《数论算法》教案4章(二次同余方程与平方剩余)
- 格式:doc
- 大小:2.57 MB
- 文档页数:49
二次同余式的一般形式ax2+bx+c≡0(mod m)由算术基本定理知道m可以分解成一些素数乘积,再由孙子定理知道ax2+bx+c≡0(mod m)可以转化为同余式组ax2+bx+c≡0(mod pα)因此,本章只讨论模为素数幂pα的同余式设p是素数,我们来研究素数模p的二次同余方程ax2+bx+c≡0 (mod p)。
(1)如果p= 2,则可以直接验证x≡0或1 (mod 2)是否方程(1)的解。
如果(a, p) = p,则方程(1)成为一元一次同余方程。
因此,只需考察p > 2,(a, p) = 1的情形。
此时,因为(4a, p) = 1,所以,方程(1)等价于方程4a2x2+4abx+4ac≡0 (mod p),即(2ax+b)2≡b2-4ac(mod p)。
这样,研究方程(1)归结为对方程x2≡a(mod m) (2)定义1给定整数m,对于任意的整数a,(a,m) = 1,若方程x2 a(mod m)有解,则称a是模m的二次剩余;否则,称a是模m的二次非剩余.例1验证1是模4的平方剩余,‐1是是模4的非平方剩余 例21,2,4 是模7的平方剩余,‐1,3,5是模7的非平方剩余解因为,12≡1, 22≡4, 32≡2, 42≡2,52≡4,62≡1(mod7),例3 求满足方程E:y2≡x3+x+1(mod 7)的所有点 解x ≡0, y2 ≡1(mod 7) y ≡1,6 (mod 7)x ≡1, y2 ≡3(mod 7) 无解x ≡2, y2 ≡4(mod 7) y ≡2,5 (mod 7)x ≡3, y2 ≡3(mod 7) 无解x ≡4, y2 ≡6(mod 7) 无解x ≡5, y2 ≡5(mod 7) 无解x ≡36, y2 ≡6(mod 7) 无解4.2模为奇素数的平方剩余与非平方剩余 在这节里讨论模为素数的二次同余式定理1(欧拉判别条件) 若(a , p ) = 1,p 是奇素数则 (ⅰ) a 是模p 的二次剩余的充要条件是≡1 (mod p );(3) (ⅱ) 若a 是模p 的二次剩余,则方程(2)有两个解; (ⅲ) a 是模p 的二次非剩余的充要条件是 ≡-1 (mod p )。
二次同余式的解法一、什么是二次同余式二次同余式是指形如ax2+bx+c≡0(mod m)的同余方程,其中a,b,c,m是给定的整数,x是未知数,≡表示模同余。
二、二次同余式的解法解二次同余式的一种常用方法是通过模平方根的性质。
下面介绍二次同余式的两种解法:平方剩余和二次非剩余。
2.1 平方剩余如果存在一个整数x,使得x2≡c(mod m),则称c是模m的平方剩余。
我们可以通过以下步骤求解二次同余式:1.计算模m的平方剩余集合{02,12,22,…,(m−1)2}。
2.判断c是否在平方剩余集合中。
–如果在集合中,即存在x满足x2≡c(mod m),则可以得到两个解:x≡±√c(mod m)。
–如果不在集合中,则二次同余式无解。
2.2 二次非剩余如果不存在一个整数x,使得x2≡c(mod m),则称c是模m的二次非剩余。
解决二次同余式的方法如下:1.计算模m的平方剩余集合{02,12,22,…,(m−1)2}。
2.判断c是否在平方剩余集合中。
–如果在集合中,则二次同余式无解。
–如果不在集合中,可以通过以下步骤求解二次同余式:1.找到一个整数y,使得y2≡c⋅a(mod m),其中a是模m的一个非平方剩余。
2.利用模m的平方剩余集合求解y的平方根。
3.根据平方根的性质,可以得到两个解:x≡±y(mod m)。
2.3 例子假设我们要解决二次同余式3x2+5x+2≡0(mod11)。
按照上述方法,我们可以进行如下步骤:1.计算模11的平方剩余集合:{02,12,22,…,102}={0,1,4,9,5,3,3,5,9,4,1}。
2.判断2是否在平方剩余集合中,发现不在集合中。
3.找到一个整数y,使得y2≡2⋅a(mod11),其中a是模11的一个非平方剩余。
可以选择a=3,则62≡2⋅3(mod11)。
