内桥接线
- 格式:doc
- 大小:60.50 KB
- 文档页数:11
内桥接线中转供方式的薄弱点分析电气主接线代表变电所电气部分主体结构,是电力系统网络结构的重要组成部分,它直接影响运行的牢靠性、敏捷性,对继电爱护、自动装置和掌握方式的拟定都有打算性的关系。
同时在经济性方面应作相应的分析。
根据桥接断路器的位置分为内桥式和外桥式,桥接断路器设置在变压器侧的称为内桥式接线。
优点是使用的断路器等设备最少,与单母线分段式比较,节约了两台主变压器高压侧断路器,削减投资,比较经济。
完善的内桥接线清楚简洁,如图1所示。
不足之处是牢靠性不高。
目前实行的措施,通过配置高压侧内桥备用自投(防一路进线电源失电)和低压侧分段备用自投(防一台主变压器故障失电)。
但是在经桥断路器转供的另一电源进线来供其它变电所时,继电爱护不能很好的协作。
依据启东电网实际网架与运行需要,桥接线布置的均采纳内桥式,正常方式拟为开环式供电模式,包括110kV城东变电所、南郊变电所、民乐变电所和35kV城西变电所,除城西变电所接线完善外,其余均为双电源单一主变压器的不完善接线。
1内桥转供方式造成继电爱护配置薄弱点例1:如图2所示,正常方式中,民乐变电所由汇乐线供电,启乐线充电,乐启751断路器热备用,内桥770断路器运行,110kV备用自投启用(切换断路器至线路式),乐汇711断路器、乐启751断路器无爱护,仅作主变压器高压侧断路器。
启东变电所由汇启供电,常启线充电,启常714断路器热备用,110kV线路备用自投启用,联跳东电387断路器,使电厂解列,防止电厂非同期并列,损坏发电机,启汇712断路器爱护及重合闸停用。
方式变更:当110kV汇启线、常启线均停,考虑启东变电所调由汇乐线通过启乐线转供,启东变电所其它方式不变。
继电爱护变更:启东变电所的启乐751断路器爱护及重合闸停用,110kV线路备用自投停用。
汇龙变电所的汇乐711断路器重合闸停用,由于启东变电所35kV母线与启东电厂并列。
民乐变电所的110kV备自投停用。
编订:__________________单位:__________________时间:__________________内桥接线中转供方式的薄弱点分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.Word格式 / 完整 / 可编辑文件编号:KG-AO-7752-46 内桥接线中转供方式的薄弱点分析(正式)使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。
下载后就可自由编辑。
电气主接线代表变电所电气部分主体结构,是电力系统网络结构的重要组成部分,它直接影响运行的可靠性、灵活性,对继电保护、自动装置和控制方式的拟定都有决定性的关系。
同时在经济性方面应作相应的分析。
按照桥接断路器的位置分为内桥式和外桥式,桥接断路器设置在变压器侧的称为内桥式接线。
优点是使用的断路器等设备最少,与单母线分段式比较,节省了两台主变压器高压侧断路器,减少投资,比较经济。
完善的内桥接线清晰简单,如图1所示。
不足之处是可靠性不高。
目前采取的措施,通过配置高压侧内桥备用自投(防一路进线电源失电)和低压侧分段备用自投(防一台主变压器故障失电)。
但是在经桥断路器转供的另一电源进线来供其它变电所时,继电保护不能很好的配合。
根据启东电网实际网架与运行需要,桥接线布置的均采用内桥式,正常方式拟为开环式供电模式,包括110kV城东变电所、南郊变电所、民乐变电所和35kV 城西变电所,除城西变电所接线完善外,其余均为双电源单一主变压器的不完善接线。
