初等数论 第5章 二次同余式与平方剩余
- 格式:ppt
- 大小:2.18 MB
- 文档页数:58
初等数论第五章二次同余式与平方剩余第五章二次同余式与平方剩余第五章二次同余式与平方剩余§1二次同余式与平方剩余二次同余式的一般形式是ax2?bx?c?0(modm),a??0(modm)(1)下面讨论它的解的情况。
?k?1?2令m?p1p2?pk,则(1)有解的充要条件为ax2?bx?c?0(modpi?i),i?1,2,?,k有解,而解f(x)?ax2?bx?c?0(modp?),p为质数(2)又可以归结为解f(x)?ax2?bx?c?0(modp),p为质数(3)。
当p?2时,同余式(3)极易求解,因此,我们只需讨论二次同余式f(x)?ax2?bx?c?0(modp),p为奇质数(4)若p?|a,用4a乘(4)再配方得(2ax?b)2?4ac?b2?0(modp),令y?2ax?b,A?b2?4ac,得y2?A?0(modp)可以证明:同余式(4)和(5)是等价的。
证明必要性显然;反之,设(5)有一解y?y0,因为(p,2a)?1,所以2ax?b?y0(modp)有解,即(4)有解。
以上讨论可知,二次同余式可以化为x2?a(modp),p为奇质数(6)(5)来求解,当p|a时,(6)仅有一个解x?0(modp),所以我们下面总假定p?|a或(p,a)?1。
因此,下面主要研究形如x2?a(modp),(p,a)?1,p为奇质数同余式。
(7)的定义若同余式x2?a(modp),(a,p)?1,p为奇质数有解,则a 叫做模p的平方剩余(二次剩余),若无解,则a叫做模p的平方非剩余(二次非剩余)。
定理1(欧拉判别条件)若(a,p)?1,则a是模p的平方剩余的充要条件为ap?12?1(modp);a是模p的平方非剩余的充要条件为a- 1 - p?12??1(modp)。
若a是模p的平方剩余,则(7)式恰有两解。
第五章二次同余式与平方剩余证明(1)设a是模p 的平方剩余,则同余式x2?a(modp),(a,p)?1有解,设为?,于是??a(modp),从而欧拉定理可知反之,若ap?122ap?12??p?1?1(modp)。
二次同余式的一般形式ax2+bx+c≡0(mod m)由算术基本定理知道m可以分解成一些素数乘积,再由孙子定理知道ax2+bx+c≡0(mod m)可以转化为同余式组ax2+bx+c≡0(mod pα)因此,本章只讨论模为素数幂pα的同余式设p是素数,我们来研究素数模p的二次同余方程ax2+bx+c≡0 (mod p)。
(1)如果p= 2,则可以直接验证x≡0或1 (mod 2)是否方程(1)的解。
如果(a, p) = p,则方程(1)成为一元一次同余方程。
因此,只需考察p > 2,(a, p) = 1的情形。
此时,因为(4a, p) = 1,所以,方程(1)等价于方程4a2x2+4abx+4ac≡0 (mod p),即(2ax+b)2≡b2-4ac(mod p)。
这样,研究方程(1)归结为对方程x2≡a(mod m) (2)定义1给定整数m,对于任意的整数a,(a,m) = 1,若方程x2 a(mod m)有解,则称a是模m的二次剩余;否则,称a是模m的二次非剩余.例1验证1是模4的平方剩余,‐1是是模4的非平方剩余 例21,2,4 是模7的平方剩余,‐1,3,5是模7的非平方剩余解因为,12≡1, 22≡4, 32≡2, 42≡2,52≡4,62≡1(mod7),例3 求满足方程E:y2≡x3+x+1(mod 7)的所有点 解x ≡0, y2 ≡1(mod 7) y ≡1,6 (mod 7)x ≡1, y2 ≡3(mod 7) 无解x ≡2, y2 ≡4(mod 7) y ≡2,5 (mod 7)x ≡3, y2 ≡3(mod 7) 无解x ≡4, y2 ≡6(mod 7) 无解x ≡5, y2 ≡5(mod 7) 无解x ≡36, y2 ≡6(mod 7) 无解4.2模为奇素数的平方剩余与非平方剩余 在这节里讨论模为素数的二次同余式定理1(欧拉判别条件) 若(a , p ) = 1,p 是奇素数则 (ⅰ) a 是模p 的二次剩余的充要条件是≡1 (mod p );(3) (ⅱ) 若a 是模p 的二次剩余,则方程(2)有两个解; (ⅲ) a 是模p 的二次非剩余的充要条件是 ≡-1 (mod p )。