4.利用模11的平方剩余集合求解6的平方根,发现6在平方剩余集合中。
5.得到两个解:x≡±6(mod11)。
第 4 章 二次同余方程与平方剩余 内容 1. 二次同余方程,平方剩余2. 模为奇素数的平方剩余3. 勒让德符号、雅可比符号4. 二次同余方程的求解要点 二次同余方程有解的判断与求解4.1 一般二次同余方程(一) 二次同余方程2ax +bx +c ≡0(mod m ),(a 0(mod m ))(1) (二) 化简设m =k k p p p ααα 2121,则方程(1)等价于同余方程⎪⎪⎩⎪⎪⎨⎧≡++≡++≡++)()()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 02221221问题归结为讨论同余方程2ax +bx +c ≡0(mod αp ), (p a )(2) (三) 化为标准形式p ≠2,方程(2)两边同乘以4a ,422x a +4abx +4ac ≡0(mod αp )()22b ax +≡2b -4ac (mod αp )变量代换,y =2ax +b(3)有2y ≡2b -4ac (mod αp ) (4)当p 为奇素数时,方程(4)与(2)等价。
即● 两者同时有解或无解;有解时,对(4)的每个解()p y y mod 0≡,通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。
● 两者解数相同。
结论:只须讨论以下同余方程2x ≡a (mod αp )(5)【例】化简方程7x 2+5x -2≡0(mod 9)为标准形式。
(解)方程两边同乘以4a =4×7=28,得196x 2+140x -56≡0(mod 9)配方 (14x +5) 2-25-56≡0(mod 9)移项 (14x +5) 2≡81(mod 9)变量代换 y =14x +5得 y 2≡0(mod 9)(解之得y =0, ±3,从而原方程的解为x ≡114-(y -5)≡15- (y -5)≡2(y -5)≡2y -10≡2y -1≡-7, -1, 5≡-4, -1, 2(mod 9))(四) 二次剩余【定义4.1.1】设m 是正整数,a 是整数,m a 。
二次同余式的解法1. 引言在数论和抽象代数中,同余是一个重要的概念。
同余关系是指两个整数之间具有相同的余数,即它们除以某个整数所得的余数相等。
在解决一些问题时,我们经常会遇到二次同余式,即形如x^2 ≡ a (mod m)的方程。
本文将介绍二次同余式的解法,并详细讨论三种常用的解法:勒让德符号、平方剩余和中国剩余定理。
2. 勒让德符号勒让德符号是二次剩余理论中一个重要的工具。
对于给定的整数a和素数p,勒让德符号(a/p)定义为:(a/p) = { 1, 若存在整数x满足x^2 ≡ a (mod p) -1, 若不存在整数x满足x^2 ≡ a (mod p) }根据勒让德符号,可以判断一个整数是否为平方剩余。
如果(a/p) = 1,则a是p模意义下的平方剩余;如果(a/p) = -1,则a是p模意义下的非平方剩余。
使用勒让德符号可以解决一些特殊情况下的二次同余式。
例如,当p是奇素数且a是整数时,如果(a/p) = 1,则二次同余式x^2 ≡ a (mod p)有两个解;如果(a/p) = -1,则无解。
3. 平方剩余平方剩余是指对于给定的整数a和模m,存在一个整数x使得x^2 ≡ a (mod m)成立。
平方剩余是二次同余式的一种特殊情况。
为了判断一个整数是否为平方剩余,可以使用勒让德符号。
对于给定的素数p和整数a,如果(a/p) = 1,则a是p模意义下的平方剩余;如果(a/p) = -1,则a是p 模意义下的非平方剩余。
当我们确定一个整数a是模m意义下的平方剩余后,可以进一步求解二次同余式x^2 ≡ a (mod m)。
其中m可以是任意正整数。
求解二次同余式有多种方法,如试位法、勒让德符号法和Tonelli-Shanks算法等。
这些方法都可以根据给定的模m和平方剩余a来找到所有满足条件的x。
4. 中国剩余定理中国剩余定理是一种用于求解一组同余方程组的方法。