变电站内桥形接线方式倒闸操作分析本文主要分析内桥形接线的优缺点、掌握内桥形接线的正常操作和事故处理方法、研究其运行操作中应注意的问题,对提高电网安全稳定运行水平、提高事故处理能力具有十分重要的实际意义。
1 内桥接线【1】电源进线安装断路器和闸刀,变压器高压侧只装有闸刀,在线路断路器内侧接入桥断路器的母线接线方式称为内桥接线,如图1所示。
图1 内桥形接线示意图2 内桥形接线的特点内桥接线的主要特点是正常运行时线路停送电方便,变压器操作复杂;线路故障时,仅故障线路的断路器跳闸,其余三条支路可继续工作,并保持相互间的联系;变压器故障时,未故障线路的供电受到影响,需经倒闸操作后,方可恢复供电。
2.1 内桥接线正常运行方式桥断路器一般处于热备用状态,即 QF1、QF2运行、QF3断开、1号、2号变压器运行、低压母线分段断路器断开)。
当某一线路需要停役时,可以通过操作合上桥断路器,断开需要停电线路进线断路器,可以保证对2台变压器的正常供电。
例如L2线路需要停电时,本站合上QF3、断开QF2,本站将2号变压器切换到L1线路上供电,操作简单、灵活,无需停电。
2.2 内桥接线方式故障跳闸分析(1)当某一线路发生故障时,可以通过保护和自动装置,断开线路断路器,合上桥断路器保证对1号、2号变压器的正常供电。
例如L2线路发生故障时,对侧线路断路器保护动作切除断路器,本站变电站备用电源自投装置动作,根据设置的动作逻辑,断开QF2合上QF3,将2号变压器切换到L1线路上供电。
(2)当变压器故障跳闸时,变电站供电可靠性下降。
例如2号变压器发生故障时,变压器保护动作断开L2进线断路器QF2与2号变压器低压侧断路器。
L2线路断路器QF2断开后,1号变压器失去了L2备用电源。
如果此时另一条进线L1事故跳闸,就会造成全站停电的。
2.3 内桥接线方式适应范围(1)经过上述分析比较可以看出,内桥接线的任一线路投、停操作或路障时,不会影响2台变压器的正常运行。
画出内桥和外桥接线形式摘要:一、引言二、内桥接线形式1.定义与概念2.特点与优势3.应用场景三、外桥接线形式1.定义与概念2.特点与优势3.应用场景四、内桥与外桥接线的区别与联系1.区别2.联系五、总结正文:一、引言在电子电路设计中,桥接线是一种常见的电路连接方式,内桥和外桥接线是桥接线的两种形式。
本文将详细介绍这两种接线形式的定义、特点、优势以及应用场景。
二、内桥接线形式1.定义与概念内桥接线是指在同一电路板上的两个器件之间进行的桥接连接。
它主要应用于电路板内部信号的传输与处理。
2.特点与优势内桥接线的特点包括:信号传输速度快、噪声抑制能力强、抗干扰性能好。
这使得内桥接线在高速信号传输、高精度信号处理等领域具有明显优势。
3.应用场景内桥接线广泛应用于各种电子设备,如通信设备、计算机、消费电子产品等。
在这些设备中,内桥接线用于连接各种芯片、模块和器件,实现高速、稳定的信号传输。
三、外桥接线形式1.定义与概念外桥接线是指在不同电路板上的两个器件之间进行的桥接连接。
它主要应用于跨电路板信号的传输与处理,以及系统级联。
2.特点与优势外桥接线的特点包括:兼容性好、扩展性强、传输距离远。
这使得外桥接线在系统集成、设备互联等领域具有明显优势。
3.应用场景外桥接线广泛应用于各种电子系统,如通信系统、计算机系统、消费电子系统等。
在这些系统中,外桥接线用于连接不同电路板上的各种芯片、模块和器件,实现跨板信号传输和系统级联。
四、内桥与外桥接线的区别与联系1.区别内桥与外桥接线的区别主要表现在应用场景和传输距离上。
内桥接线主要用于电路板内部信号传输,传输距离较短;而外桥接线主要用于跨电路板信号传输和系统级联,传输距离较长。
2.联系内桥与外桥接线都是桥接线的具体形式,它们都具有信号传输速度快、噪声抑制能力强、抗干扰性能好等特点。
