内桥接线方式及其保护配置介绍培训讲学
- 格式:ppt
- 大小:265.50 KB
- 文档页数:21
110kV两线两变扩大内桥接线方式智能保护的配置林海源陈雯(国网福州供电公司,福建福州 350009)摘要:扩大内桥接线由于其可靠性高、经济效益好等优点,已被广泛使用。
而随着智能变电站技术的成熟,新上变电站基本都是智能变电站,其在保护配置方面与常规变电站有较大区别。
因此,现着重介绍智能变电站扩大内桥接线方式下保护的配置与实现方法。
关键词:智能变电站;扩大内桥;保护配置0引言随着智能变电站技术的成熟,智能变电站的建设也取得了飞速发展,新上的变电站已基本是智能变电站。
而在电网的终端变电站中,扩大内桥接线作为一种可靠性高、经济效益好的电气主接线方式得到了广泛应用。
通常变电站是按两进线三主变远期接线方式规划,但多数变电站一般前期只上两台主变。
图1所示为两进线两主变的扩大内桥接线的典型接线方式。
由于其具有特殊性,在主变保护的配置以及备自投的实现方面有许多需要特别注意的地方。
以下就着重介绍主变保护的配置及备自投的实现。
1智能变电站保护的配置有别于常规110 kV变电站的单套保护配置,110 kV智能变电站为保证可靠性主变保护采用双重化配置,内桥一、内桥二、备自投保护采用单套设计。
如图1所示的两线两变接线,为实现主变保护的双重化配置,进线一、进线二、内桥一、内桥二均配置两台完全独立的合并单元智能终端一体装置。
两台合并单元智能终端分别采集保护1、保护2的电流,另外母线间隔配置两套母线合并单元分别采集三段母线的二次电压,然后通过虚端子连线一起接入主变保护,低压侧也是如此配置,此处不做介绍。
110 kV开关一般只有一路控制电源,因此在出口回路的配置上,将两套智能终端的出口回路进行并联接入控制回路,从而实现任何一台保护动作均能出口跳闸。
2主变保护常规配置存在的问题与解决方案2.1死区问题如图1所示的两线两变扩大内桥接线,按常规配置#1主变保护应该接入进线一、内桥一的CT回路,#3主变保护应该接入进线二、靠近#3主变的内桥二的CT回路。
浅论220kV西湖变的内桥接线方式摘要:本文从220kV西湖变220kV侧采用的内桥接线方式入手,叙述了220kV西湖变的运行方式以及采用内桥接线方式的优缺点,然后重点分析了内桥方式下TV断线对于主变压器保护的影响,最后介绍了在倒闸操作和事故处理中的注意事项。
关键词:内桥接线;TV断线;主变压器保护;倒闸操作1概述变电站电气主接线的选择不仅表明了站内设备的数量及连接情况,同时决定了可能存在的运行方式,还决定了电气设备的选择、二次回路的布置等诸多方面。
常用的电气主接线方式有内桥、外桥、单母分段、单母分段带旁母、双母线、二分之三接线等等。
近些年,随着经济建设的需要和电力系统的高速发展,大大小小的变电站如雨后春笋般遍布各地,其主接线方式也各式各样。
新投运变电站的220kV接线方式一般为双母线接线。
而本文讲述的220kV西湖变于1998年6月投产,是运行了正好二十年的老变电站,其220kV接线方式为少见的内桥接线方式。
2 220kV西湖变的220kV接线方式220kV西湖变220kV接线方式如图1,为内桥接线方式。
图1220kV惠西线、220kV西临线作为220kV西湖变的两个供电电源,但并未配置220kV备自投装置。
220kV#1、#2主变为自耦变,公共绕组中性点均接地。
110kV接线方式为双母线带旁母接线,35kV接线为单母分段带旁母接线方式。
220kV西湖变正常运行方式为,220kV惠西线231、西临线232断路器通过分段212断路器环网运行,110kV侧并列运行,35kV侧分列运行,35kV分段备自投投入。
220kV西湖变采用内桥接线的优缺点都显而易见。
首先,由于220kV没有母线,因而不会发生由母线故障引起的停电。
其次,当一条220kV线路发生故障时,只有该线路的断路器跳闸,不会影响其他线路或主变的正常运行。
