第四章 焊接接头的组织与性能
- 格式:ppt
- 大小:4.42 MB
- 文档页数:16
第七章 焊接接头组织和性能的控制1.焊接热循环对被焊金属近缝区的组织、性能有什么影响?怎样利用热循环和其他工艺措施改善HAZ 的组织性能?答:(1)在热循环作用下,近缝区的组织分布是不均匀的,融合去和过热去出现了严重的晶粒粗化,是整个接头的薄弱地带,而行能也是不均匀的,主要是淬硬、韧化和脆化,及综合力学性能,抗腐蚀性能,抗疲劳性能等。
(2)焊接热循环对组织的影响主要考虑四个因素:加热速度、加热的最高温度,在相等温度以上的停留时间,冷却速度和冷却时间,研究它是研究焊接质量的主要途径,而在工艺措施上,常可采用长段的多层焊合短道多层焊,尤其是短道多层焊对热影响区的组织有以定的改善作用,适于焊接晶粒易长而易淬硬的钢种。
2. 冷却时间100t t 8385、、t 的各自应用对象,为什么不常用某温度下(如540℃)的冷却速度?答:对于一般碳钢和低合金钢常采用相变温度范围800~500℃冷却时间(85t )对冷裂纹倾向较大的钢种,常采用800~300℃的冷却时间83t ,各冷却时间的选定要根据不同金属材料做存在的问题来决定为了方便研究常用某一温度范围内的冷却时间来讨论热影响组织性能的变化,而某个温度下 比如540℃则为一个时刻即冷却至540℃时瞬时冷却速度 和组织性能。
故不常用某以温度下的冷却速度,对于一般低合金钢来讲,主要研究热影响区溶合线附近冷却过程中540℃时瞬时冷却速度3. 低合金钢焊接时,HAZ 粗晶区奥氏体的均质化程度对冷却时变相有何影响? 答:奥氏体的均质化过程为扩散过程,因此焊接时焊接速度快和相变以上停留时间短都不利于扩散过程的进行,从而均质化过程差而 影响到冷却时间的组织相变,低合金钢在焊接条件下的CCT 曲线比热处理条件下的曲线向做移动,也就是在同样冷却速度下焊接时比热处理的淬硬倾向小,例如冷却速度为36s C / 时可得到100%的马氏体,在焊接时由于家人速度快,高温停留时间短使合金元素不能充分溶解在奥氏体内,奥氏体均质化过成差,使相变组织差。
焊接接头的力学性能与微观组织关系在现代工业生产中,焊接是一种广泛应用的连接技术。
从建筑结构到航空航天设备,从汽车制造到船舶工程,焊接在各个领域都发挥着至关重要的作用。
而焊接接头的质量直接影响着整个结构的性能和可靠性,其中力学性能和微观组织的关系是焊接领域中一个关键的研究方向。
要理解焊接接头的力学性能与微观组织的关系,首先需要明确什么是力学性能和微观组织。
力学性能主要包括强度、硬度、韧性、延展性等指标,这些性能决定了焊接结构在承受外力时的表现。
而微观组织则是指在显微镜下观察到的金属材料的组织结构,如晶粒大小、相组成、晶界特征等。
焊接过程是一个极其复杂的热循环过程,这会对焊接接头的微观组织产生显著影响。
在焊接时,局部区域会迅速升温到很高的温度,然后又快速冷却。
这种剧烈的温度变化导致了焊接接头不同区域的微观组织存在差异。
比如在焊缝区,由于熔化和凝固的过程,往往会形成柱状晶组织。
柱状晶的生长方向通常与散热方向相反,其晶粒较为粗大。
这种粗大的晶粒结构会使得焊缝区的强度和韧性相对较低。
而在热影响区,根据距离焊缝的远近,又可以分为过热区、正火区和部分相变区。
过热区由于受到高温的影响,晶粒严重长大,导致强度和韧性下降;正火区则由于经历了适当的加热和冷却,晶粒得到细化,力学性能相对较好;部分相变区的组织不均匀,性能也较为复杂。
微观组织的特征直接决定了焊接接头的力学性能。
晶粒越细小,晶界越多,材料的强度和韧性通常就越高。
这是因为晶界能够阻碍位错的运动,从而提高材料的强度。
同时,细小的晶粒也有利于改善韧性,因为裂纹在扩展过程中需要跨越更多的晶界,消耗更多的能量。
相组成也是影响力学性能的重要因素。
例如,在钢中,如果存在较多的马氏体相,通常会使材料的硬度和强度增加,但韧性可能会有所降低。
而铁素体和珠光体的比例不同,也会对力学性能产生影响。
此外,微观组织中的缺陷,如气孔、夹杂物、裂纹等,会严重削弱焊接接头的力学性能。
气孔和夹杂物会成为应力集中的源头,容易引发裂纹的萌生和扩展;而裂纹一旦形成,就会极大地降低接头的承载能力。