第4章二次同余方程
- 格式:pptx
- 大小:3.03 MB
- 文档页数:43
信息安全数学基础习题答案第一章整数的可除性1.证明:因为2|n 所以n=2k , k∈Z5|n 所以5|2k ,又(5,2)=1,所以5|k 即k=5 k1,k1∈Z7|n 所以7|2*5 k1 ,又(7,10)=1,所以7| k1即k1=7 k2,k2∈Z 所以n=2*5*7 k2即n=70 k2, k2∈Z因此70|n2.证明:因为a3-a=(a-1)a(a+1)当a=3k,k∈Z 3|a 则3|a3-a当a=3k-1,k∈Z 3|a+1 则3|a3-a当a=3k+1,k∈Z 3|a-1 则3|a3-a所以a3-a能被3整除。
3.证明:任意奇整数可表示为2 k0+1,k0∈Z(2 k0+1)2=4 k02+4 k0+1=4 k0 (k0+1)+1由于k0与k0+1为两连续整数,必有一个为偶数,所以k0 (k0+1)=2k所以(2 k0+1)2=8k+1 得证。
4.证明:设三个连续整数为a-1,a,a+1 则(a-1)a(a+1)= a3-a由第二题结论3|(a3-a)即3|(a-1)a(a+1)又三个连续整数中必有至少一个为偶数,则2|(a-1)a(a+1)又(3,2)=1 所以6|(a-1)a(a+1) 得证。
5.证明:构造下列k个连续正整数列:(k+1)!+2, (k+1)!+3, (k+1)!+4,……, (k+1)!+(k+1), k∈Z对数列中任一数 (k+1)!+i=i[(k+1)k…(i+1)(i-1)…2*1+1], i=2,3,4,…(k+1)所以i|(k+1)!+i 即(k+1)!+i为合数所以此k个连续正整数都是合数。
6.证明:因为1911/2<14 ,小于14的素数有2,3,5,7,11,13经验算都不能整除191 所以191为素数。
因为5471/2<24 ,小于24的素数有2,3,5,7,11,13,17,19,23经验算都不能整除547 所以547为素数。
由737=11*67 ,747=3*249 知737与747都为合数。
信息安全数学基础习题答案第一章整数的可除性1.证明:因为2|n 所以n=2k , k∈Z5|n 所以5|2k ,又(5,2)=1,所以5|k 即k=5 k1,k1∈Z7|n 所以7|2*5 k1 ,又(7,10)=1,所以7| k1即k1=7 k2,k2∈Z 所以n=2*5*7 k2即n=70 k2, k2∈Z因此70|n2.证明:因为a3-a=(a-1)a(a+1)当a=3k,k∈Z 3|a 则3|a3-a当a=3k-1,k∈Z 3|a+1 则3|a3-a当a=3k+1,k∈Z 3|a-1 则3|a3-a所以a3-a能被3整除。
3.证明:任意奇整数可表示为2 k0+1,k0∈Z(2 k0+1)2=4 k02+4 k0+1=4 k0 (k0+1)+1由于k0与k0+1为两连续整数,必有一个为偶数,所以k0 (k0+1)=2k所以(2 k0+1)2=8k+1 得证。
4.证明:设三个连续整数为a-1,a,a+1 则(a-1)a(a+1)= a3-a由第二题结论3|(a3-a)即3|(a-1)a(a+1)又三个连续整数中必有至少一个为偶数,则2|(a-1)a(a+1)又(3,2)=1 所以6|(a-1)a(a+1) 得证。
5.证明:构造下列k个连续正整数列:(k+1)!+2, (k+1)!+3, (k+1)!+4,……, (k+1)!+(k+1), k∈Z对数列中任一数 (k+1)!+i=i[(k+1)k…(i+1)(i-1)…2*1+1], i=2,3,4,…(k+1)所以i|(k+1)!+i 即(k+1)!+i为合数所以此k个连续正整数都是合数。
6.证明:因为1911/2<14 ,小于14的素数有2,3,5,7,11,13经验算都不能整除191 所以191为素数。
因为5471/2<24 ,小于24的素数有2,3,5,7,11,13,17,19,23经验算都不能整除547 所以547为素数。
由737=11*67 ,747=3*249 知737与747都为合数。
§4同余式1 基本概念及一次同余式定义 设()110nn n n f x a x a xa --=+++ ,其中()0,0,1,,i n a i n >= 是整数,又设0m >,则()()0mod f x m ≡ (1)叫做模m 的同余式.若()0mod n a m ≡,则n 叫做同余式(1)的次数. 如果0x 满足()()00mod ,f x m ≡则()0mod x x m ≡叫做同余式(1)的解.不同余的解指互不同余的解.当m 及n 都比较小时,可以用验算法求解同余式.如 例1 同余式()543222230mod 7x x x x x +++-+≡仅有解()1,5,6mod 7.x ≡例2 同余式()410mod16x -≡有8个解()1,3,5,7,9,11,13,15mod16x ≡例3 同余式()230mod 5x +≡无解。