但是,由于主变高压侧没有断路器,当主变故障时,对应的220kV线路和内桥断路器都会跳闸,停电范围扩大。
内桥接线:母联在两台变压器开关的内侧,靠近变压器侧。
外桥接线:母联在两台变压器开关的外侧,靠近进线侧。
内桥:一般是桥开关自投。
当进线失电,合桥开关。
外桥可以装设进线互投和桥开关自投。
桥开关自投和内桥不同在于动作逻辑。
内桥要考虑变压器保护的动作,外桥一般不必考虑。
电力系统电压等级与变电站种类电力系统电压等级有220/380V(0.4 kV),3 kV、6 kV、10 kV、20 kV、35 kV、66 kV、110 kV、220 kV、330 kV、500 kV。
随着电机制造工艺的提高,10 kV电动机已批量生产,所以3 kV、6 kV已较少使用,20 kV、66 kV也很少使用。
供电系统以10 kV、35 kV为主。
输配电系统以110 kV以上为主。
发电厂发电机有6 kV与10 kV两种,现在以10 kV为主,用户均为220/380V(0.4 kV)低压系统。
根据《城市电力网规定设计规则》规定:输电网为500 kV、330 kV、220 kV、110kV,高压配电网为110kV、66kV,中压配电网为20kV、10kV、6 kV,低压配电网为0.4 kV (220V/380V)。
发电厂发出6 kV或10 kV电,除发电厂自己用(厂用电)之外,也可以用10 kV电压送给发电厂附近用户,10 kV供电范围为10Km、35 kV为20~50Km、66 kV为30~100Km、110 kV为50~150Km、220 kV为100~300Km、330 kV为200~600Km、500 kV为150~850Km。
2.变配电站种类电力系统各种电压等级均通过电力变压器来转换,电压升高为升压变压器(变电站为升压站),电压降低为降压变压器(变电站为降压站)。
一种电压变为另一种电压的选用两个线圈(绕组)的双圈变压器,一种电压变为两种电压的选用三个线圈(绕组)的三圈变压器。
变电站除升压与降压之分外,还以规模大小分为枢纽站,区域站与终端站。
变电站内桥形接线方式倒闸操作分析本文主要分析内桥形接线的优缺点、掌握内桥形接线的正常操作和事故处理方法、研究其运行操作中应注意的问题,对提高电网安全稳定运行水平、提高事故处理能力具有十分重要的实际意义。
1 内桥接线【1】电源进线安装断路器和闸刀,变压器高压侧只装有闸刀,在线路断路器内侧接入桥断路器的母线接线方式称为内桥接线,如图1所示。
图1 内桥形接线示意图2 内桥形接线的特点内桥接线的主要特点是正常运行时线路停送电方便,变压器操作复杂;线路故障时,仅故障线路的断路器跳闸,其余三条支路可继续工作,并保持相互间的联系;变压器故障时,未故障线路的供电受到影响,需经倒闸操作后,方可恢复供电。
2.1 内桥接线正常运行方式桥断路器一般处于热备用状态,即 QF1、QF2运行、QF3断开、1号、2号变压器运行、低压母线分段断路器断开)。
当某一线路需要停役时,可以通过操作合上桥断路器,断开需要停电线路进线断路器,可以保证对2台变压器的正常供电。
例如L2线路需要停电时,本站合上QF3、断开QF2,本站将2号变压器切换到L1线路上供电,操作简单、灵活,无需停电。
2.2 内桥接线方式故障跳闸分析(1)当某一线路发生故障时,可以通过保护和自动装置,断开线路断路器,合上桥断路器保证对1号、2号变压器的正常供电。
例如L2线路发生故障时,对侧线路断路器保护动作切除断路器,本站变电站备用电源自投装置动作,根据设置的动作逻辑,断开QF2合上QF3,将2号变压器切换到L1线路上供电。
(2)当变压器故障跳闸时,变电站供电可靠性下降。
例如2号变压器发生故障时,变压器保护动作断开L2进线断路器QF2与2号变压器低压侧断路器。
L2线路断路器QF2断开后,1号变压器失去了L2备用电源。
如果此时另一条进线L1事故跳闸,就会造成全站停电的。
