二元一次不定方程的解法
- 格式:pdf
- 大小:31.52 KB
- 文档页数:2
探究二元一次不定方程(Inquires into the dual indefinite equation)冯晓梁(XiaoLiang Feng)(江西科技师范学院数计学院数一班 330031)【摘要】:二元一次不定方程是最简单的不定方程, 一些复杂的不定方程常常化为二元一次不定方程问题加以解决。
我们讨论二元一次方程的整数解。
The dual indefinite equation is the simple the indefinite equation, some complex indefinite equations change into the dual indefinite equation question to solve frequently. We discuss the dual linear equation the integer solution.【关键字】:二元一次不定方程初等数论整数解(Dual indefinite equation Primary theory of numbers Integer solution)二元一次方程的概念:含有两个未知数,并且未知项的次数是1的方程叫做二元一次方程。
一个方程是二元一次方程必须同时满足下列条件;①等号两边的代数式是整式;②具有两个未知数;③未知项的次数是1。
如:2x-3y=7是二元一次方程,而方程4xy-3=0中含有两个未知数,且两个未知数的次数都是1,但是未知项4xy的次数是2,所以,它是二元二次方程,而不是二元一次方程。
定理1.形如(不同时为零)的方程称为二元一次不定方程。
[1]二元一次方程的解和解二元一次方程:能使一个二元一次方程两边的值相等的未知数的一组值叫做这个方程的一个解,但若对未知数的取值附加某些限制,方程的解可能只有有限个。
通常求一个二元一次方程的解的方法是用一个未知数的代数式表示另一个未知数,如x-2y=3变形为x=3+2y,然后给出一个y的值就能求出x的一个对应值,这样得到的x、y的每对对应值,都是x-2y=3的一个解。
奥数知识点汇总(初一)第一章 整数一、整数的几种表示方法:选择适当的方法表示一个整数,是解决整数问题的基本方法之一。
它是解决整数问题的前提。
1、整数的多项式表示法:任何一个十进制的正整数N 都可表示为:12121010101010n n n n N a a a a a --=⨯+⨯++⨯+⨯+,这里n a 、1n a -、……2a 、1a 、0a 各取于0——9这十个数字中的任何一个。
如果N 是一个n+1位正整数,则n a ≠0。
为了方便,也可将N 简记作110N n n a a a a =-——————————————。
这种表示法称为整数的多项式表示法。
整数最左边的一位数字n a 叫做整数N 的首位数字,最右边的一位数字0a 叫做整数N 的末位数字。
2、整数的质因数连乘积表示法:(1)算术基本定理——每一个大于1的整数都能分解成质因数的乘积的形式,并且如果把质因数按照由小到大的顺序排在一起(相同因数的积写成幂的形式),那么这种分解方法是唯一的。
这就是说,任何一个整数N (N >1),都能唯一地表示成下面的形式:其中1α,2α,……n α为自然数,12,,,n p p p 为质数,并且1p <2p <……<n p 。
这种表示法称为整数的质因数连乘积表示法,又称为整数N 的标准分解式。
(2)约数个数定理——一个整数N (N >1),如果它的标准分解式为1212n n N p p p ααα=,那么它的约数个数为(1+1α)(1+2α)……(1+n α)。
另外,如果一个正整数N 的约数个数是奇数,那么这个正整数N 是完全平方数。
3、整数的带余式表示法:如果整数a 除以正整数m 所得的商是q ,余数是r ,那么a =mq+r ,其中q 、r 都为整数,并且0≤r ≤m -1。
这种表示法称为整数的带余式表示法。
如果整数a 、b 分别除以正整数m 所得得余数都是r ,即a=mp+r ,b =mq+r(p 、q 为整数),那么称a ,b 对于模m 同余,记作a ≡b(mod m)。
二元一次不定方程的解法及其应用
解二元一次不定方程的一种常用方法是通过消元法或代入法。
具体步骤如下:
1. 将二元一次不定方程表示为两个未知数的方程形式,例如:ax + by = c,其中a、b和c都是已知的常数。
2. 通过消元法,选择合适的操作将方程化简为只含有一个未知数的方程。
可以选择将一个未知数的系数调整为0,或者通过加减两个方程将某一未知数的系数相消。
3. 消去一个未知数后,得到只含有一个未知数的方程。
根据需要,可以解这个一元一次方程,求得一个未知数的值。
