动态剪切流变仪.
- 格式:ppt
- 大小:2.67 MB
- 文档页数:39
沥青路面以其优越的路用性能得到全世界范围内的推广应用.但是近年来,高等级沥青路面在使用早期就出现诸如网裂、剥落和松散等病害并逐步扩展,严重影响行车质量和效益.沥青路面的早期破坏除了设计、施工等方面的原因外,还与沥青的老化密切相关.沥青路面在使用过程中,表层沥青老化后产生脆性,劲度大大增加,破坏应变变小,在冬天容易产生温缩裂缝,导致路面开裂.沥青老化后导致沥青路面的抗疲劳性能下降,路面产生疲劳裂缝.因此研究沥青的抗老化性能,对提高沥青路面使用质量有重的现实意义1.基本理论动态剪切流变仪(Dynamic Shear Rheometer,简称DSR,如图1所示)通过给沥青试样施加一个正弦变化的交变应力,产生一个正弦交变应变力,而这两个应力是有相位差的。
由试验数据得出复数剪切模量*G,相位角δ。
*G即最大剪应力与最大剪应变的比值,是总阻力的表征,它包括实数轴分量'G及虚数轴分量''G,其中:'G称为动力弹性模量,即弹性部分,反映沥青变形过程中储存的能量;''G称为损失弹性模量,即粘性部分,相当于动粘度η产生的损失弹性模量,反映沥青在变形过程中由于内部摩擦产生的以热的形式散失的能量。
相位角δ是由于材料粘性成分的影响,对材料输入正弦应力与产生的正弦应变响应不同步,滞后一定相位角产生的,是沥青结合料的弹性与粘性的成分比例指标。
图1动态剪切试验基本原理Fig.1 Principle of operation of DSR粘温指数VTS指的是能够表征粘度η与温度t的关系的一个参数。
其中粘度η可以通过DSR试验数据中的*G、δ及加载频率ω通过式(1)求得:4.86281()sin G ηωδ*= (1) 其中:*G —复数剪切模量;ω—加载频率;δ—相位角。
换算得到粘度后,有四种方法构建粘度-温度坐标系来求得VTS 。
纵坐标都取lgη的对数坐标,横坐标分别为摄氏温度坐标、摄氏温度的对数坐标、兰金式温度的对数坐标、开式温度的对数坐标。
沥青动态剪切流变仪安全操作及保养规程1. 引言沥青动态剪切流变仪是一种用于测试沥青材料的流变性能的仪器。
正确的操作和保养沥青动态剪切流变仪对保证测试准确性、提高工作效率以及延长仪器寿命都十分重要。
本文档旨在提供沥青动态剪切流变仪的安全操作和保养规程,以确保使用者和仪器的安全,并且得到准确可靠的测试结果。
2. 安全操作规程在操作沥青动态剪切流变仪之前,必须遵守以下安全操作规程:2.1 仪器放置•保证仪器放置在平稳、干燥、洁净、通风良好的场所•避免阳光直射和潮湿环境•避免与腐蚀性物质、振动源或强电源放置在同一位置2.2 电源接入•仅在电源正常、接地可靠的情况下接入电源•使用专用插座,并确保电源线不被压损或过热•强电设备离仪器至少保持1米的距离2.3 操作人员•操作人员必须熟悉仪器的使用说明和安全规程•使用仪器前要求操作人员具备相关的培训和经验,能够独立操作•禁止未经授权的人员操作仪器•操作人员需佩戴适当的防护设备,如手套、护目镜等2.4 仪器检查•使用前检查仪器是否完好无损,如发现损坏或异常情况,应及时停止使用并联系维修人员•定期对仪器进行维护和校准,以保证仪器的准确性和稳定性2.5 样品处理•操作人员应按照测试要求正确处理和准备样品•尽量避免直接接触沥青材料,如需接触应佩戴手套2.6 仪器操作•严格按照操作手册的要求进行操作•禁止对仪器进行未经授权的改动或维修•操作过程中需注意防止任何物体进入仪器内部2.7 紧急情况•发生紧急情况时,操作人员应立即切断电源,并及时向维修人员报告3. 保养规程除了正确操作之外,定期保养沥青动态剪切流变仪也是确保其正常运行和延长使用寿命的关键。
