内桥接线方式及其保护配置介绍
- 格式:ppt
- 大小:263.00 KB
- 文档页数:21
电压互感器安装在线路上的内桥接线方式压变二次回路研究及对策【摘要】110kV变电站目前很多采用内桥接线方式,为了减少一次设备投资,内桥接线方式大多只在进线上或母线上安装电压互感器,本文将重点分析内桥接线方式下只在线路上安装电压互感器的压变二次回路,论述当前常用接线方式存在的问题,提出比较完善的改进方法。
【关键词】内桥接线;线路压变;二次回路;存在问题;改进方法引言110kV变电站大多建设在负荷中心,接线方式也比较简单,目前很多都采用内桥接线或扩大内桥接线,为了节省一次设备投资,多数不采用既安装线路电压互感器又安装母线电压互感器的接线方式。
而是采用装设线路电压互感器兼作母线电压互感器,或者采用安装母线电压互感器兼作线路电压互感器的方式。
这样设计后,对于内桥接线方式确实达到节省了两组电压互感器,但是对于压变二次电压回路却带来一些问题。
以电压互感器安装于线路上的内桥接线为研究对象,只要电压互感器一、二次回路完好,它就能准确反映进线是否有电压及电压数值,但要它反映对应母线上的电压情况,却要受相应进线开关和它两边刀闸运行方式影响,在进线有电压的情况下,只有进线开关和它两边刀闸都合上,进线和母线才是连通的,此时线路压变二次电压才能间接反映母线电压情况。
反之,只要进线开关或两刀闸之一拉开,线路压变二次电压就不能准确反映相应母线电压,就是说线路压变二次电压不能作为母线电压使用,否则对进线及桥备自投装置、主变保护装置都将带来一定影响。
当前很多电压互感器安装于线路上的内桥接线变电站在设计时都没有考虑到这一问题,下面将对存在问题及改进方案作详细分析。
1 常用接线方式及保护配置电压互感器安装在线路上的内桥接线方式如图1所示,它有两条进线:进线一和进线二,两条进线经相应的开关和刀闸连接到I段或II段母线上,两段母线之间安装一台桥开关和刀闸,实现两条母线的连接。
I段母线经一把刀闸上1号主变,II段母线同样经一把刀闸上2号主变,也就是主变的高压侧不装开关,两条进线各安装一组电压互感器,母线上不装电压互感器,进线电压互感器兼作母线电压互感器。
浅谈内桥接线变电站主变差动保护死区问题摘要:随着电网框架的不断完善,220kV已经成为城市供电的主网架,110kV线路已是辐射性供电的主要通道,110kV变电站多数成为城市终端变电站,其要求既节约资源,又满足供电可靠性。
而内桥接线变电站中使用的一次设备少,占地少,具有一定的运行灵活性,能满足供电可靠性的要求,所以,在终端变电站中,内桥接线被广泛采用,我公司共有8座110kV变电站,内桥接线变电站一共有5座,占总变电站的62.5%。
由于内桥接线的特殊性,在实际运行中,内桥接线变电站的主变差动保护存在误动和死区的问题,成为电网运行的安全隐患。
对可靠性也有一定的影响,而现有用户的负荷都很重要,对供电可靠性的要求要求较高,所以,提高供电可靠性成为重中之重。
关键词:内桥接线;变电站;主变差动保护;死区问题一、内桥接线变电站运行方式变压器高压侧没有开关(断路器),仅仅设置了闸刀(隔离开关);内桥开关一侧配有差动电流互感器,该电流互感器有的靠内桥开关Ⅰ母侧,也有的靠内桥开关Ⅱ母侧。
内桥接线变电站常见的运行方式有如下3种:(1)“中间”方式:高压侧分列运行,即2条进线1,2分别供1,2号主变701和702开关运行,700开关热备用,备自投方式为母联备自投,2台变压器T1,T2分列运行;(2)“左边”方式:高压侧并列运行,进线1供1,2号主变701和700开关运行,702开关热备用,备自投方式为进线备自投,2台变压器T1,T2并列运行;(3)“右边”方式:高压侧并列运行,进线2供1,2号主变702和700开关运行,701开关热备用,备自投方式为进线备自投,2台变压器T1,T2并列运行。
二、内桥接线变电站保护配置对于内桥接线变电站保护典型配置:2条进线开关为受电馈供开关,没有配备专门的线路保护;2主变压器安装在主保护和后备保护的电流互感器,以主变压器相应线路开关变压器差动保护中,独立流量低侧开关桥开关独立流变,跳进线开关后差动保护,相应的桥开关和主变低压侧开关。
110kV两线两变扩大内桥接线方式智能保护的配置林海源陈雯(国网福州供电公司,福建福州 350009)摘要:扩大内桥接线由于其可靠性高、经济效益好等优点,已被广泛使用。
而随着智能变电站技术的成熟,新上变电站基本都是智能变电站,其在保护配置方面与常规变电站有较大区别。
因此,现着重介绍智能变电站扩大内桥接线方式下保护的配置与实现方法。
关键词:智能变电站;扩大内桥;保护配置0引言随着智能变电站技术的成熟,智能变电站的建设也取得了飞速发展,新上的变电站已基本是智能变电站。
