浅议一元二次同余方程
- 格式:docx
- 大小:15.20 KB
- 文档页数:2
二次同余方程组二次同余方程组1. 定义二次同余方程组是指由多个模意义下的二次同余方程组成的方程组。
2. 解法(1)中国剩余定理中国剩余定理可以处理模数两两互质的同余方程组。
对于模数不互质的情况,需要将方程组分解为多个模数互质的方程组,然后分别使用中国剩余定理求解,最后合并解得到原方程组的解。
(2)特殊方法对于形如x^2 ≡ a (mod m)的方程,可以通过以下步骤求出解:(i)通过求解x ≡ ±b (mod m)的线性同余方程求出一组特殊解b。
(ii)求出x ≡ ±(m-b) (mod m)为通解。
3. 示例解二次同余方程组:x^2 ≡ 2 (mod 5),x^2 ≡ 2 (mod 7).①分别解出x^2 ≡ 2 (mod 5)和x^2 ≡ 2 (mod 7)的解:对于x^2 ≡ 2 (mod 5),有x ≡ ±2 (mod 5)。
对于x^2 ≡ 2 (mod 7),有x ≡ ±3 (mod 7)。
②构造中国剩余定理:设x ≡ a (mod 5),x ≡ b (mod 7),其中a和b是上一步中求出的解。
根据中国剩余定理,存在解x ≡ (7a×3+5b×2) (mod 35)。
则x ≡ 41 (mod 35)为原方程组的解。
③验证:x ≡ 41 (mod 35)满足x^2 ≡ 2 (mod 5)和x^2 ≡ 2 (mod 7)。
因为41 ≡ 1 (mod 5),所以41^2 ≡ 1^2 ≡ 1 (mod 5)。
因为41 ≡ 6 (mod 7),所以41^2 ≡ 6^2 ≡ 1 (mod 7)。
故x ≡ 41 (mod 35)是原方程组的解。
4. 总结二次同余方程组是数学中常见的问题,求解时可以使用中国剩余定理、特殊方法等多种方法。
在使用中国剩余定理时,需要注意将方程组分解为多个模数互质的部分,然后求解得到每个部分的解,并最终合并得到原方程组的解。
同余方程的解法
同余方程是一个古老的数学问题,即求解这样一个数学性质:给定两个正整数a和m,存在一个整数x,满足x除以m余a,即x=am+a。
这样的整数x叫做同余数,以am+a形式表示的方程叫作同余方程。
例如:求解x除以7余3,即求解7x=3(mod 7),则x=7*1+3=10。
二、如何求解同余方程
1、约分同余方程,当m和a互质时,则有x=a*(m^(-1))+a,m^(-1)叫做逆元,记作m^(-1)=y,则x=ay+a。
2、用乘法逆元的原理求解逆元:已知a、m互质,m,y非零且ay ≡1(mod m),则y就是m的乘法逆元。
3、用欧几里得最大公约数求解逆元:已知a、m互质,则用欧几里得最大公约数求解ay+b=1,则y即可作为m的乘法逆元。
4、用因子分解求解:将m分解质因子,将a分解质因子。
然后
将m分解得到质因子,使和a的质因子相乘,计算出ay+b,即可将y 作为m的乘法逆元。
三、应用
同余方程的解法所解决的问题在实际生活中具有重要的应用。
例如,密码学领域,大多数采用RSA加密方案,该方案中,m、a、y这三个值都需要用到同余方程的解法,来保证运算的安全性。
此外,同余方程的解法也可以用于求解模等式组(即统计意义上的等式组),
并广泛应用于偏微分方程、几何有理函数及局部多多边形等数学领域。
四、结论
从上文可以看出,同余方程的解法仍然具有很强的实用性,能够解决数学和工程领域中的许多问题,且解决的结果均有可靠的理论支撑。
同余方程的解法具有重要的应用价值,并且具有广泛的应用前景,值得深入研究。
一元二次方程中蕴含的几种思想方法一、降次法降次法是把高次方程转化为低次方程的基本方法,解一元二次方程的方法实际上就是把一元二次方程降次为一元一次方程来解.例1 一元二次方程230x x的根是()A.3x B.1203x x ,C.1203x x ,D.1203x x ,分析:把原方程化为x (x-3)=0的形式,就可降次为一元一次方程x=0或x-3=0,问题迎刃而解. 答案为D.二、配方法配方法是本章的一个难点,配方的目的是使方程的一边变成完全平方式,其根据是乘法公式a 2±2ab+ b 2=(a ±b)2.其步骤是:1.二次项系数化为1,并把常数移到方程的右边;2.在方程的两边同时加上一次项系数一半的平方,使方程的左边能配成一个完全平方式;3.当方程右边的常数为非负数时,方程有解,这时用直接开平方法求解;当方程右边的常数为负数时,方程无解。
例2 用配方法解方程:2210xx .解:两边都除以2,得211022xx(二次项系数化为1)移项,得21122xx(把常数移到方程的右边)配方,得221192416xx(在方程的两边都加上一次项系数一半的平方)即219416x1344x或1344x(直接开平方法)11x ,212x .三、换元法换元法的基本思路是通过设辅助未知数,使复杂的问题转化为简单的、已知的问题.如解可化为一元二次方程的分式方程.例3 用换元法解方程1)2()2(2=+-+xx xx ,设xx y 2+=,则原方程可化为().A .012=--y y B .012=++y y C .012=-+y y D .012=+-y y 分析:若把原方程展开再解,项数增加、次数增高,解答起来会很复杂,设xx y 2+=,通过换元将原方程化为整式方程012=--y y 再解,方便多了. 故选 A.