以下是保养规程:3.1 仪器清洁•每次使用后,应及时清洁仪器外壳和工作台面•可使用湿布或中性清洁剂进行清洁,严禁使用有机溶剂、腐蚀性液体等进行清洁3.2 仪器存放•仪器长时间不使用时,应将其存放在干燥、通风的地方•长期存放前,应将仪器上的沥青残留物清除干净,以防止堵塞或损坏仪器3.3 保护仪器•使用绒布或者软布包裹仪器,以防止仪器被尘土或其他物质污染•长时间不使用时,可以使用封套或其他适当的保护措施,保护仪器不受灰尘、潮湿、霉菌等环境影响3.4 定期维护•根据仪器使用频率和制造商的要求,进行定期维护•定期维护包括更换零配件、清洁仪器内部、校准仪器等4. 结论沥青动态剪切流变仪是一种用于测试沥青材料的流变性能的重要仪器。
沥青路面以其优越的路用性能得到全世界范围内的推广应用.但是近年来,高等级沥青路面在使用早期就出现诸如网裂、剥落和松散等病害并逐步扩展,严重影响行车质量和效益.沥青路面的早期破坏除了设计、施工等方面的原因外,还与沥青的老化密切相关.沥青路面在使用过程中,表层沥青老化后产生脆性,劲度大大增加,破坏应变变小,在冬天容易产生温缩裂缝,导致路面开裂.沥青老化后导致沥青路面的抗疲劳性能下降,路面产生疲劳裂缝.因此研究沥青的抗老化性能,对提高沥青路面使用质量有重的现实意义1.基本理论动态剪切流变仪(Dynamic Shear Rheometer,简称DSR,如图1所示)通过给沥青试样施加一个正弦变化的交变应力,产生一个正弦交变应变力,而这两个应力是有相位差的。
由试验数据得出复数剪切模量*G,相位角δ。
*G即最大剪应力与最大剪应变的比值,是总阻力的表征,它包括实数轴分量'G及虚数轴分量''G,其中:'G称为动力弹性模量,即弹性部分,反映沥青变形过程中储存的能量;''G称为损失弹性模量,即粘性部分,相当于动粘度η产生的损失弹性模量,反映沥青在变形过程中由于内部摩擦产生的以热的形式散失的能量。
相位角δ是由于材料粘性成分的影响,对材料输入正弦应力与产生的正弦应变响应不同步,滞后一定相位角产生的,是沥青结合料的弹性与粘性的成分比例指标。
图1动态剪切试验基本原理Fig.1 Principle of operation of DSR粘温指数VTS指的是能够表征粘度η与温度t的关系的一个参数。
其中粘度η可以通过DSR试验数据中的*G、δ及加载频率ω通过式(1)求得:4.86281()sin G ηωδ*= (1) 其中:*G —复数剪切模量;ω—加载频率;δ—相位角。
换算得到粘度后,有四种方法构建粘度-温度坐标系来求得VTS 。
纵坐标都取lgη的对数坐标,横坐标分别为摄氏温度坐标、摄氏温度的对数坐标、兰金式温度的对数坐标、开式温度的对数坐标。
动态剪切流变试验(DSR)动态剪切流变仪是一种评价高分子材料流变特性的通用仪器。
动态剪切流变仪用于测量沥青结合料的线粘弹性模量,在正弦(摆动的)加载模式下,可以得到不同温度、不同应力等级、不同试验频率下的测量结果,即温度扫描,应变扫描和频率扫描。
不同的测试模式只是固定的参数和改变的参数不同而已。
动态剪切流变仪的工作原理是:将试样夹在来回振荡的旋转轴和固定板之间,振荡板(常叫做“旋转轴”)从A点开始转动到B点,再从B点返回经A点到C 点,然后再从C点回到A 点,形成一个循环周期。
当力(剪应力f)通过旋转轴加到沥青上时,DSR就会测量沥青对此施加的力的反应(或剪应变)。
如果沥青是一个完全的弹性材料,其反应就与瞬时施加的力相一致,两者间的时间滞后就为零。