对于给定的一组同余方程:x ≡ a1 (mod m1) x ≡ a2 (mod m2) … x ≡ an (mod mn)其中m1, m2, …, mn两两互质,中国剩余定理可以找到一个解x,且满足0 ≤ x < M = m1 * m2 * … * mn。
第 4 章 同余方程内容 1. 同余方程概念 2. 解同余方程3. `解同余方程组要点解同余方程 4.1 基本概念(一) 同余方程(1) 同余方程【定义4.1.1】设m 是一个正整数,f(x)为n 次多项式()0111a x a x a x a x f n n n n ++++=--其中i a 是正整数(n a 0(mod m )),则f (x)≡0(mod m ) (1)叫做模m 的(n 次)同余方程(或模m 的(n 次)同余式),n 叫做f(x)的次数,记为deg f 或()[]x f ∂。
(2) 同余方程的解若整数a 使得 f (a)≡0(mod m )成立,则a 叫做该同余方程的解。
(3) 同余方程的解数若a 是同余方程(1)的解,则满足x ≡a (mod m )的所有整数都是方程(1)的解。
即剩余类a C ={x |x ∈Z ,x ≡a (mod m )}中的每个剩余都是解。
故把这些解都看做是相同的,并说剩余类a C 是同余方程的一个解。
记为x ≡a (mod m )当21,c c 均为同余方程(1)的解,且对模m 不同余时,就称它们是同余方程的不同的解,所有对模m 的两两不同余的解的个数,称为同余方程的解数,记作()m f T ;。
显然()m f T ;≤m若两个同余方程的解和解数相同,则称两个方程同解。
(4) 同余方程的解法一:穷举法任意选定模m 的一组完全剩余系,并以其中的每个剩余代入方程,在这完全剩余系中解的个数就是解数()m f T ;。
【例4.1.1】解同余方程15++x x ≡0(mod 7)。
(解)穷举:50+0+1=1≡1 mod 751+1+1=3≡3 mod 752+2+1=35≡0 mod 753+3+1=247≡2 mod 754+4+1=1029≡0 mod 755+5+1=3131≡2 mod 756+6+1=7783≡6 mod 7【例2】求同余方程122742-+x x ≡0(mod 15)的解。
第5章 二次同余方程与平方剩余内容 1. 二次同余方程,平方剩余 2. 模为奇素数的平方剩余3. 勒让德符号、雅可比符号4. 二次同余方程的求解要点二次同余方程有解的判断与求解 5.1 一般二次同余方程(一) 二次同余方程2ax +bx +c ≡0(mod m ),(a 0(mod m )) (1)(二) 化简设m =k kp p p αααΛ2121,则方程(1)等价于同余方程组 ⇒ 2ax +bx +c ≡0(mod αp ), (pa ) (2)(三) 化为标准形式p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp )()22b ax +≡2b -4ac (modαp )变量代换, y =2ax +b (3)有2y ≡2b -4ac (mod αp ) (4) 当p 为奇素数时,方程(4)与(2)等价。
即两者同时有解或无解;有解时,对(4)的每个解()p y y mod 0≡,通过式(3)(x 的一次同余方程,且(p ,2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。
两者解数相同。
结论:只须讨论方程 2x ≡a (mod αp ) (5)【例5.1.1】化简方程7x 2+5x -2≡0(mod 9)为标准形式。
(解)方程两边同乘以4a =4×7=28,得196x 2+140x -56≡0(mod 9)配方 (14x +5) 2-25-56≡0(mod 9)移项 (14x +5) 2≡81(mod 9)变量代换 y =14x +5得 y 2≡0(mod 9)(解之得y =0, ±3,从而原方程的解为x ≡114-(y -5)≡15- (y -5)≡2(y -5)≡2y -10≡2y -1≡-7, -1, 5≡-4, -1, 2(mod 9))(四) 平方剩余【定义5.1.1】设m 是正整数,a 是整数,m a 。