四、转化思想解方程的过程就是不断的通过变形把原方程转化为与它等价的最简单方程的过程.在本章,转化无处不在,一元二次方程转化为一元一次方程来解;特殊转化为一般,一般转化为特殊,例如通过用配方法解数字系数的一元二次方程归纳出用配方法解字母系数的一般形式的一元二次方程 ax 2+ bx + c = 0的方法,进而得出一元二次方程的求根公式;将分式方程转化为整式方程;把实际问题转化为一元二次方程问题,等等.例4 经计算整式1x 与4x的积为234x x.则一元二次方程2340xx 的所有根是()A.11x ,24x B.11x ,24x C.11x ,24x D.11x ,24x 分析:通过已知可把2340x x 转化为(1x)(4x)=0,从而有1x=0或4x=0 ,解得11x ,24x ,故选B.五、类比思想要注意新旧知识的联系,把新旧知识进行类比,如用直接开平方法解一元二次方程时,可类比平方根的概念和意义;解可化为一元二次方程的分式方程时,可类比解可化为一元一次方程的分式方程的方法和步骤等.例5 先阅读,再填空解题:(1)方程2120xx的根是13x ,24x ,则121x x ,1212x x ;(2)方程22730x x 的根是112x ,23x ,则1272x x ,1232x x ;(3)方程2310x x 的根是1x ,2x .则12x x ,12x x ;根据以上(1)(2)(3)你能否猜出:如果关于x 的一元二次方程2m x nx p (0m,且m n p,,为常数)的两个实数根是12x x ,,那么12x x ,12x x 与系数m n p,,有什么关系?请写出你的猜想并说明理由.分析:由求根公式可得12353522x x ,,计算就有121231x x x x ,.由数到式,类比猜想可得:1212n p x x x x mm,.理由如下:一元二次方程20m x nx p(0m,且m n p ,,为常数)的两实数根是22124422nnm pn n m px x m m ,.22124422nnm p nnm px x m m,22n n mm .22124422nn m p n n m px x mm,2222()(4)4n n m p m222(4)4nnmp p mm.。
专题09一元二次函数的三种表示方式(解析版)专题09 一元二次函数的三种表示方式一、知识点精讲通过上一小节的学习,我们知道,一元二次函数可以表示成以下三种形式:1.一般式:y=ax2+bx+c(a≠0);2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac 存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x 轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx+c=0的两根,所以x1+x2=ba-,x1x2=ca,即ba=-(x1+x2),ca=x1x2.所以,y=ax2+bx+c=a(2b cx xa a++)= a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论:若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法:3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.二、典例精析【典例1】已知某一元二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),求该一元二次函数的解析式.【答案】见解析【分析】:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a .【解析】∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.又顶点在直线y =x +1上,所以,2=x +1,∴x =1.∴顶点坐标是(1,2).设该二次函数的解析式为2(1)2(0)y a x a =-+<,∵二次函数的图像经过点(3,-1),∴21(31)2a -=-+,解得a =-34.∴二次函数的解析式为23(1)24y x =--+,即y =-34x 2+32x+54.【说明】:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.【典例2】已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2,求此二次函数的表达式.【答案】见解析【分析一】:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x 轴的交点坐标,于是可以将函数的表达式设成交点式.【解析一】:∵二次函数的图象过点(-3,0),(1,0),∴可设二次函数为y =a (x +3) (x -1) (a ≠0),展开得 y =ax 2+2ax -3a ,顶点的纵坐标为 2212444a a a a--=-,由于二次函数图象的顶点到x 轴的距离2,∴|-4a |=2,即a =12±.所以,二次函数的表达式为y =21322x x +-,或y =-21322x x -+.