若是完全的粘性材料,荷载和反应之间的时间滞后就会很大。
在大多数沥青路面承受交通的工作温度下,沥青处于粘弹性的工作范围。
在DSR试验中施加的应力和产生的应变之间的关系,量化了这两种状况,提供了计算沥青胶结料的两个重要参数,复数剪切模量(G∗)和相位角(δ)。
复数剪切模量是材料重复剪切变形时总阻力的度量,它包括两部分:弹性(可恢复)部分和粘性(不可恢复)部分。
相位角是可恢复和不可恢复变形数量的相对指标。
G∗/sinδ为抗车辙因子,用来表示沥青材料抗永久变形能力,在最高路面设计温度下,其值越大表示沥青的流动变形越小,越有利于抵抗车辙的产生。
G′=G∗×cosδ为贮存剪切模量,反映沥青变形过程中能量的贮藏与释放,也称为弹性模量;。
G′=G∗×sinδ为损失剪切模量,反映沥青在变形过程中由于内部摩擦产生的以热的形式散失的能量,其值越大,表示重复荷载作用下的能量损失速度越快,也称为粘性模量。
很多研究表明,沥青混合料的疲劳损失、疲劳寿命与循环加载过程中的能量损失具有正比关系,因此较小的G∗/sinδ代表较好的抵抗疲劳能力。
在进行动态剪切流变实验之前应当采用应变扫描确定沥青材料的线粘弹性区域,以确保温度扫描实验和频率扫描实验在这个范围里进行。
T 0628─2011 沥青流变性质试验(DSR)1 目的与使用范围1.1 本方法适用于测定沥青的动态剪切模量和相位角。
沥青的动态剪切模量测量值范围为0.1~10MPa,相应的温度范围为5~85 o C。
1.2 本方法适用于原样沥青、压力老化后的沥青和薄膜烘箱(或旋转薄膜烘箱)后的老化沥青。
如用于含有颗粒的沥青,本标准试验方法只适用于颗粒尺寸小于250μm的沥青。
1.3 通过本方法测得的复合剪切模量和相位角经计算可以确定沥青性能(PG)分级等级。
2 仪具与材料技术要求2.1 动态剪切流变仪:试验系统由平行金属板、环境室、加载设备、控制和数据采集系统组成。
其基本原理如图T0628-1所示图T 0628-1 动态剪切流变仪基本原理1-沥青;2-振荡板;3-固定板2.2 试验系统基本技术要求和参数:2.2.1 试验板:两种规格的表面光滑的金属板。
一块直径为8.00mm±0.05mm;另一块直径为25.00mm±0.05mm。
2.2.2 环境室:用来控制试验时试件的温度,通过加热或冷却维持在一个恒定的试件环境。
环境室中加热或冷却试件的介质应为不影响沥青性质的液体或气体。
2.2.3 温度控制器:在5~85 o C温度范围内可将试件温度控制在试验温度±0.1 o C内。
2.2.4 加载设备:可以向试件施加10rad/s±0.,1rad/s频率的正弦振荡荷载。
加载方式可采用应力控制荷载或应变控制荷载。
2.2.5控制利数据采集系统:可记录温度、频率、偏转角和扭矩。
应满足T0628-1中规定的精度要求。
表T0628-1控制利数据采集系统精度要求2.2.6 温度传感器:精度至±0.1 o C。
2.3 试件修整器:刮刀过刀片,用于修整试件。
3 方法和步骤3.1准备工作3.1.1 按本规程T0602的方法制备试样。
加热沥青至足够流动状态,用来浇注试件,原样沥青加热的温度不宜高于135o C,改性沥青加热温度不超过163 o C。
附录C(规范性附录)应用动态剪切流变仪(DSR)测试沥青多重应力蠕变恢复试验(MSCR)的标准方法C.1 一般规定C.1.1 本方法为在特定温度条件下的动态剪切流变试验,确定沥青试样中可恢复和不可恢复的蠕变柔量。
本实验的样品为旋转薄膜烘箱试验(RTFOT,T0610)后的残留物。