而在电网的终端变电站中,扩大内桥接线作为一种可靠性高、经济效益好的电气主接线方式得到了广泛应用。
通常变电站是按两进线三主变远期接线方式规划,但多数变电站一般前期只上两台主变。
图1所示为两进线两主变的扩大内桥接线的典型接线方式。
由于其具有特殊性,在主变保护的配置以及备自投的实现方面有许多需要特别注意的地方。
以下就着重介绍主变保护的配置及备自投的实现。
1智能变电站保护的配置有别于常规110 kV变电站的单套保护配置,110 kV智能变电站为保证可靠性主变保护采用双重化配置,内桥一、内桥二、备自投保护采用单套设计。
如图1所示的两线两变接线,为实现主变保护的双重化配置,进线一、进线二、内桥一、内桥二均配置两台完全独立的合并单元智能终端一体装置。
两台合并单元智能终端分别采集保护1、保护2的电流,另外母线间隔配置两套母线合并单元分别采集三段母线的二次电压,然后通过虚端子连线一起接入主变保护,低压侧也是如此配置,此处不做介绍。
110 kV开关一般只有一路控制电源,因此在出口回路的配置上,将两套智能终端的出口回路进行并联接入控制回路,从而实现任何一台保护动作均能出口跳闸。
2主变保护常规配置存在的问题与解决方案2.1死区问题如图1所示的两线两变扩大内桥接线,按常规配置#1主变保护应该接入进线一、内桥一的CT回路,#3主变保护应该接入进线二、靠近#3主变的内桥二的CT回路。
内桥外桥接线(总1页)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March当只有两台变压器和两条线路时,可以采用桥式接线,桥式接线按照连接桥的位置可分为内桥接线和外桥接线,桥式接线具有工作可靠、灵活、使用电器少、装置简单清晰、建造费用低和易于发展成单母线分段接线等优点。
如图所示。
a内桥接线的连接桥设置在断路器和变压器之间。
b外桥接线的连接桥设置在断路器和线路之间。
连接桥上亦装设断路器,正常运行时此断路器是接通的。
这种接线中,四条回路只用了三台断路器,所用的断路器数量是较少的。
1. 内桥接线其特点是:两台断路器QF1 和QF2 接在引出线上。
因此引出线的切除和投入是比较方便的。
当线路发生短路故障时,仅故障线路的断路器断开,其它三条回路仍可继续工作。
但是当变压器(如1T)故障时,与变压器1T 连接的两台断路器QF1 和QF3 都将断开,从而影响了非故障线路WL—1 的工作。
此外,这种接线当切除和投入变压器时,操作也比较复杂。
例如切除变压器1T 时,必须首先断开断路器QF1、QF3和变压器低压侧的断路器(图中未画出),再断开隔离开关QS1,然后接通QF1 和QF3,使出线WL—1 恢复工作。
所以内桥接线一般适用于故障较多的长线路和变压器不需要经常切除的场合。
2. 外桥接线.其特点与内桥接线相反。
当变压器发生故障或运行中需要切换时,只要断开本回路即可,不影响其它回路的工作。
但是,当线路 (例如出线WL—1) 发生故障时,断路器QF1 和QF3 都将断开,因而变压器1T 也将被切除。
为了恢复1T 的正常运行,必须在断开QS2后,再接通QF1 和QF3。
因此,外桥接线适用于线路较短和变压器按经济运行需要经常切换的情况。
此外,当电力系统有穿越性功率经过发电厂和变电所时,也应采用外桥接线,这时穿越功率仅经过连接桥上的断路器。
否则,若采用内桥接线,穿越功率要经过三台断路器,其中任一台断路器发生故障或检修时,将影响穿越功率的传送。
浅论220kV西湖变的内桥接线方式摘要:本文从220kV西湖变220kV侧采用的内桥接线方式入手,叙述了220kV西湖变的运行方式以及采用内桥接线方式的优缺点,然后重点分析了内桥方式下TV断线对于主变压器保护的影响,最后介绍了在倒闸操作和事故处理中的注意事项。
关键词:内桥接线;TV断线;主变压器保护;倒闸操作1概述变电站电气主接线的选择不仅表明了站内设备的数量及连接情况,同时决定了可能存在的运行方式,还决定了电气设备的选择、二次回路的布置等诸多方面。
常用的电气主接线方式有内桥、外桥、单母分段、单母分段带旁母、双母线、二分之三接线等等。
近些年,随着经济建设的需要和电力系统的高速发展,大大小小的变电站如雨后春笋般遍布各地,其主接线方式也各式各样。
新投运变电站的220kV接线方式一般为双母线接线。
而本文讲述的220kV西湖变于1998年6月投产,是运行了正好二十年的老变电站,其220kV接线方式为少见的内桥接线方式。
2 220kV西湖变的220kV接线方式220kV西湖变220kV接线方式如图1,为内桥接线方式。
图1220kV惠西线、220kV西临线作为220kV西湖变的两个供电电源,但并未配置220kV备自投装置。