初等数论总复习题及知识点总结最后,给大家提一点数论的学习方法,即一定不能忽略习题的作用,通过做习题来理解数论的方法和技巧,华罗庚教授曾经说过如果学习数论时只注意到它的内容而忽略习题的作用,则相当于只身来到宝库而空手返回而异。
数论有丰富的知识和悠久的历史,作为数论的学习者,应该懂得一点数论的常识,为此在辅导材料的最后给大家介绍数论中著名的“哥德巴赫猜想”和费马大定理的阅读材料。
初等数论自学安排第一章:整数的可除性(6学时)自学18学时整除的定义、带余数除法最大公因数和辗转相除法整除的进一步性质和最小公倍数素数、算术基本定理[x]和{x}的性质及其在数论中的应用习题要求:2,3 ;:4 ;:1;:1,2,5;:1。
第二章:不定方程(4学时)自学12学时二元一次不定方程多元一次不定方程勾股数费尔马大定理。
习题要求:1,2,4;:2,3。
第三章:同余(4学时)自学12学时同余的定义、性质剩余类和完全剩余系欧拉函数、简化剩余系欧拉定理、费尔马小定理及在循环小数中的应用习题要求:2,6;:1;:2,3;1,2。
第四章:同余式(方程)(4学时)自学12学时同余方程概念孙子定理高次同余方程的解数和解法素数模的同余方程威尔逊定理。
习题要求:1;:1,2;:1,2。
第五章:二次同余式和平方剩余(4学时)自学12学时二次同余式单素数的平方剩余与平方非剩余勒让德符号二次互反律雅可比符号、素数模同余方程的解法习题要求:2;:1,2,3;:1,2;:2;:1。
第一章:原根与指标(2学时)自学8学时指数的定义及基本性质原根存在的条件指标及n次乘余模2及合数模指标组、特征函数习题要求:3。
第一章整除一、主要内容整除的定义、带余除法定理、余数、最大公因数、最小公倍数、辗转相除法、互素、两两互素、素数、合数、算术基本定理、Eratosthesen筛法、[x]和{x}的性质、n!的标准分解式。
二、基本要求通过本章的学习,能了解引进整除概念的意义,熟练掌握整除整除的定义以及它的基本性质,并能应用这些性质,了解解决整除问题的若干方法,熟练掌握本章中二个著名的定理:带余除法定理和算术基本定理。
《初等数论》总结姓名 xxx学号 xxxxxxxx院系 xxxxxxxxxxxxxxx专业 xxxxxxxxxxxxxxx个人感想初等数论是一门古老的学科,它对于数的性质以及方程整数的解做了深入的研究,是对中等数学数的理论的继续和提高。
有时候上课听老师讲解一些例题,觉得比较简单,结果便是懂非懂地草草了之,但是过段时间做老师留下的一些相似的课后练习时,又毫无头绪,无从下手。
这就是上课的时候没做到全神贯注地去听,所以课下的时间尤为重要,一定做好复习巩固的工作。
老师讲课的方法也十分好,每次上课都会花二十分钟到半个小时来对上节课的知识帮助我们进行回顾,我想很多同学都喜欢并适合这种教学方式。
知识点总结第一章 整数的可除性1. 定义:设b a ,是给定的数,0≠b ,若存在整数c ,使得bc a =则称b 整除a ,记作a b |,并称b 是a 的一个约数,称a 是b 的一个倍数,如果不存在上述c ,则称b 不能整除a 2性质:(1)若c b |且a c |,则a b |(传递性质);(2)若a b |且c b |,则)(|c a b ±即为某一整数倍数的整数之集关于加、减运算封闭。
若反复运用这一性质,易知a b |及c b |,则对于任意的整数v u ,有)(|cv au b ±。
更一般,若n a a a ,,,21Λ都是b 的倍数,则)(|21n a a a b +++Λ。