C.1.2 通过可恢复百分率确定基质沥青或聚合物改性沥青的弹性恢复和应力依赖性。
C.1.3 本方法所测数据,需采用国际标准单位。
C.2试验仪器和设备C.2.1 本方法所需设备可按现行标准《公路工程沥青与沥青混合料试验规程》(JTG E20)中T0628方法要求配置。
C.3试验步骤C.3.1 试样条件—试样按照T0610进行旋转薄膜烘箱老化。
C.3.2 试样制备—按T0628要求制备试样,采用Φ25mm板制备多应力蠕变恢复试验试样,并根据要求控制试验温度。
本方法同样适用于根据表13确定RTFOT残余物DSR性能的试样。
当用DSR试样时,试验开始前应有1min的应力松弛时间,当用新试样时,可不要求应力松弛。
C.3.3 试验要求—试样在给定的试验温度下,分别使用两个恒定应力(0.1kPa和3.2kPa)进行蠕变和恢复试验,应力加载持续1s后零应力恢复9s。
试验共经历30个蠕变和恢复循环,其中,0.1kPa应力水平下进行20个循环,随后3.2kPa应力水平下进行10个循环,总共30个循环。
0.1kPa应力水平下的前10个循环用以进行试样条件处理。
在蠕变和恢复循环间无松弛时间和应力改变。
完成两阶段蠕变和恢复试验的总时间为300s。
至少每0.1s记录1次蠕变循环试验中的应力和应变,至少每0.45s1次记录恢复阶段的数据。
在每个蠕变和恢复循环周期中,在第1s时记录应变峰值,第10s时记录恢复应变。
如果DSR没有在指定时间准确记录峰值应变和恢复应变,则先利用先前的数据,使用外推法确定第1s和10s的应变值。
蠕变期的时间偏差不应超过0.1s,恢复期的时间偏差不应超过0.5s。
目录(弯曲梁流变仪法)一、目的与适用范围1.1本方法用弯曲梁流变仪测定沥青的弯曲蠕变劲度和m值。
测量的弯曲蠕变劲度范围为20~1OOOMPa。
1.2本方法适用干原样沥青、压力老化后的沥青和薄膜烘箱(或旋转薄膜烘箱)后的老化沥青。
1.3根据本方法进行试验时,若试件的形变大于4mm或小于0.08mm时,试验结果无效。
二、仪具与材料2.1弯曲梁流变仪试验系统由以下几部分组成:2.2.2加载系统:能向试件施加35mN ±5mN 的接触荷载,试验过程中将试验荷载2.2试验系统基本技术要求和参数2.2.1加载框:由一套试件支架、加载轴、荷载传感器、荷载调零装置、加载装置及位移测量传感器等组成。
示意图如图T0627-1所示。
保持在980mN ±50mN 以内。
技术要求如下:1)加载系统要求:试验荷载的升压时间应不少于5s 。
开始试验时系统在0.5~5s内将接触荷载从35mN ±5mN 增加到初始试验荷载980mN ±50mN ,此时试验荷载应稳定在平均试验荷载±50mN 之内,之后稳定在平均试验荷载±10mN 。
2)加载轴:带有半径为6.3mm ±1.3mm 球形接触点。
3)荷载传感器:用来测量初始接触荷载和试验荷载。
最小量程应不小于2.00N ,分辨率不小于2.5mN 。
4)线性差动式位移传感器(LVDT ):量程不小于6mm ,分辨率不小于2.5μm 。
5)试件支架:接触半径为3.0mm 士0.3mm 由不锈钢或其他防腐蚀金属制成的支架。
2.2.3温度传感器:测量范围为0~-36℃,精确至士O.1℃。
2.2.4恒温浴:在-36~0℃范围能将浴内各点温度保持在试验温度±0.1℃。
2.1带有试件支架的加载框。
2.1将试件保持在试验温度下并提供浮力以抵消试件重力的恒温2.1计算机控制和数据自动采集系统元件。
2.1试样梁模具。
2.1检量和校正系统的梁。