本章的目的是较深入地讨论 1.一般二次 了解一般二次及:教学过程:本节主要讨论 2.单质数的 了解单质数的:教学过程:这节我们讨论单质数p 的)(mod 121p ap ≡-:而)(mod 121p ap -≡-单质数p 的使的)(mod ),(mod 222121p a r p a r ≡≡于是有)(mod )(21221p a a r r ≡ 这说明一般二次同余式在第四章中,我们讨论了高次同余式的解的一般理论,但在实际中,要解一个高次同余式一般比较困难。
在本章我们重点讨论二次同余式的解法。
思路是先把一般二次同余式化为特殊的二次同余式,再引入平方剩余与平方非剩余,并利用勒让得符号来判断特殊二次同余式是否有解。
二次同余式的一般形式 二次同余式的一般形式是,0 () (1)化一般二次同余式为特殊二次同余式 由高次同余式的理论知,若的标准分解式为,则(1)有解的充要条件是下面同余式组中每个同余式有解。
于是要判别(1)是否有解及如何解(1),我们可重点讨论为质数。
(2)下面对(2)分情况进行讨论。
找到(2)有解的判别法。
由于(2)为二次同余式,故可假定,若有但(,,),则(2)化为。
而。
故还可假定(,,)。
1) |,|。
则。
因而同余式无解。
故(2)设有解。
2)|,。
则无解,故(2)有解的充要条件是有解,即有解。
但(,)=1。
故有解,从而(2)有解,且(2)的解可由的解求出。
3) ,>2。
则。
用4乘(2)后再配方,即得(3)易证(2)和(3)等价。
用代2+得(4)则(2)有解的充要条件是(4)有解,于是将(2)化为(4)讨论。
4),=2。
这时为奇。
(i )若2,则无解。
故(2)有解的充要条件是有解。
因对任何整数恒有。
所以(2)有解的充要条件是有解,即2|。
(ii ) 若2|,令。
由知(2)有解的充要条件是有解。
即(5)有解。
作代换=+,则(2)有解的充要条件是有解。
由上面讨论,可将(2)的问题化为二次同余式或一般情况即(6)平方剩余和非平方剩余定义 若同余式(6)有解,则叫模的平方剩余,若同余式(6)无解,则叫模的平方非剩余。
第 4 章 二次同余方程与平方剩余 内容 1. 二次同余方程,平方剩余 2. 模为奇素数的平方剩余3. 勒让德符号、雅可比符号4. 二次同余方程的求解要点二次同余方程有解的判断与求解 4.1 一般二次同余方程(一) 二次同余方程2ax +bx +c ≡0(mod m ),(a0(mod m )) (1)(二) 化简 设m =k k p p p αααΛ2121,则方程(1)等价于同余方程 ⎪⎪⎩⎪⎪⎨⎧≡++≡++≡++)()()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 02221221ΛΛ 问题归结为讨论同余方程 2ax +bx +c ≡0(mod αp ), (p a ) (2)(三) 化为标准形式p ≠2,方程(2)两边同乘以4a ,422x a +4abx +4ac ≡0(mod αp )()22b ax +≡2b -4ac (mod αp )变量代换,y =2ax +b (3)有2y ≡2b -4ac (mod αp ) (4)当p 为奇素数时,方程(4)与(2)等价。
即● 两者同时有解或无解;有解时,对(4)的每个解()p y y mod 0≡,通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。
● 两者解数相同。
结论:只须讨论以下同余方程2x ≡a (mod αp ) (5)【例】化简方程7x 2+5x -2≡0(mod 9)为标准形式。
(解)方程两边同乘以4a =4×7=28,得196x 2+140x -56≡0(mod 9)配方 (14x +5) 2-25-56≡0(mod 9)移项 (14x +5) 2≡81(mod 9)变量代换 y =14x +5 得 y 2≡0(mod 9)(解之得y =0, ±3,从而原方程的解为x ≡114-(y -5)≡15- (y -5)≡2(y -5)≡2y -10≡2y -1≡-7, -1, 5≡-4, -1, 2(mod 9))(四) 二次剩余【定义4.1.1】设m是正整数,a是整数,m a。
