焊接接头组织性能
- 格式:ppt
- 大小:90.50 KB
- 文档页数:33
6061铝合金MIG焊接头组织性能分析6061铝合金是一种常见的铝合金材料,具有优良的机械性能和耐腐蚀性能,常用于航空航天、汽车制造、建筑和电子等领域。
在实际工程中,常常需要对6061铝合金进行MIG焊接来实现零部件的连接和修复。
焊接接头的组织性能对焊缝的性能和使用寿命至关重要,在焊接过程中需要严格控制焊接参数和工艺条件,以获得较好的焊接接头质量。
6061铝合金的MIG焊接接头主要包括母材区、热影响区和焊缝区。
母材区是未受热影响的铝合金基体,其组织主要由等轴晶粒和析出相组成,具有较好的强度和塑性。
热影响区是焊接接头中受到焊接热源影响的区域,其组织通常会发生变化,出现晶粒长大、析出相消耗和固溶元素富集等现象。
焊缝区是焊接过程中熔化的铝合金,其组织取决于焊接参数和工艺条件,主要由铝基固溶体和析出相组成。
6061铝合金的MIG焊接接头组织性能受到很多因素的影响,包括焊接参数、焊接材料、气体保护和焊接工艺等。
在选择焊接参数时,需要考虑焊接电流、焊接电压、焊接速度和气体流量等因素,以保证焊接接头的质量和性能。
焊接材料的选择也很重要,一般选用与母材相似的铝合金焊丝或焊条,以确保焊接接头的相容性和成形性。
气体保护是保证焊接接头质量的关键,常用的保护气体包括纯氩气和氩氧混合气体,能够有效防止氧化和氮化等缺陷的产生。
在实际焊接过程中,需要对焊接接头的组织性能进行详细分析和评价,通过金相显微镜观察接头的金相组织,测量晶粒大小、析出相尺寸和相分布等参数。
通过扫描电镜、X射线衍射分析和硬度测试等手段,进一步研究接头的微观结构和力学性能,评估焊接接头的质量和可靠性。
总的来说,6061铝合金的MIG焊接接头组织性能分析是实现高质量焊接的关键一步,需要对焊接参数、焊接材料、气体保护和焊接工艺等因素进行全面评估,保证焊接接头的组织均匀、强度高、硬度适中,以满足工程要求和使用环境的需求。
通过不断的实验研究和工程实践,不断优化焊接工艺,提高焊接接头的质量和性能,推动6061铝合金材料在各个领域的应用和发展。
焊接热循环对焊接接头组织与性能的影响分析焊接是一种常见的金属连接方法,通过加热和冷却来使金属材料相互结合。
焊接热循环是指焊接过程中金属材料所经历的加热和冷却的循环过程。
这个循环过程对焊接接头的组织和性能有着重要的影响。
首先,焊接热循环会对焊接接头的组织结构产生影响。
焊接过程中,焊接接头会经历高温和低温的循环,这会导致金属材料的晶粒尺寸发生变化。
在高温下,晶粒会长大,而在低温下则会细化。
这种晶粒尺寸的变化会影响焊接接头的力学性能。
晶粒细化可以提高焊接接头的强度和韧性,而晶粒粗化则会降低其力学性能。
因此,焊接热循环对焊接接头的晶粒尺寸有着直接的影响。
其次,焊接热循环还会对焊接接头的残余应力产生影响。
焊接过程中,金属材料会经历热胀冷缩的过程,从而产生残余应力。
这些残余应力可能会导致焊接接头产生变形、裂纹等缺陷。
焊接热循环的循环次数和温度变化幅度都会对残余应力产生影响。
循环次数越多、温度变化幅度越大,残余应力就越大。
因此,在焊接过程中需要合理控制焊接热循环,以减小残余应力对焊接接头的影响。
此外,焊接热循环还会对焊接接头的晶体结构产生影响。
焊接过程中,金属材料的晶体结构可能会发生相变。
相变会改变金属材料的晶体结构和性质,从而影响焊接接头的性能。
例如,某些金属在焊接过程中可能发生固溶体析出现象,导致焊接接头的硬度发生变化。