2.3 内桥接线方式适应范围(1)经过上述分析比较可以看出,内桥接线的任一线路投、停操作或路障时,不会影响2台变压器的正常运行。
内桥接线:母联在两台变压器开关的内侧,靠近变压器侧。
外桥接线:母联在两台变压器开关的外侧,靠近进线侧。
内桥:一般是桥开关自投。
当进线失电,合桥开关。
外桥可以装设进线互投和桥开关自投。
桥开关自投和内桥不同在于动作逻辑。
内桥要考虑变压器保护的动作,外桥一般不必考虑。
电力系统电压等级与变电站种类电力系统电压等级有220/380V(0.4 kV),3 kV、6 kV、10 kV、20 kV、35 kV、66 kV、110 kV、220 kV、330 kV、500 kV。
随着电机制造工艺的提高,10 kV电动机已批量生产,所以3 kV、6 kV已较少使用,20 kV、66 kV也很少使用。
供电系统以10 kV、35 kV为主。
输配电系统以110 kV以上为主。
发电厂发电机有6 kV与10 kV两种,现在以10 kV为主,用户均为220/380V(0.4 kV)低压系统。
根据《城市电力网规定设计规则》规定:输电网为500 kV、330 kV、220 kV、110kV,高压配电网为110kV、66kV,中压配电网为20kV、10kV、6 kV,低压配电网为0.4 kV (220V/380V)。
发电厂发出6 kV或10 kV电,除发电厂自己用(厂用电)之外,也可以用10 kV电压送给发电厂附近用户,10 kV供电范围为10Km、35 kV为20~50Km、66 kV为30~100Km、110 kV为50~150Km、220 kV为100~300Km、330 kV为200~600Km、500 kV为150~850Km。
2.变配电站种类电力系统各种电压等级均通过电力变压器来转换,电压升高为升压变压器(变电站为升压站),电压降低为降压变压器(变电站为降压站)。
一种电压变为另一种电压的选用两个线圈(绕组)的双圈变压器,一种电压变为两种电压的选用三个线圈(绕组)的三圈变压器。
变电站除升压与降压之分外,还以规模大小分为枢纽站,区域站与终端站。
内桥、外桥、二分之三接线
桥形接线(bridge-circuit configuration)由一台断路器和两组隔离开交组成连接桥,将两回变压器一线路组横向连接起来的电气主接线,在变压器一线路组的变压器和断路之间接入连接桥的称为内桥接线。
连接桥连接在变压器一线路组的线路和断路器之间的称为外桥接线;连接桥母线上的断路器正常状态下合闸运行。
内桥接线的任一线路投入、断开、检修或路障时,都不会影响其他回路的正常运行,但当变压器投入、断开、检修或故障时,则会影响另一回线路的正常运行。
由于变压器运行可靠,而且不需要经常进行投入和因此内桥接线的应用较广泛。
外桥接线的变压投入、断开、检修或故障时,则会影响其他回路的正常运行。
但当线路投入、断开、检修或故障时,则会影响一台变压器的正常运行。
因此外桥接线仅适用于变压器按照经济运行称要经常投入或断开的情况。
此外当线路上有较大的穿越功率时,为避免穿越功率通过多台断路器,通常彩外桥接线。
为了提高桥形接线的灵活性和可钻性,避免因检修线路或变压器时影响其他回路的正常运行,一般在接线中加设一组跨条(导线)。
内桥接线的跨条位置与外桥接线中连接桥的位置相同,外桥接线的跨条位置与外桥接线中连接桥的位置相同,外
桥接线的跨条位置与内桥接线中连接桥的位置相同。
跨条上通常设置两组串接的隔离开关,以便于跨条上隔离开关进行检修,此两组隔离开关在正常运行时是断开的。
桥形接线中使用斯机台数少,其配电装置占地也少,能满足变电所可靠性要求,具有一定的运行灵活性,桥形接线适用于线路为两回、变压器为两台的交流牵引变电所和铁路变电所等
2/3接线。
画出内桥和外桥接线形式摘要:一、引言二、内桥接线形式1.定义与概念2.特点与优势3.应用场景三、外桥接线形式1.定义与概念2.特点与优势3.应用场景四、内桥与外桥接线的区别与联系1.区别2.联系五、总结正文:一、引言在电子电路设计中,桥接线是一种常见的电路连接方式,内桥和外桥接线是桥接线的两种形式。
