就可以确定分子式。
3.实例解析:根据图谱,该化合物分子量应为129,且其相对丰度较低及稳定性较差,114处应该是发生α-断裂裂解一个甲基,再根据氮律,可推测其为胺类化合物。
因为仲、叔胺发生α-断裂后能形成带正电荷的碎片离子,常进一步发生H重排,及进一步裂解。
根据谱图的质荷比可推测其发生的裂解如下(数字表示质荷比):NN HN HN129864458所以其结构应该为N-甲基-N-异丙基-1-丁胺。
二.核磁共振谱1.基本原理:根据量子力学原理,与电子一样,原子核也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数I决定,原子核的自旋量子数I由如下法则确定:(1)中子数和质子数均为偶数的原子核,自旋量子数为0;(2)中子数加质子数为奇数的原子核,自旋量子数为半整数(如,1/2, 3/2, 5/2);(3)中子数为偶数,质子数为奇数的原子核,自旋量子数为整数(如,1, 2, 3)。
由于原子核携带电荷,当原子核自旋时,会产生一个磁矩。
这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。
将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。
进动具有能量也具有一定的频率。
进动频率又称Larmor频率:υ=γB/2πγ为磁旋比,B是外加磁场的强度。
磁旋比γ是一个基本的核常数。
可见,原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在已知强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。
原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,自旋量子数为I的核在外加磁场中有2I+1个不同的取向,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。
这些能级的能量为:E= -γhmB/2π式中,h是Planck常数(普朗克常数)();m 是磁量子数,取值范围从-I 到+I,即m= -I, -I+1, … I-1, I。
当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。
根据选择定则,能级的跃迁只能发生在Δm=±1之间,即在相邻的两个能级间跃迁。
这种能级跃迁是获取核磁共振信号的基础。
根据量子力学,跃迁所需要的能量变化:ΔE=γhB/2π为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。
当外加射频场的频率与原子核自旋进动的频率相同的时候,即入射光子的频率与Larmor频率γ相符时,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。
因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号。
2.解析方法:H NMR是目前研究得最充分的波谱,已得到许多规律用于研究分子结构。
从1H NMR谱中可以得到四方面的结构信息:①从峰的数目判断分子中氢的种类;②从化学位移判断分子中存在基团的类型;③从积分线(峰面积)计算每种基团中氢的相对数目;④从偶合裂分关系(峰形状)判断各基团是如何连接起来的。
在核磁共振谱中,共振峰下面的面积与产生峰的质子数成正比,因此,峰面积比即为不同类型质子数目的相对比值。
n+1规律:由于相邻核的偶合而产生的谱带裂分数遵循2nI+1规律。
对于1H、13C 等原子核,I=1/2则变成n+1规律。
如在氯乙烷的例子中,CH3相邻的CH2有二个氢核,裂分成2+1=3重峰。
CH3则使CH2裂分成3+1=4重峰。
图谱分析步骤:(1)标识杂质峰,最主要的杂质峰是溶剂峰。
(2)根据峰(组峰)的数目确定氢核的种类。
(3)根据峰的化学位移确定它们的归属。
(4)根据积分曲线计算各组峰的相应氢核数(现在的图谱上已标出)。
(5)根据峰的形状和偶合常数确定基团之间的互相关系。
(6)采用重水交换的方法识别-OH、-NH2、-COOH上的活泼氢。
(7)综合各种分析,推断分子的结构并对结论进行核对。
3.实例解析:3,7-二氯-8-羧基喹啉的环上有4个H,结构式为其中相邻的H5和H6可看作AB 系统,四条谱带的共振频率分别为,,和,J=(+)/(2*)+ 2=对应H5δB=(+)/(2*)- 2=对应H6H2和H4互为间位偶合,化学位移分别为和由此可见下图所标H从左往右分别为H4,H2,H5,H6三.紫外光谱1.基本原理:紫外- 可见吸收光谱(UV-Vis) 的范围是100 到800nm。
所有的有机化合物均在这一区域有吸收带。
100~200nm称为远紫外或真空紫外区,由于大气中的氧、氮、二氧化碳、水等在这一区域有吸收,因此在测定这一范围的光谱时,必须将光学系统抽成真空,然后充以一些惰性气体,如氦、氖、氩等。
鉴于真空紫外吸收光谱的研究需要昂贵的真空紫外分光光度计,故在实际应用中受到一定的限制。
200~400nm范围称为近紫外区,许多化合物在这一区域产生特征吸收。
400~800nm为可见光区,有些较大的共轭体系的吸收延伸至该区。
我们通常所说的紫外-可见光谱,实际上是指近紫外和可见光区,这些吸收带的位置和强度能够提供有用的结构信息。
分子内部的运动有转动、振动和电子运动,相应状态的能量(状态的本征值)是量子化的,因此分子具有转动能级、振动能级和电子能级。
通常,分子处于低能量的基态,从外界吸收能量后,能引起分子能级的跃迁。
电子能级的跃迁所需能量最大,大致在1~20 eV(电子伏特)之间。
根据量子理论,相邻能级间的能量差ΔE、电磁辐射的频率ν、波长λ符合下面的关系式ΔE=hν=h×c/λ式中h是普朗克常量,为×10^-34J·s=×10^-15 eV·s;c是光速,为2. 998×10^10 cm/s。
应用该公式可以计算出电子跃迁时吸收光的波长。
许多有机分子中的价电子跃迁,须吸收波长在200~1000 nm范围内的光,恰好落在紫外-可见光区域。
因此,紫外吸收光谱是由于分子中价电子的跃迁而产生的,也可以称它为电子光谱。
2.解析方法:根据图谱的信息来判断可能存在的生色团,助色团,同时要考虑红移蓝移现象以及增色减色效应。
同时紫外吸收带通常是宽带,影响吸收带形状的因素有:被测化合物的结构、测定的状态、测定的温度、溶剂的极性等。
π电子共轭体系增大,λmax红移,εmax增大。
空间阻碍使共轭体系破坏,λmax蓝移,εmax减小。
另外,不同性质的溶剂与样品分子的作用可能改变有关分子轨道的能级,因而改变最大吸收波长。
溶剂极性增大,π→π*跃迁吸收带红移n→π*跃迁吸收带蓝移。
3.实例解析:分子式C5H4O2透光度nm共轭双键的吸收峰在217,羰基属于n→π*跃迁,应该在270-300之间,其中可能有共轭双键和羰基之间存在共轭,致使双键吸收峰发生红移217→228.而278那个是醛基的吸收峰。
所以该样品应该为糠醛。
四.红外光谱1.基本原理:物质分子运动近似可分为平动、转动、振动和分子内电子相对于原子核的运动。
与产生红外光谱有关的运动方式是原子的振动和分子的转动。
用红外光照射化合物分子,分子吸收红外光的能量使其振动能级和转动能级产生跃迁。
分子吸收能量后在振动运动状态发生改变的同时必然伴随着若干转动能量的变化,故红外光谱亦称为振-转光谱。
只有当外来电磁辐射的能量恰好等于基态与某一激发态的能量之差时(ΔΕ=hυ),这个能量才能被分子吸收产生红外光谱,或者说只有当外来电磁辐射的频率恰好等于从基态跃迁到某一激发态的频率时,则产生共振吸收——产生红外光谱。
2.解析方法:4000~1500cm-1范围称为特征区,为基团和化学键的特征频率(基频),特征区的信息对结构鉴定是很重要的。