此外,相变还可能导致焊接接头的晶体结构发生变化,从而影响其力学性能。
因此,在焊接过程中需要考虑焊接热循环对晶体结构的影响,以保证焊接接头的性能。
最后,焊接热循环还会对焊接接头的耐腐蚀性能产生影响。
焊接过程中,金属材料会经历高温和低温的循环,这可能会导致焊接接头的耐腐蚀性能发生变化。
例如,某些金属在高温下容易发生氧化反应,从而降低其耐腐蚀性能。
此外,焊接热循环还可能导致焊接接头的组织结构发生变化,从而影响其耐腐蚀性能。
因此,在焊接过程中需要注意焊接热循环对焊接接头的耐腐蚀性能的影响。
综上所述,焊接热循环对焊接接头的组织和性能有着重要的影响。
第3章焊接接头组织和性能第3章焊接接头组织和性能焊接过程中焊缝及母材金属发生一系列金属形态的变化,包括焊缝金属的凝固和结晶,母材与热影响区金属在焊接加热和冷却过程中的组织变化,以及与凝固结晶相变有密切关系的各种缺陷的形成,这些过程直接关系到焊后接头的性能,因此,研究接头各区的组织特征和形成机制,对于提高接头性能具有重要的指导意义。
3.1焊接熔池和焊缝3.2焊接热影响区3.3熔合区3.1焊接熔池和焊缝基本概念:焊接熔池:由熔化的局部母材和填加材料所组成的具有一定几何形状的液态区域。
焊缝:焊接熔池凝固后形成的固态区域。
熔池的结晶行为(一次结晶)+焊缝金属的固态相变→焊缝金属的组织和性能。
3.1.13.1.23.1.33.1.4熔池的结晶特点熔池的结晶形态焊缝的固态相变组织焊缝组织和性能的控制3.1.1熔池的结晶特点1、非平衡的动态结晶1)熔池体积小,冷却速度大手工电弧焊V=2-10cm3,Vma某=30cm3υ焊泠=4~100℃/υ铸泠=(3~150)某10-4℃/S约为铸造的104倍由于体积小,冷却速度快,对含碳量高的合金钢易产生淬硬组织,裂纹,熔池中心与边缘有较大的温度梯度,焊缝中柱状晶发达。
2)熔池过热、温度梯度大熔池温度1770100℃溶滴2300℃±200℃铸件浇铸温度<1500℃熔池体积小、温度高,边界的温度梯度很大,可比铸造大104倍过热度大(烧损合金元素,自发晶核的质点减少)+大温度梯度→“柱状晶”发达3)熔池在运动中结晶熔池前部金属熔化,后部金属结晶。
焊接熔池所特有的金属结晶过程,与铸锭的金属结晶过程不同之处有下述各点。
(1)焊接熔池即受焊接热源的加热作用,同时又受到固体金属的冷却作用;(2)焊接熔池的液体金属为加热到不同温度的固体金属所包围。
焊接熔池侧壁的焊件金属加热的程度比熔池后壁焊缝金属的加热程度小。
(3)焊缝金属的平均结晶速度等于熔池的移动速度,也就是等于焊接速度。
第七章 焊接接头组织和性能的控制1.焊接热循环对被焊金属近缝区的组织、性能有什么影响?怎样利用热循环和其他工艺措施改善HAZ 的组织性能?答:(1)在热循环作用下,近缝区的组织分布是不均匀的,融合去和过热去出现了严重的晶粒粗化,是整个接头的薄弱地带,而行能也是不均匀的,主要是淬硬、韧化和脆化,及综合力学性能,抗腐蚀性能,抗疲劳性能等。
(2)焊接热循环对组织的影响主要考虑四个因素:加热速度、加热的最高温度,在相等温度以上的停留时间,冷却速度和冷却时间,研究它是研究焊接质量的主要途径,而在工艺措施上,常可采用长段的多层焊合短道多层焊,尤其是短道多层焊对热影响区的组织有以定的改善作用,适于焊接晶粒易长而易淬硬的钢种。