此外,在某些特定场景下,内桥与外桥接线也可以相互转换。
五、总结内桥和外桥接线是桥接线的两种形式,它们在电子电路设计中具有广泛的应用。
110kV内桥接线变电站电压二次回路接线分析摘要:本文分析了内桥接线方式下,110kV三相电压互感器安装在110kV线路上,110kV备自投装置母线电压、线路电压,110kV主变保护装置高压侧母线电压,110kV线路保护装置母线电压、线路电压二次回路应如何接取,具有很好的实际工作意义。
关键词:内桥接线、电压二次回路、110kV备自投、110kV主变保护、110kV线路保护0 前言目前仍有部分变电站采取内桥接线方式,采取内桥接线方式下,一般将110 kV三相电压互感器安设在110 kV线路上,而取消母线电压互感器;在该方式下,探讨110kV备自投装置母线电压、线路电压,110kV主变保护装置高压侧电压,110kV线路装置保护母线电压、线路电压的二次接线具有很大的实际意义。
图1内桥接线变电站对于保护装置来说如果电压二次回路接入错误,将导致保护装置不正确动作。
对于该种接线方式,二次电压的选取,主要是探讨是取重动前电压,还是重动后电压。
1、110kV备自投装置电压二次回路内桥接线方式下,备自投方式有两种。
一种方式是进线备投方式,即两条线路互为备用,一条线路运行,内桥112断路器运行,另一条线路热备用;另一种方式是桥备投方式,该方式下一条进线供着一台主变,内桥112断路器在热备用状态。
对于备自投装置来说,需采集两段母线电压及两条进线电压,通过对母线电压及进线电压的有压、无压进行逻辑判断。
对于桥备投方式来说,桥备投充电条件之一就是工作电源和备用电源均正常,即I、II母母线电压应均有压。
桥备投方式下,110kV分列运行,161、162断路器运行,内桥112断路器热备用,如果母线电压选取重动前电压,当某一进线断路器偷跳时,由于对侧断路器未跳开,线路PT带电,取用重动前电压,此时该段母线仍会有电压,电压元件鉴定有电,将会导致备自投不启动,导致备自投不动作,扩大停电范围。
对于进线备投来说,进线备投充电条件之一就是工作电源和备用电源均正常,即I、II母母线电压应均有压。
内桥接线的工作原理内桥接线是一种网络技术,它能够将两个或多个物理网络连接起来,使得这些网络能够进行数据传输和通信。
它在现代网络中发挥着重要的作用,特别是在局域网(LAN)和广域网(WAN)之间连接时。
内桥接线的工作原理主要包括学习、过滤和转发三个步骤。
学习阶段是内桥接线的第一步。
在学习阶段中,内桥接线会监听传入和传出的数据包,并将这些数据包中的源MAC地址和与之关联的端口信息存储在一个桥接表中。
在桥接表中,每个学习到的MAC地址都与一个特定的端口相关联。
过滤阶段是内桥接线的第二步。
一旦桥接表中存储了所有连接到内桥接线的设备的MAC地址,内桥接线将使用这些信息来过滤数据包。
当内桥接线收到传入的数据包时,它会查看数据包中的目标MAC地址,并与桥接表中的记录进行比较。
如果目标MAC地址与桥接表中的某个记录匹配,则数据包将被转发到与该记录中的端口关联的设备。
如果目标MAC地址不在桥接表中,则内桥接线会将数据包向所有连接到它的端口广播。
转发阶段是内桥接线的第三步。
在数据包通过过滤阶段后,内桥接线将转发数据包到目标设备。
它会将源MAC地址、目标MAC地址和数据包的内容重新封装,并通过与目标设备相关联的端口将数据包发送出去。
内桥接线使用的是二层转发技术,它会在数据包中添加自己的MAC地址作为源MAC地址,并将目标MAC地址设置为桥接表中对应的MAC地址。
内桥接线的工作原理可以通过以下示意图来简单说明:++ ++Device A ++ Device BBridge SwitchDevice C ++ Device D++ ++在这个示意图中,桥接器连接了四台设备(A、B、C和D)。