定理 一次同余式()()0mod ,0mod ax m a m ≡≡ (2)有解的充要条件是(),.a m b若(2)有解,则它的解数为(),d a m =. 以及当同余式(2)有解时,若0x 是满足(2)的一个整数,则它的(),d a m =个解是()0mod ,0,1,,1mx x k m k d d≡+=- (3) 证 易知同余式(2)有解的充要条件是不定方程ax my b =+ (4)有解. 而不定方程(4)有解的充要条件为()(),,.a m a m b =-当同余式(2)有解时,若0x 是满足(2)的一个整数,则()0mod ,0,1,, 1.m a x k b m k d d ⎛⎫+≡=- ⎪⎝⎭下证0,0,1,,1mx k k d d +=- 对模m 两两部同余. 设 ()00mod ,01,1m mx k x k m k d k d d d ''+≡+≤≤-≤≤-则()mod ,mod ,.m m m k k d k k d k k d d d ⎛⎫'''≡≡= ⎪⎝⎭再证满足(2)的任意一个整数1x 都会与某一个()001mx k k d d+≤≤-对模m 同余. 由()()01mod ,mod ax b m ax b m ≡≡得()101010mod ,mod ,.a a m m ax ax m x x x x d d d d ⎛⎫⎛⎫≡≡≡ ⎪ ⎪⎝⎭⎝⎭故存在整数t 使得10.mx x t d=+由带余除法,存在整数,q k 使得 ,0 1.t dq k k d =+≤≤-于是()()100mod .m mx x dq k x k m d d=++≡+故(2)有解时,它的解数为(),d a m =. 以及若0x 是满足(2)的一个整数,则它的(),a m 个解是()0mod ,0,1,,1mx x k m k d d≡+=- (5) 例1求同余式 ()912m o d 15x ≡ (6)的解. 解 因为()9,15 3.=又因312,故同余式(6)有解,且有三个解.先解()5mod 43≡x , 得().5mod 3≡x 故同余式(6)的三个解为()158mod15,0,1,2.3x k k ≡+= 即 ()3,8,13m o d 15.x ≡ 例2 求同余式 ()6483mod105x ≡ (7)的解. 解 ()831,1105,64= ,同余式有一个解. 将同余式表为21051921916152161054716476418864105836483+≡≡≡+≡≡≡+≡≡x ().105mod 622124≡≡例3 解同余式 325x ≡ 20 (mod 161) 解 ()1161,325= 同余式有一个解, 同余式即是3x ≡ 20 (mod 161) 即.161203y x +=解同余式 161y ≡ -20 (mod 3), 即2y ≡ 1 (mod 3), 得到y ≡ 2 (mod 3),因此同余式的解是x ≡3161220⋅+= 114 (mod 161). 例4 设(a , m ) = 1,并且有整数δ > 0使得 a δ ≡ 1 (mod m ), 则同余式(2)的解是x ≡ ba δ - 1 (mod m ). 解 直接验证即可.注:由例4及Euler 定理可知,若(a , m ) = 1,则x ≡ ba ϕ(m ) - 1 (mod m ) 总是同余式(2)的解.注:本例使用的是最基本的解同余方程的方法,一般说来,它的计算量太大,不实用. 例5 解同余方程组⎩⎨⎧≡-≡+)7(mod 232)7(mod 153y x y x (8) 解 将(8)的前一式乘以2后一式乘以3再相减得到19y ≡ -4 (mod 7),5y ≡ -4 (mod 7), y ≡ 2 (mod 7).再代入(8)的前一式得到3x + 10 ≡ 1 (mod 7),x ≡ 4 (mod 7)即同余方程组(8)的解是x ≡ 4,y ≡ 2 (mod 7).例6 设a 1,a 2是整数,m 1,m 2是正整数,证明:同余方程组⎩⎨⎧≡≡)(mod )(mod 2211m a x m a x (9) 有解的充要条件是a 1 ≡ a 2 (mod (m 1, m 2)). (10)若有解,则对模[m 1, m 2]是唯一的,即若x 1与x 2都是同余方程组(9)的解,则x 1 ≡ x 2 (mod [m 1, m 2]) (11)解 必要性是显然的.下面证明充分性.若式(10)成立,由定理2,同余方程m 2y ≡ a 1 - a 2 (mod m 1)有解y ≡ y 0 (mod m 1),记x 0 = a 2 + m 2y 0,则x 0 ≡ a 2 (mod m 2)并且x 0 = a 2 + m 2y 0 ≡ a 2 + a 1 - a 2 ≡ a 1 (mod m 1),因此x 0是同余方程组的解。