220kV#1、#2主变为自耦变,公共绕组中性点均接地。
110kV接线方式为双母线带旁母接线,35kV接线为单母分段带旁母接线方式。
220kV西湖变正常运行方式为,220kV惠西线231、西临线232断路器通过分段212断路器环网运行,110kV侧并列运行,35kV侧分列运行,35kV分段备自投投入。
220kV西湖变采用内桥接线的优缺点都显而易见。
首先,由于220kV没有母线,因而不会发生由母线故障引起的停电。
其次,当一条220kV线路发生故障时,只有该线路的断路器跳闸,不会影响其他线路或主变的正常运行。
但是,由于主变高压侧没有断路器,当主变故障时,对应的220kV线路和内桥断路器都会跳闸,停电范围扩大。
接线图如上图所示,运行方式为:郊陆112经110kV4母线带1号变芨陆113经110kV5母线带2号变145备用,自投装置投入1号变经201开关带10kV4母线负荷,经301开关带35kV4母线负荷2号变经202开关带10kV5母线负荷,经302开关带35kV5母线负荷245备用,自投装置投入,345备用,自投加入T-1合上,T-2拉开,1号电抗器在4分头运行,2号电抗器在4分头运行请写出1号主变及110kV4母线由运行转检修的操作票。
操作令:1号主变及110kV4母线由运行转检修步骤:1、合上7-22、退出145、345、245自投装置3、合上1454、检查145已合上5、合上2456、检查245已合上7、合上3458、检查345已合上9、检查301、302电流表负荷分配应正常10、检查201、202电流表负荷分配应正常11、拉开20112、检查201已拉开13、拉开30114、检查301已拉开15、拉开14516、检查145已拉开17、拉开112,检查112已拉开18、拉开112-219、拉开112-420、拉开145-421、拉开145-522、拉开101-023、拉开301-224、拉开301-425、拉开201-226、拉开201-427、拉开4-9 PT二次刀闸28、拉开4-9 PT二次开关29、拉开4-930、在4-9刀闸母线侧验电31、在4-9刀闸母线侧挂1号地线32、在301-2主变侧验电33、在301-2主变侧挂2号地线34、在101-0主变侧验电35、在101-0主变侧挂3号地线36、在201-2主变侧验电37、在201-2主变侧挂4号地线38、拉开1号主变信号刀闸39、拉开1号主变控制总开关40、将1号主变瓦斯保护掉闸压板由掉闸改投信号[75140]请写出1号主变由运行转检修的操作票。
操作令:1号主变电运行转检修步骤:1、合上7-22、退出145、345、245自投装置3、合上1454、检查145已合上5、合上3456、检查345已合上7、合上2458、检查245已合上9、检查301、302电路表负荷分配正常10、检查201、202电路表负荷分配正常11、拉开20112、检查201已拉开13、拉开30114、检查301已拉开15、拉开14516、检查145已拉开17、拉开11218、检查112已拉开19、拉开101-020、拉开201-221、拉开201-422、拉开301-223、拉开301-424、在301-2主变侧验电25、在301-2主变侧挂1号地线26、在201-2主变侧验电27、在201-2主变侧挂2号地线28、在101-0主变侧验电29、在101-0主变侧挂3号地线30、合上11231、检查112已合上32、投入145自投装置33、将1号主变瓦斯保护压板由掉闸改投信号34、拉开1号变信号刀闸35、拉开1号变控制总开关。
220 kV内桥接线海上升压站典型保护配置与运维风险管控林依青;黄烜
【期刊名称】《自动化应用》
【年(卷),期】2024(65)5
【摘要】海上风电是我国加快能源清洁低碳转型、构建新型电力系统的重要战略支撑。
介绍了220 kV海上风电场升压站电气二次一种典型接线方式——内桥接线方式的保护配置,总结了其跳闸、远跳、启动失灵的关键回路,并提出了相关的运维风险管控措施,为今后类似工程的验收及部分设备的停电检修工作提供了参考。
【总页数】3页(P120-121)
【作者】林依青;黄烜
【作者单位】广东电网有限责任公司汕头供电局
【正文语种】中文
【中图分类】TM614
【相关文献】
1.大型风电场升压站220 kV电气主接线方式探讨
2.220 kV变电站非典型站用电接线的运方调整
3.电厂220kV升压站及电网220kV变电站继电保护系统的运行研究
4.一种220 kV模块化预制舱式海上升压站研究
5.300MW/220kV海上升压站电气一次设计研究
因版权原因,仅展示原文概要,查看原文内容请购买。