在学习阶段,当设备A发送数据包到设备C时,桥接器将学习到设备A的MAC地址,并将其与连接到设备C的端口相关联。
当设备D发送数据包到设备B时,过滤阶段开始。
桥接器会检查数据包中的目标MAC地址,并与桥接表进行匹配。
如果目标MAC地址是设备B的MAC地址,则桥接器将数据包转发到连接到设备B的端口。
内桥接线倒闸操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!内桥接线倒闸操作流程内桥接线倒闸是电力系统运行中常见的一种操作,下面将详细介绍其操作流程。
内桥接线:母联在两台变压器开关的内侧,靠近变压器侧。
外桥接线:母联在两台变压器开关的外侧,靠近进线侧。
内桥:一般是桥开关自投。
当进线失电,合桥开关。
外桥可以装设进线互投和桥开关自投。
桥开关自投和内桥不同在于动作逻辑。
内桥要考虑变压器保护的动作,外桥一般不必考虑。
电力系统电压等级与变电站种类电力系统电压等级有220/380V(0.4 kV),3 kV、6 kV、10 kV、20 kV、35 kV、66 kV、110 kV、220 kV、330 kV、500 kV。
随着电机制造工艺的提高,10 kV电动机已批量生产,所以3 kV、6 kV已较少使用,20 kV、66 kV也很少使用。
供电系统以10 kV、35 kV为主。
输配电系统以110 kV以上为主。
发电厂发电机有6 kV与10 kV两种,现在以10 kV为主,用户均为220/380V(0.4 kV)低压系统。
根据《城市电力网规定设计规则》规定:输电网为500 kV、330 kV、220 kV、110kV,高压配电网为110kV、66kV,中压配电网为20kV、10kV、6 kV,低压配电网为0.4 kV (220V/380V)。
发电厂发出6 kV或10 kV电,除发电厂自己用(厂用电)之外,也可以用10 kV电压送给发电厂附近用户,10 kV供电范围为10Km、35 kV为20~50Km、66 kV为30~100Km、110 kV为50~150Km、220 kV为100~300Km、330 kV为200~600Km、500 kV为150~850Km。
2.变配电站种类电力系统各种电压等级均通过电力变压器来转换,电压升高为升压变压器(变电站为升压站),电压降低为降压变压器(变电站为降压站)。
一种电压变为另一种电压的选用两个线圈(绕组)的双圈变压器,一种电压变为两种电压的选用三个线圈(绕组)的三圈变压器。
变电站除升压与降压之分外,还以规模大小分为枢纽站,区域站与终端站。
枢纽站电压等级一般为三个(三圈变压器),550kV /220kV /110kV。
区域站一般也有三个电压等级(三圈变压器),220 kV /110kV /35kV或110kV /35kV /10kV。
终端站一般直接接到用户,大多数为两个电压等级(两圈变压器)110kV /10 kV或35 kV /10 kV。
用户本身的变电站一般只有两个电压等级(双圈变压器)110 kV /10kV、35kV /0.4kV、10kV /0.4kV,其中以10kV /0.4kV为最多。
3.变电站一次回路接线方案1)一次接线种类变电站一次回路接线是指输电线路进入变电站之后,所有电力设备(变压器及进出线开关等)的相互连接方式。
其接线方案有:线路变压器组,桥形接线,单母线,单母线分段,双母线,双母线分段,环网供电等。
2)线路变压器组变电站只有一路进线与一台变压器,而且再无发展的情况下采用线路变压器组接线。
3)桥形接线有两路进线、两台变压器,而且再没有发展的情况下,采用桥形接线。
针对变压器,联络断路器在两个进线断路器之内为内桥接线,联络断路器在两个进线断路器之外为外桥接线。