若同余方程2x≡a(mod m)(6)有解,则称a是模m的平方剩余(或二次剩余);若无解,则称a是模m的平方非剩余(或二次非剩余)。
问题:(1)设正整数a是模p的平方剩余,若记方程(6)中的解为x≡a(mod m),那么此处的平方根a(modm)与通常的代数方程2x=a的解a有何区别?(2)如何判断方程(6)有解?(3)如何求方程(6)的解?(五) 例【例1】1是模4平方剩余,-1是模4平方非剩余。
【例2】1、2、4是模7平方剩余,3、5、6是模7平方非剩余。
【例3】直接计算12,22,...,142得模15的平方剩余(实际上只要计算(12,22, (72)1,4,9,10,6平方非剩余:2,3,5,7,8,11,12,13,14【例4】求满足方程E:2y≡3x+x+1(mod 7)的所有点。
(解)对x=0,1,2,3,4,5,6分别解出y:x=0,2y≡1(mod 7),y≡1,6(mod 7)x=1,2y≡3(mod 7),无解x =2,2y ≡4(mod 7),y ≡2,5(mod 7) x =3,2y ≡3(mod 7),无解 x =4,2y ≡6(mod 7),无解 x =5,2y ≡5(mod 7),无解 x =6,2y ≡6(mod 7),无解 所以,满足方程的点为(0, 1),(0, 6),(2, 2),(2, 5)。
说明:方程E :2y ≡3x +x +1的图形称为椭圆曲线。
4.2 模为奇素数的平方剩余与平方非剩余 模为素数的二次方程2x ≡a (mod p ), (a, p)=1 (1)因为()2x -=2x ,故方程(1)要么无解,要么有两个解。
(一) 平方剩余的判断条件【定理4.2.1】(欧拉判别条件)设p 是奇素数,(a, p)=1,则(i )a 是模p 的平方剩余的充要条件是()21-p a ≡1(mod p ) (2)(ii )a 是模p 的平方非剩余的充要条件是()21-p a ≡-1(mod p ) (3)并且当a 是模p 的平方剩余时,同余方程(1)恰有两个解。
(证)先证p a 时,式(2)或(3)有且仅有一个成立。
由费马定理 1-p a ≡1(mod p )()()221-p a -1≡0(mod p )()()()()112121+---p p a a ≡0(mod p ) (4) 即 11--p a p =()()()()112121+---p p a a 但 ()()()1,12121+---p p a a =1或2且素数p>2。
所以,p 能整除()()()()112121+---p p a a ,但p 不能同时整除()121--p a 和()121+-p a (否则,p 能整除它们的最大公因子1或2)所以,由式(4)立即推出式(2)或式(3)有且仅有一式成立。
(i )必要性。
若a 是模p 的二次剩余,则必有0x 使得20x ≡a (mod p ), 因而有 ()()21p 20-x ≡()21-p a (mod p )。
即 ()2110--≡p p a x (mod p )。
由于p a ,所以p 0x ,因此由欧拉定理知10-p x ≡1(mod p )。
即(2)式成立。
充分性。
已知()21-p a≡1(mod p ),这时必有p a 。
故一次同余方程 bx ≡a (mod p ), (1≤b ≤p -1) (5) 有唯一解,对既约剩余系-(p -1)/2,…,-1,1,…,(p -1)/2 (6) 由式(6)给出的模p 的既约剩余系中的每个j ,当b =j 时,必有唯一的j x x =属于既约剩余系(6),使得式(5)成立。
若a 不是模p 的二次剩余,则必有j x j ≠。
这样,既约剩余系(6)中的p -1个数就可按j 、x j 作为一对,两两分完。
(b 1≠b 2,则相应的解x 1≠x 2,且除了±1之外,每个数的逆不是它本身)因此有()().mod )!1(21p a p p -≡-由威尔逊定理知()().mod 121p a p -≡-与式(2)矛盾。
所以必有某一0j ,使00j x j =,由此及式(5)知,a 是模p 的二次剩余。