浅谈⼆次剩余——求解⼆次同余⽅程1.⼆次同余式⼆次同余式是关于未知数的⼆次多项式的同余⽅程。
即:是⼀个⼆次同余⽅程。
此外,称为最简⼆次同余式,或称最简⼆次同余⽅程。
⼀般的,通过配⽅,可以把⼀个⼀般的⼆次同余⽅程转化为⼀个最简⼆次同余式接下来只需要讨论最简⼆次同余式。
2⼆次剩余2.1 前置概念、定理即证明:若⽆特殊说明,下⾯的模运算都是在模p的意义下1.有正整数n,奇质数p,且p∤n,若存在⼀个正整数x,使得x2≡n(mod则称n为p的⼆次剩余。
2.勒让德符号\begin{pmatrix}\dfrac{n}{p}\end{pmatrix},若n为p的⼆次剩余,则该值为1,若不是则该值为-1,若p\mid n,则该值为0定理1:\begin{pmatrix}\dfrac{n}{p}\end{pmatrix}\equiv n^{\frac{p-1}{2}}证明:1.若p能整除n,那右边明显模p与0同余,故成⽴。
2.若n是p的⼆次剩余,则根据费马⼩定理(n^{p-1}\equiv1(\bmod p)其中,p为质数),有n^{\frac{p-1}{2}} = {\sqrt{n}^{p-1}}\equiv 1,故成⽴3.若n不是p的⼆次剩余,则根据扩展欧⼏⾥得算法,对于i\in[1,p-1]都有唯⼀的j\in[1,p-1],i\neq j且ij\equiv n这样的数⼀共有\frac{p-1}{2}个,因此\frac{p-1} {2}\equiv (p-1)!根据威尔逊定理)(:当且仅当p为素数时有:( p -1 )! \equiv -1 ( \bmod p )),就有\frac{p-1}{2}\equiv -1证毕威尔逊定理证明:我们知道1\times1\equiv 1(mod p),( − 1 ) \times ( − 1 )\equiv (mod p),且仅有这两组的逆元与本⾝相等。
如果x^2\equiv 1(\bmod p)那么通过移项再因式分解可以得到x=-1或x=1,除了1,-1这两个数之外,2⾄p-2中的每⼀个数都⼀定有⼀个对应的逆元(注明:-1\equiv p-1(\bmod p))且⼀定与⾃⼰不相等,且每⼀个数与他的逆元⼀⼀对应。
第 4 章 同余方程内容 1. 同余方程概念 2. 解同余方程3. `解同余方程组要点解同余方程 4.1 基本概念(一) 同余方程(1) 同余方程【定义4.1.1】设m 是一个正整数,f(x)为n 次多项式()0111a x a x a x a x f n n n n ++++=--其中i a 是正整数(n a 0(mod m )),则f (x)≡0(mod m ) (1)叫做模m 的(n 次)同余方程(或模m 的(n 次)同余式),n 叫做f(x)的次数,记为deg f 或()[]x f ∂。
(2) 同余方程的解若整数a 使得 f (a)≡0(mod m )成立,则a 叫做该同余方程的解。
(3) 同余方程的解数若a 是同余方程(1)的解,则满足x ≡a (mod m )的所有整数都是方程(1)的解。
即剩余类a C ={x |x ∈Z ,x ≡a (mod m )}中的每个剩余都是解。
故把这些解都看做是相同的,并说剩余类a C 是同余方程的一个解。
记为x ≡a (mod m )当21,c c 均为同余方程(1)的解,且对模m 不同余时,就称它们是同余方程的不同的解,所有对模m 的两两不同余的解的个数,称为同余方程的解数,记作()m f T ;。
显然()m f T ;≤m若两个同余方程的解和解数相同,则称两个方程同解。
(4) 同余方程的解法一:穷举法任意选定模m 的一组完全剩余系,并以其中的每个剩余代入方程,在这完全剩余系中解的个数就是解数()m f T ;。
【例4.1.1】解同余方程15++x x ≡0(mod 7)。
(解)穷举:50+0+1=1≡1 mod 751+1+1=3≡3 mod 752+2+1=35≡0 mod 753+3+1=247≡2 mod 754+4+1=1029≡0 mod 755+5+1=3131≡2 mod 756+6+1=7783≡6 mod 7【例2】求同余方程122742-+x x ≡0(mod 15)的解。