4)单母线变电站进出线较多时,采用单母线,有两路进线时,一般一路供电、一路备用(不同时供电),二者可设备用电源互自投,多路出线均由一段母线引出。
5)单母线分段有两路以上进线,多路出线时,选用单母线分段,两路进线分别接到两段母线上,两段母线用母联开关连接起来。
出线分别接到两段母线上。
单母线分段运行方式比较多。
一般为一路主供,一路备用(不合闸),母联合上,当主供断电时,备用合上,主供、备用与母联互锁。
备用电源容量较小时,备用电源合上后,要断开一些出线。
这是比较常用的一种运行方式。
对于特别重要的负荷,两路进线均为主供,母联开关断开,当一路进线断电时,母联合上,来电后断开母联再合上进线开关。
单母线分段也有利于变电站内部检修,检修时可以停掉一段母线,如果是单母线不分段,检修时就要全站停电,利用旁路母线可以不停电,旁路母线只用于电力系统变电站。
6)双母线双母线主要用于发电厂及大型变电站,每路线路都由一个断路器经过两个隔离开关分别接到两条母线上,这样在母线检修时,就可以利用隔离开关将线路倒在一条件母线上。
双母线也有分段与不分段两种,双母线分段再加旁路断路器,接线方式复杂,但检修就非常方便了,停电范围可减少。
4.变配电站二次回路1)二次回路种类变配电站二次回路包括:测量、保护、控制与信号回路部分。
测量回路包括:计量测量与保护测量。
控制回路包括:就地手动合分闸、防跳联锁、试验、互投联锁、保护跳闸以及合分闸执行部分。
信号回路包括开关运行状态信号、事故跳闸信号与事故预告信号。
2)测量回路测量回路分为电流回路与电压回路。
电流回路各种设备串联于电流互感器二次侧(5A),电流互感器是将原边负荷电流统一变为5A测量电流。
计量与保护分别用各自的互感器(计量用互感器精度要求高),计量测量串接于电流表以及电度表,功率表与功率因数表电流端子。
保护测量串接于保护继电器的电流端子。
微机保护一般将计量及保护集中于一体,分别有计量电流端子与保护电流端子。
电压测量回路,220/380V低压系统直接接220V或380V,3KV以上高压系统全部经过电压互感器将各种等级的高电压变为统一的100V电压,电压表以及电度表、功率表与功率因数表的电压线圈经其端子并接在100V电压母线上。
微机保护单元计量电压与保护电压统一为一种电压端子。
3)控制回路(1)合分闸回路合分闸通过合分闸转换开关进行操作,常规保护为提示操作人员及事故跳闸报警需要,转换开关选用预合-合闸-合后及预分-分闸-分后的多档转换开关。
以使利用不对应接线进行合分闸提示与事故跳闸报警,国家已有标准图设计。
采用微机保护以后,要进行远分合闸操作后,还要到就地进行转换开关对位操作,这就失去了远分操作的意义,所以应取消不对应接线,选用中间自复位的只有合闸与分闸的三档转换开关。
(2)防跳回路当合闸回路出现故障时进行分闸,或短路事故未排除,又进行合闸(误操作),这时就会出现断路器反复合分闸,不仅容易引起或扩大事故,还会引起设备损坏或人身事故,所以高压开关控制回路应设计防跳。
防跳一般选用电流启动,电压保持的双线圈继电器。
电流线圈串接于分闸回路作为启动线圈。
电压线圈接于合闸回路,作为保持线圈,当分闸时,电流线圈经分闸回路起动。
如果合闸回路有故障,或处于手动合闸位置,电压线圈起启动并通过其常开接点自保持,其常闭接点马上断开合闸回路,保证断路器在分闸过程中不能马上再合闸。
防跳继电器的电流回路还可以通过其常开接点将电流线圈自保持,这样可以减轻保护继电器的出口接点断开负荷,也减少了保护继电器的保持时间要求。
有些微机保护装置自己已具有防跳功能,这样就可以不再设计防跳回路。