【分析二】:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x =-1,又由顶点到x 轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式.【解析二】:∵二次函数的图象过点(-3,0),(1,0),∴对称轴为直线x =-1.又顶点到x 轴的距离为2,∴顶点的纵坐标为2,或-2.于是可设二次函数为y =a (x +1)2+2,或y =a (x +1)2-2,由于函数图象过点(1,0),∴0=a (1+1)2+2,或0=a (1+1)2-2.∴a =-12,或a =12.所以,所求的二次函数为y =-12(x +1)2+2,或y =12(x +1)2-2.【说明】:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.【典例3】已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式.【答案】见解析【解析】设该二次函数为y =ax 2+bx +c (a ≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得22,8,842,a b c c a b c -=-+??-=??=++?解得 a =-2,b =12,c =-8.所以,所求的二次函数为y =-2x 2+12x -8.【说明】通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点式来求二次函数的表达式?三、对点精练1.选择题:(1)函数y =-x 2+x -1图象与x 轴的交点个数是()(A )0个(B )1个(C )2个(D )无法确定【答案】A【解析】214(1)(1)30=-?-?-=-<,∴函数y =-x2+x -1图象与x 轴的交点个数是0个。
本科毕业论文题目:同余方程的解法学生姓名:学号:专业:数学与应用数学班级:指导教师:二〇一年四月摘要:本文论述了同余方程的基本概念及同余方程的一些基本性质与解法,主要对一次同余方程的解法进行了探讨,特别是对一次同余方程的欧拉定理算法,欧几里德算法等七种解法进行了比较与分析,并介绍了同余方程组、孙子定理、素数模的同余方程,模p 的同余方程的解法。
关键词:同余同余方程孙子定理Abstract:This paper mainly discusses the basic concepts of congruence equations and congruence equation some of the basic nature of solution,and highlights the Remainder Theorem,solution of the congruence equation,mod p congruence equation solution,congruence equation of primes mode solution,etc.Key words:Congruence Congruence equation Remainder Theorem目录引言 (1)1.同余与同余方程的基本性质 (2)1.1 同余的概念与基本性质 (2)1.2同余方程的概念与性质 (3)2.一次同余方程的解法 (4)2.1 ()a=的情况 (4), m 12.2 ()=≠的情况 (7),1a m d3.同余方程组的解法 (8)3.1简单同余方程组的解法 (8)3.2 孙子定理 (9)4.高次同余方程的的解法 (11)4.1素数模的同余方程 (11)4.2模pα的同余方程 (12)总结: (17)参考文献 (18)致谢: (19)引言对于同余方程的解法国内外的数学家们均对其做出了非常全面与细致的研究。
浅议一元二次同余方程ax2+bx+c≡0(mod m)的公式解法解:(1)为方便讨论需要(实则没有影响,只是为了方便笔算需要),不妨设a,b,c在-[m/2]~[m/2]之间取数,也就是模m后的取数;(2)①如果(a,m)=1即a和m互素,则必存在a的逆运算a-1使得a*a-1≡1(mod m),那么在原来方程两边同时乘以a-1使得二次项系数为1,得到
x2+b*a-1x+c*a-1≡0(mod m)……………………(*)取b*a-1≡B(mod m),c*a-1≡C(mod m),所以
原来方程就简化为
x2+Bx+C≡0(mod m)…………………………(*’)讨论:如果B为偶数很好办,对于B为奇数,当m为奇数时也可以通过加减mx得到一次项系数为偶数;而当m为偶数时,则要方程两边再同时乘以4使其可以配方成为完全平方式。
以下通过两种情况进行分析:
(i)当2|B时,不妨设B=2u,则方程(*’)配方得到(x+u)2≡u2-C (mod m)
≡(ba-1/2)2-(ca-1)*a-1a
≡(a-1)2(b2-4ac) /4 (mod m) …………①当存在整数v和n使得
(a-1)2(b2-4ac) /4 ≡v2 (mod m) …………②(a-1)2(b2-4ac) /4 +m*n=v2成立,则原方程有解为 x≡-u±v
≡-(ba-1)±(a-1) √(b2-4ac)/2≡(a-1)*−b±b 2−4ac
2
(mod m)
这个形式和一元二次方程的求根公式很接近,只是这里的a-1(表示的是逆)不同于代数式意义上的倒数a-1。