或着i b a |,则∑=ni ii b c a 1|其中n i Z c i ,,2,1,Λ=∈;(3)若a b |,则或者0=a ,或者||||b a ≥,因此若a b |且b a |,则b a ±=; (4)b a ,互质,若c b c a |,|,则c ab |;(5)p 是质数,若n a a a p Λ21|,则p 能整除n a a a ,,,21Λ中的某一个;特别地,若p 是质数,若n a p |,则a p |;(6)(带余数除法)设b a ,为整数,0>b ,则存在整数q 和r ,使得r bq a +=,其中b r <≤0,并且q 和r 由上述条件唯一确定;整数q 被称为a 被b 除得的(不完全)商,数r 称为a 被b 除得的余数。
第五章 二次同余式与平方剩余本章的目的是较深入地讨论二次同余式。
讨论方法是把问题归结到讨论形如)(mo d 2m a x ≡的同余式,进而引入平方剩余和平方非剩余的概念,再应用数论中常用的函数(勒让德符号及雅可比符号)去讨论m 是单质数的情形,进而讨论一般的情形。
最后还应用本章结果解决两个不定方程的问题,并介绍一下与它们有关的著名的华林问题。
教学内容: 1.一般二次同余式教学目的: 了解一般二次同余式及平方剩余,平方非剩余的概念: 教学重难点: 平方剩余的概念 教学过程:本节主要讨论二次同余式,讨论方法是把问题归结到讨论形如)(mod 2m a x ≡的同余式,进而引入平方剩余和平方非剩余的概念,再应用数论中常用的函数讨论m 是单质数的情形,进而讨论一般的情形: 一. 基本概念: 首先:二次同余式的一般形式:)(m od 0),(m od 02m a m c bx ax ≡/≡++(1) 用4a 乘(1)式再加上2b 得:acb b ax am ac b b abx x a 4)2()4(mod 444222222-≡+-≡++即若令ac b D b ax y 4,22-=+=则上式变为)4(mod 2am D y ≡(2)具体分析过程见书上P74:由同于是的性质可知(2)与(1)式同时有解或同时误解:故讨论(1)式有解的问题可以转为讨论(2)式有解的问题:为了讨论(2)式是否有解,我们引入平方剩余和平方非剩余的概念:定义:假设(a,m )=1,如果同余式)(mod 2m a x ≡有解,则a 叫做模m 的平方剩余,否则叫做模m 的平方非剩余:例:)7(m od 2a x ≡根据同余式解的形式:他的接有0,1,2,3,4,5,6这7中可能,而a 有1,2,3,4,5,6这六种可能,严整可知 当a 取1,2,4是有解,当a 取3,5,6时误解,故1,2,4为模7的平方剩余,而3,5,6为模7的平方非剩余:教学内容: 2.单质数的平方剩余与平方非剩余教学目的: 了解单质数的平方剩余,平方非剩余的基本性质及判别方法: 教学重难点: 平方剩余,平方非剩余的判别 教学过程:这节我们讨论单质数p 的平方剩余,平方非剩余: 一. 判别方法: 定理1:(欧拉判别条件):若(a,p )=1,则a 是模p 的平方剩余的充要条件是:)(mod 121p ap ≡-:而a 是模p 的平方非剩余的充要条件是:)(mod 121p ap -≡-证明:见书上P76:由此定理我们就可以判别单质数p 的平方剩余,平方非剩余: 二.基本性质:定理2:模p 的平方剩余和平方非剩余各为21-p ,而且21-p 个平方剩余分别与序列)21(2,122-p 中之一数同余,且仅与一数同余: 证明:见书上P77:关于平方剩余和平方非剩余具有以下性质: 定理3:对于同一素数p 来说: 1. 二平方剩余之积仍是平方剩余:2. 一平方剩余与一平方非剩余之积为平方非剩余: 3. 二平方非剩余之积为平方剩余:证明:1。
《初等数论》教学大纲课程名称:初等数论 Elementary Number Theory课程性质:专业必修课学分:3总学时:48 理论学时:48适用专业:数学与应用数学先修课程:中学数学、高等代数、数学分析、解析几何一、教学目的与要求:初等数论是数学与应用数学本科专业的专业基础课。