断路器操作机构选用弹簧储能时,如果选用储能后可以进行一次合闸与分闸的弹簧储能操作机构(也有用于重合闸的储能后可以进行二次合闸与分闸的弹簧储能操作机构),因为储能一般都要求10秒左右,当储能开关经常处于断开位置时,储一次能,合完之后,将储能开关再处于断开位置,可以跳一次闸;跳闸之后,要手动储能之后才能进行合闸,此时,也可以不再设计防跳回路。
(3)试验与互投联锁与控制对于手车开关柜,手车推出后要进行断路器合分闸试验,应设计合分闸试验按钮。
进线与母联断路,一般应根据要求进行互投联锁或控制。
(4)保护跳闸保护跳闸出口经过连接片接于跳闸回路,连接片用于保护调试,或运行过程中解除某些保护功能。
(5)合分闸回路合分闸回路为经合分闸母线为操作机构提供电源,以及其控制回路,一般都应单独画出。
4)信号回路(1)开关运行状态信号由合闸与分闸指示两个装于开关柜上的信号灯组成:经过操作转换开关不对应接线后接到正电源上。
采用微机保护后,转换开关取消了不对应接线,所以信号灯正极可以直接接到正电源上。
(2)事故信号有事故跳闸与事故预告两种信号,事故跳闸报警也要通过转化开关不对应后,接到事故跳闸信号母线上,再引到中央信号系统。
事故预告信号通过信号继电器接点引到中央信号系统。
采用微机保护后,将断路器操作机构辅助接点与信号继电器的接点分别接到微机保护单元的开关量输入端子,需要有中央信号系统时,如果微机保护单元可以提供事故跳闸与事故预告输出接点,可将其引到中央信号系统。
否则,应利用信号继电器的另一对接点引到中央信号系统。
(3)中央信号系统为安装于值班室内的集中报警系统,由事故跳闸与事故预告两套声光报警组成,光报警用光字牌,不用信号灯,光字牌分集中与分散两种。
采用变电站综合自动化系统后,可以不再设计中央信号系统,或将其简化,只设计集中报警作为计算机报警的后备报警。
5.变配电站继电保护1)变配电站继电保护的作用变配电站继电保护能够在变配电站运行过程中发生故障(三相短路、两相短路、单相接地等)和出现不正常现象时(过负荷、过电压、低电压、低周波、瓦斯、超温、控制与测量回路断线等),迅速有选择性发出跳闸命令将故障切除或发出报警,从而减少故障造成的停电范围和电气设备的损坏程度,保证电力系统稳定运行。
2)变配电站继电保护的基本工作原理变配电站继电保护是根据变配电站运行过程中发生故障时出现的电流增加、电压升高或降低、频率降低、出现瓦斯、温度升高等现象超过继电保护的整定值(给定值)或超限值后,在整定时间内,有选择的发出跳闸命令或报警信号。
根据电流值来进行选择性跳闸的为反时限,电流值越大,跳闸越快。
根据时间来进行选择性跳闸的称为定时限保护,定时限在故障电流超过整定值后,经过时间定值给定的时间后才出现跳闸命令。
瓦斯与温度等为非电量保护。
可靠系数为一个经验数据,计算继电器保护动作值时,要将计算结果再乘以可靠系数,以保证继电保护动作的准确与可靠,其范围为1.3~1.5。
发生故障时的最小值与保护的动作值之比为继电保护的灵敏系数,一般为1.2~2,应根据设计规范要进行选择。
3)变配电站继电保护按保护性质分类4)变电站继电保护按被保护对象分类(1)发电机保护发电机保护有定子绕组相间短路,定子绕组接地,定子绕组匝间短路,发电机外部短路,对称过负荷,定子绕组过电压,励磁回路一点及两点接地,失磁故障等。
出口方式为停机,解列,缩小故障影响范围和发出信号。
(2)电力变压器保护电力变压器保护有绕组及其引出线相间短路,中性点直接接地侧单相短路,绕组匝间短路,外部短路引起的过电流,中性点直接接地电力网中外部接地短路引起的过电流及中性点过电压、过负荷,油面降低,变压器温度升高,油箱压力升高或冷却系统故障。
(3)线路保护线路保护根据电压等级不同,电网中性点接地方式不同,输电线路以及电缆或架空线长度不同,分别有:相间短路、单相接地短路、单相接地、过负荷等。