本文将详细介绍这两种接线形式的定义、特点、优势以及应用场景。
二、内桥接线形式1.定义与概念内桥接线是指在同一电路板上的两个器件之间进行的桥接连接。
它主要应用于电路板内部信号的传输与处理。
2.特点与优势内桥接线的特点包括:信号传输速度快、噪声抑制能力强、抗干扰性能好。
这使得内桥接线在高速信号传输、高精度信号处理等领域具有明显优势。
3.应用场景内桥接线广泛应用于各种电子设备,如通信设备、计算机、消费电子产品等。
在这些设备中,内桥接线用于连接各种芯片、模块和器件,实现高速、稳定的信号传输。
三、外桥接线形式1.定义与概念外桥接线是指在不同电路板上的两个器件之间进行的桥接连接。
它主要应用于跨电路板信号的传输与处理,以及系统级联。
2.特点与优势外桥接线的特点包括:兼容性好、扩展性强、传输距离远。
这使得外桥接线在系统集成、设备互联等领域具有明显优势。
3.应用场景外桥接线广泛应用于各种电子系统,如通信系统、计算机系统、消费电子系统等。
在这些系统中,外桥接线用于连接不同电路板上的各种芯片、模块和器件,实现跨板信号传输和系统级联。
四、内桥与外桥接线的区别与联系1.区别内桥与外桥接线的区别主要表现在应用场景和传输距离上。
内桥接线主要用于电路板内部信号传输,传输距离较短;而外桥接线主要用于跨电路板信号传输和系统级联,传输距离较长。
2.联系内桥与外桥接线都是桥接线的具体形式,它们都具有信号传输速度快、噪声抑制能力强、抗干扰性能好等特点。
此外,在某些特定场景下,内桥与外桥接线也可以相互转换。
五、总结内桥和外桥接线是桥接线的两种形式,它们在电子电路设计中具有广泛的应用。
内桥接线变压器保护电流回路接线方式的探讨周建军,樊高瑞,樊庆玲(南阳供电公司,河南省南阳市 473009)摘要:内桥接线方式下,主变差动保护高压侧电流一般采取进线和分段电流并接求和的方式取得,当高压侧发生外部短路或正常运行中发生CT开路时,均可能会导致差动保护误动。
本文对误动原因进行了分析,提出了采用将进线和分段电流分别接入差动保护的解决方案,并指出了保护运算处理过程中应注意的事项。
关键词:差动保护;二次回路;CT断线;内桥接线;中图分类号:TM770 引言城区110kV变电站出于节省占地的考虑,经常采用内桥接线方式,即高压侧为单母分段接线,配置两回进线分别接于两段母线,两回进线及分段间隔均配有开关、CT、刀闸,主变高压侧没有开关、CT,只有一组隔离刀闸。
由于主变高压侧没有CT,目前的设计思路一般是主变差动保护高压侧电流回路采用硬件接线求和的方法产生,即与本台主变接于同一母线的进线和分段间隔CT二次回路在保护盘端子排处按相并接求和后[1],再接入主变差动保护高压侧电流回路,从而实现了一次与二次接线的统一。
只要进线和分段间隔CT变比一致,在一般情况下,这种和电流均能正常反映主变差动保护高压侧电流,不会出现拒动和误动情况。
但当110kV 系统发生短路,进线和分段间隔流过较大穿越性故障电流时,因二者CT的10%误差特性不可能完全一致所产生的差流有可能引起差动保护误动;进线或分段间隔CT根部至保护盘端子排这一段出现CT开路时,和电流不能正确反映主变差动保护高压侧电流,在某些运行方式下,主变差动保护无法判断为CT开路,而是将判为主变发生内部故障从而引起差动保护误动。
本文对这两种可能引起的差动保护误动的原因做出了全面分析计算,提出了内桥接线变压器保护电流回路二次接线改进方案。
1 差动保护误动的原因分析1.1 CT10%误差特性不一致导致差动保护误动依据DL/T684-1999《大型发电机变压器继电保护整定计算导则》规定,差动动作电流最小动作门槛应躲过变压器额定负载时的不平衡电流,I op.min=K rel(K er +△U+△m)I N/n a,在实用整定计算中可选取(0.2~0.5)I N/n a[2]。