4. 将求得的未知数的值代入原方程中,解得另一个未知数的值。
通过这种方法,可以求得二元一次不定方程的解。
二元一次不定方程的应用十分广泛。
在实际生活中,二元一次不定方程可以用来描述各种关系。
例如,在经济学中,二元一次不定方程可以表示两种商品的价格与需求量之间的关系。
在物理学中,二元一次不定方程可以表示两个物理量之间的线性关系。
在工程学中,二元一次不定方程可以用来描述两个变量之间的功能关系。
通过求解二元一次不定方程,可以得到这些关系的数学表达式,并且可以根据已知条件来求解未知数的值,从而得到实际问题的解答。
二元一次不定方程的解法.doc一、二元一次不定方程的概念二元一次不定方程指的是形如ax + by = c 的方程,其中a、b、c为已知数,x、y为未知数。
如果a、b不同时为零,那么该方程就是一个二元一次不定方程。
二元一次不定方程具有如下特点:1.方程有两个未知数,需要求出两个未知数的值才能确定方程的解。
2.方程的一次项系数a,b不能同时为0。
3.方程的解可能有无数个,也可能没有解。
二、二元一次不定方程的求解方法1.消元法消元法是一种常见的求解二元一次不定方程的方法。
这种方法的基本思想是通过消去一个未知数,将方程转化为一个一元一次方程,从而求解出这个未知数的值,最后再代入原方程中求出另一个未知数的值。
举例说明:a)求解2x + 3y = 7的解。
解答:将x消去,得到y = (7 - 2x)/3。
因为x和y都是整数,所以7 - 2x要是3的倍数,才有整数解。
整理得x = (7 - 3y)/2,要是7 - 3y是2的倍数才有整数解。
所以当y取-1、0、1、2、3、4、 5、 6时,可以求得相应的整数解。
b)求解3x + 4y = 5的解。
解答:同样地,将x消去,得到y = (5 - 3x)/4。
因为x和y都是整数,所以5 - 3x要是4的倍数,才有整数解。
但是由于5- 3x的最大值只有4,所以该方程无整数解。
2.代入法代入法是一种常见的求解二元一次不定方程的方法。
这种方法的基本思想是将其中一个未知数用另一个未知数表示出来,将其代入原方程中,从而得到只包含一个未知数的一元一次方程,再求解出这个未知数的值,最后再代回原方程中求出另一个未知数的值。
举例说明:求解x + y = 5, 2x - 3y = 10的解。
解答:可以将x + y = 5中的x用2x - 3y = 10 代替,得到(2x -3y) + y = 5,即2x - 2y = 5。
将该方程除以2,得到x - y = 2。
把该式代入x + y = 5中,可得到2y = 3,即y = 3/2。
第十七讲二元一次不定方程的解法我们知道,如果未知数的个数多于方程的个数,那么,一般来说,它的解往往是不确定的,例如方程x-2y=3,方程组J K+ y + z = 100i+ 2;=180等,它们的解是不确定的•像这类方程或方程组就称为不定方程或不定方程组.不定方程(组)是数论中的一个古老分支,其内容极其丰富•我国对不定方程的研究已延续了数千年,“百鸡问题”等一直流传至今,“物不知其数”的解法被称为中国剩余定理.近年来,不定方程的研究又有新的进展•学习不定方程,不仅可以拓宽数学知识面,而且可以培养思维能力,提高数学解题的技能.我们先看一个例子.例小张带了5角钱去买橡皮和铅笔,橡皮每块3分,铅笔每支1角1分,问5角钱刚好买几块橡皮和几支铅笔?解设小张买了x块橡皮,y支铅笔,于是根据题意得方程3x+11y=50.这是一个二元一次不定方程•从方程来看,任给一个x值,就可以得到一个y值,所以它的解有无数多组.但是这个问题要求的是买橡皮的块数和铅笔的支数,而橡皮的块数与铅笔的支数只能是正整数或零,所以从这个问题的要求来说,我们只要求这个方程的非负整数解.因为铅笔每支1角1分,所以5角钱最多只能买到4支铅笔,因此,小张买铅笔的支数只能是0,1, 2,3,4支,即y的取值只能是0,1, 2, 3, 4这五个.若y = 则盟=斗,不是整数,不合题意;若y = 贝Ik二13,符合题意;若汗厶贝肛二孚,不是整数*不合题意;若y=3,则x=17/3,不是整数,不合题意;若y=4,则x=2,符合题意.所以,这个方程有两组正整数解,即也就是说,5角钱刚好能买2块橡皮与4支铅笔,或者13块橡皮与1支铅笔.像这个例子,我们把二元一次不定方程的解限制在非负整数时,那么它的解就确定了.但是否只要把解限制在非负整数时,二元一次不定方程的解就一定能确定了呢?不能!现举例说明.例求不定方程x-y=2的正整数解.解我们知道:3-1=2, 4-2=2, 5-3=2,,,所以这个方程的正整数解有无数组,它们是ii + 2,其中n可以取一切自然数.因此,所要解的不定方程有无数组正整数解,它的解是不确定的.上面关于橡皮与铅笔的例子,我们是用逐个检验的方法来求它们的非负整数解的,但是这种方法在给出的数比较大的问题或者方程有无数组解的时候就会遇到麻烦•那么能不能找到一个有效而又方便的方法来求解呢?我们现在就来研究这个问题,先给出一个定理.定理如果a, b是互质的正整数,c是整数,且方程ax+by=c ①有一组整数解X。