初等数论是研究整数的基本性质和方程(组)整数解的一个数学分支。
数学与应用数学专业开设本课程的目的在于使学生孰悉数论的初步理论、掌握数论的最基本方法,为今后学习相关课程打下必要的基础。
因此,在教学中要求:(1)对初等数论的基本内容作系统讲授;(2)注意数论与其它数学分支的联系与应用;(3)简要介绍一些数论的近代成就及我国数学家在数论方面的贡献。
二、教学内容与学时分配:三、各章节主要知识点与教学要求:第一章整除理论(15学时)第一节整除定义及其基本性质第二节最大公因数与最小公倍数第三节素数第四节算术基本定理本章重点:整除、公因子、素数的概念及性质,剩余定理,求最大公因子的方法,整数的素数分解定理。
最大公因数的性质及应用,算术基本定理的证明及应用。
本章难点:定理的证明处理方法,定理的灵活运用。
本章教学要求:理解整数整除、公因子、公倍数的概念及相关性质,理解剩余定理,熟练掌握用剩余定理求最大公因子、最小公倍数的方法。
理解素数与合数的概念、素数的性质,理解整数的素数分解定理,会用筛法求素数。
了解函数[x]与{x}的概念、性质,n!的素数分解、组合数为整数的性质。
第二章不定方程(9学时)1.一次不定方程2.勾股数3. 费尔马问题介绍本章重点:二元一次不定方程解的形式,二元一次不定方程有整数解的条件,利用剩余定理(辗转相除法)求二元一次不定方程的解。
本章难点:多元不定方程有整数解的判定及求解。
本章教学要求:了解二元一次不定方程解的形式、二元一次不定方程有整数解的条件,熟练掌握利用剩余定理(辗转相除法)求二元一次不定方程的方法。
知道多元一次不定方程有解的条件,会求解简单的多元一次不定方程。
第5章 二次同余方程与平方剩余内容 1. 二次同余方程,平方剩余 2. 模为奇素数的平方剩余3. 勒让德符号、雅可比符号4. 二次同余方程的求解要点二次同余方程有解的判断与求解 5.1 一般二次同余方程(一) 二次同余方程2ax +bx +c ≡0(mod m ),(a 0(mod m )) (1)(二) 化简设m =k kp p p ααα 2121,则方程(1)等价于同余方程组 ⎪⎪⎩⎪⎪⎨⎧≡++≡++≡++)()()(k k p c bx ax p c bx ax p c bx ax αααmod 0mod 0mod 02221221⇒ 2ax +bx +c ≡0(mod αp ), (pa ) (2)(三) 化为标准形式p ≠2,方程(2)两边同乘以4a , 422x a +4abx +4ac ≡0(mod αp )()22b ax +≡2b -4ac (modαp )变量代换, y =2ax +b (3)有2y ≡2b -4ac (mod αp ) (4)当p 为奇素数时,方程(4)与(2)等价。
即● 两者同时有解或无解;有解时,对(4)的每个解()p y y mod 0≡,通过式(3)(x 的一次同余方程,且(p , 2a )=1,所以解数为1)给出(2)的一个解()p x x mod 0≡,由(4)的不同的解给出(2)的不同的解;反之亦然。
● 两者解数相同。
结论:只须讨论方程 2x ≡a (mod αp ) (5)【例5.1.1】化简方程7x 2+5x -2≡0(mod 9)为标准形式。
(解)方程两边同乘以4a =4×7=28,得196x 2+140x -56≡0(mod 9)配方 (14x +5) 2-25-56≡0(mod 9)移项 (14x +5) 2≡81(mod 9)变量代换 y =14x +5得 y 2≡0(mod 9)(解之得y =0, ±3,从而原方程的解为x ≡114-(y -5)≡15- (y -5)≡2(y -5)≡2y -10≡2y -1≡-7, -1, 5≡-4, -1, 2(mod 9))(四) 平方剩余【定义5.1.1】设m 是正整数,a 是整数,m a 。