(ii )由已经证明的这两部分结论,立即推出第(ii )条成立。
其次,若0x 0(mod p )是方程(1)的解,则-0x 也是其解,且必有0x -0x (mod p )。
故当(a , p )=1时,方程(1)要么无解,要么同时有两个解。
(说明:本定理只是一个理论结果,当p >>1时,它并不是一个实用的判断方法)小结:对于任何整数a ,方程(1)的解数可能为T (x 2-a ;p )=0, 1, 2 【例1】设p =19,验证定理4.2.1的证明过程。
(解)由费马定理知,对任何a =1, 2, …, 18,都有18a ≡1(mod 19)。
方程2x ≡1(mod 19)只有两个解,即x ≡±1(mod 19)。
从而必有9a ≡±1(mod 19)(视()2918a a ≡≡1(mod 19),即9a x ≡)针对必要性:例如a =17是模19的二次剩余,即存在0x ≡6使得26≡17(mod 19)。
那么必有 ()21-p a ≡917≡186≡1(mod 19)针对充分性:例如a =6,()21-p a ≡96≡1(mod 19),验证6是二次剩余。
解方程bx ≡6(mod 19), (1≤b ≤18)当b ≡1, 2, 3, 4, 5, …, 17, 18(mod 19)时,方程有唯一解x ≡6, 3, 2, 11, 5, …, 16, 13(mod 19)其中 5•5≡6(mod 19)即当b ≡5时,x ≡5。
所以6是二次剩余。
又选a =8,()21-p a ≡98≡-1(mod 19),验证:解方程bx ≡8(mod 19), (1≤b ≤18)得 1•8≡8, 2•4≡8, 3•9≡8, 4•2≡8, 5•13≡8, 6•14≡8, 7•12≡8, 8•1≡8, 9•3≡8, 10•16≡8, 11•18≡8, 12•7≡8, 13•5≡8, 14•6≡8, 15•17≡8, 16•10≡8, 17•15≡8, 18•11≡81•2• (18)(1•8)( 2•4)( 3•9)( 5•13)( 6•14)( 7•12)( 10•16)( 11•18)( 15•17)≡98≡-1(mod 19)【例2】判断137是否为模227的平方剩余。
(解)首先,227是素数。
其次,计算()1227137-≡-1(mod 227)所以,137是模227的平方非剩余。
【推论】设p 是奇素数,(a 1, p )=1,(a 2, p )=1,则 (i )若a 1,a 2都是模p 的平方剩余,则a 1a 2是模p 的平方剩余;(ii )若a 1,a 2都是模p 的平方非剩余,则a 1a 2是模p 的平方剩余;(iii )若a 1是模p 的平方剩余,a 2是模p 的平方非剩余,则a 1a 2是模p 的平方非剩余。
(证)因()()2121-p a a =()()212211--p p a a(二) 平方剩余的个数【定理4.2.2】设p 是奇素数,则模p 的既约剩余系中平方剩余与平方非剩余的个数各为(p -1)/2,且(p -1)/2个平方剩余恰与序列12,22,…,221⎪⎭⎫ ⎝⎛-p 中的一个数同余。
(证)由定理4.2.1,模p 的平方剩余个数等于方程 21-p x≡1(mod p )的解数。
但 1121---p p x x由定理3.4.5知,方程的解数为21-p ,即平方剩余的个数是21-p ,且平方非剩余的个数是(p -1)-21-p =21-p 。
其次,可以证明当1≤k 1≤21-p ,1≤k 2≤21-p ,且k 1≠k 2时,有21k 22k mod p 。
故结论成立。
(定理3.4.5:设p 为素数,n 为正整数,n ≤p 。
则同余方程()x f =0111a x a x a x n n n ++++--Λ≡0 mod p 有n 个解⇔x x p -被()x f 除所得余式的所有系数都是p 的倍数)4.3 勒让德符号目的:快速判断整数a 是否为素数p 的平方剩余。
(一) 勒让德符号【定义4.3.1】设p 是素数,定义勒让德(Legendre )符号为:L(a, p)=⎪⎪⎭⎫ ⎝⎛p a =⎪⎩⎪⎨⎧-。