不定方程定义不定方程定义及相关定义1. 不定方程定义不定方程是指含有未知数的方程,其解可能是整数或有理数,并且方程的系数是已知的。
不定方程的一般形式为:A1x1 + A2x2 + … + Anxn = B其中,A1, A2, …, An 是方程中的系数,x1, x2, …, xn 是未知数,B 是已知的常数。
2. 二元一次不定方程二元一次不定方程是指只含有两个未知数的一次方程。
一般形式为:A1x + A2y = B其中,A1、A2 和 B 是已知的常数。
解二元一次不定方程可以用到数论的知识,如贝祖等式、扩展欧几里得算法等。
3. 举例及理由例1:解二元一次不定方程 3x + 5y = 7。
•理由:这是一个经典的二元一次不定方程,解之可以帮助我们理解贝祖等式的应用。
例2:解二元一次不定方程 2x + 4y = 10。
•理由:这是一个特殊的二元一次不定方程,通过求解该方程,我们可以讨论贝祖等式的无解情况。
例3:解二元一次不定方程 4x + 3y = 2。
•理由:这是另一个特殊的二元一次不定方程,解之可以为我们提供扩展欧几里得算法的实际应用。
4. 相关书籍推荐•“Elementary Number Theory” by David M.Burton: 这本书是数论的经典教材,涵盖了不定方程以及其他数论概念的详细内容。
适合对数论感兴趣的读者,提供了丰富的例题和练习题。
•“An Introduction to the Theory of Numbers”by Ivan Niven, Herbert S. Zuckerman, and Hugh L.Montgomery: 这是另一本优秀的数论教材,对不定方程及其解法进行了深入讲解。
书中提供了大量的例题和习题,适合进一步深入学习不定方程的读者。
以上是关于不定方程定义及相关定义的简要介绍和举例说明。
对于想要深入了解和研究不定方程的读者,推荐阅读上述书籍以获取更详细的知识。
关于⼆元⼀次不定⽅程的整数解相关结论的推导整数解的通解公式推导⼆元⼀次不定⽅程的⼀般形式为:ax + by = c ①这⾥,a、b和c都是正整数,且满⾜(a,b) = 1由(a,b) = 1知,存在⼀对整数u和v,满⾜ au + bv = 1。
取m = cu,n = cv,则m, n这⼀对整数是⽅程①的⼀组特解,即有am + bn = c ②由①②,有a(x-m) = -b(y-n)(x-m)/b = -(y-n)/a := tx = m + bt, y = n - at ③由(a,b) = 1知,b | x-m,a | y-n,即⽅程①的任意⼀组整数解都有唯⼀对应的整数t,于是③便是①的所有整数解的通解公式,t可为任意整数。
易知这些整数解在平⾯直⾓坐标系中处在同⼀条直线(斜率为 -a/b)上。
实际上,通解公式③只要求a、b、c为整数且满⾜(a,b)=1即可。
⾮负整数解的相关结论推导考虑①的⾮负整数解,则③⾥的 t 需要满⾜:m + bt ≥ 0 和 n - at ≥ 0,即t ≥ -m/b = -[m/b] - {m/b} ④t ≤ n/a = [n/a] + {n/a} ⑤由于t为整数,⑤等价于 t ≤ [n/a];④等价于 -t ≤ m/b = [m/b] + {m/b},即等价于 -t ≤ [m/b],即 t ≥ -[m/b]于是有-[m/b] ≤ t ≤ [n/a] ⑥只要[n/a] ≥ -[m/b],⽅程①就⼀定存在⾮负整数解。
事实上,①的⾮负整数的解数为M := [n/a] + [m/b] + 1 ⑦例如就8x + 15y = 2⽽⾔,x = 4, y = -2是其⼀组特解,代⼊⑦,有M = [-2/8] + [4/15] + 1 = -1 + 0 + 1 = 0即8x + 15y = 2没有⾮负整数解。
⑦给出的⽅程①的⾮负整数解数M的判别式需要借助⼀组特解,以下试图只⽤常数a、b和c来表⽰M:M = n/a - {n/a} + m/b - {m/b} + 1= c/(ab) + 1 - {n/a} - {m/b}= [c/(ab)] + 1 + {c/(ab)} - {n/a} - {m/b}由 Δ:= {r+s} - {r} - {s} = [r] + [s] - [r+s],可知Δ = 0或-1,于是M = [c/(ab)] 或 [c/(ab)] + 1 ⑧⑧这个表⽰式⾥没有特解,⽽只有a、b和c;和⑦同样,⑧也是对①的⾮负整数解数的⼀个刻画,但⑦是确定刻画,⑧是不确定刻画。