2. 冷却时间100t t 8385、、t 的各自应用对象,为什么不常用某温度下(如540℃)的冷却速度?答:对于一般碳钢和低合金钢常采用相变温度范围800~500℃冷却时间(85t )对冷裂纹倾向较大的钢种,常采用800~300℃的冷却时间83t ,各冷却时间的选定要根据不同金属材料做存在的问题来决定为了方便研究常用某一温度范围内的冷却时间来讨论热影响组织性能的变化,而某个温度下 比如540℃则为一个时刻即冷却至540℃时瞬时冷却速度 和组织性能。
故不常用某以温度下的冷却速度,对于一般低合金钢来讲,主要研究热影响区溶合线附近冷却过程中540℃时瞬时冷却速度3. 低合金钢焊接时,HAZ 粗晶区奥氏体的均质化程度对冷却时变相有何影响? 答:奥氏体的均质化过程为扩散过程,因此焊接时焊接速度快和相变以上停留时间短都不利于扩散过程的进行,从而均质化过程差而 影响到冷却时间的组织相变,低合金钢在焊接条件下的CCT 曲线比热处理条件下的曲线向做移动,也就是在同样冷却速度下焊接时比热处理的淬硬倾向小,例如冷却速度为36s C / 时可得到100%的马氏体,在焊接时由于家人速度快,高温停留时间短使合金元素不能充分溶解在奥氏体内,奥氏体均质化过成差,使相变组织差。
Q620 钢药芯焊丝气体保护焊接头组织与性能的研究随着现代化生产的迅速发展,焊接技术在工业生产中起着越来越重要的作用。
钢药芯焊丝气体保护焊接是目前工业广泛采用的焊接方式之一。
Q620 钢药芯焊丝是一种高强度、低合金、低温韧性焊接材料,广泛应用于航空航天、汽车、钢结构、机械制造等领域。
本文主要研究Q620钢药芯焊丝气体保护焊接头的组织与性能。
一、Q620 钢药芯焊丝介绍Q620 钢是一种低合金高强度结构钢,常用于重要的强度部件。
其化学成分包括碳(C)、硅(Si)、锰(Mn)、磷(P)、硫(S)、铬(Cr)、镍(Ni)、铜(Cu)、钼(Mo)等成分。
与其他钢材相比,Q620 钢材的低温韧性和耐蚀性较强。
优良的高强度性能和良好的可焊性能使得Q620 钢成为航空航天、汽车、机械制造等重点领域中的重要材料。
Q620 钢药芯焊丝是一种专门用于焊接Q620 钢材的焊接材料。
其主要特点是热变形温度低,热塑性好,焊接接头强度高、韧性好、腐蚀性能好。
在Q620 钢材焊接中具有良好的可靠性和稳定性。
二、Q620 钢药芯焊丝气体保护焊接工艺1.焊接设备焊接设备包括气体保护焊接机、气体管道、焊枪等部分。
气体保护焊接机应根据焊接班次进行选择,选用合适的气体管道和焊枪,保证气体流量稳定、均匀。
2.气体介绍Q620 钢药芯焊丝使用气体保护焊,通常使用的气体是纯氩气、氩气和二氧化碳混合气体。
其中,纯氩气保护焊是最常用的。
3.焊接工艺参数焊接工艺参数包括焊接电压、焊接电流、电极间距、线速度、气体流量等。
这些参数的设定直接影响到焊接接头的质量。
在Q620 钢药芯焊丝的气体保护焊接工艺中,应严格按照规定的参数进行设置和调整,以保证焊接接头的质量和稳定性。
三、Q620 钢药芯焊丝气体保护焊接头的组织与性能钢材焊接接头的组织和性能是衡量焊接质量的重要指标。
在Q620钢药芯焊丝的气体保护焊接过程中,焊接接头的组织和性能受到以下因素的影响。
1.热影响区(HAZ)在Q620 钢药芯焊丝的气体保护焊接过程中,由于焊接热的作用,会导致焊接热影响区(HAZ)出现。
摘要:对Q345钢焊接性分析并制定Q345钢板(板厚δ=10mm)的对接埋弧焊工艺,依照工艺进行埋弧焊;对Q345埋弧焊接头典型部位截取试样,进行金相显微试样的制备;观察显微组织,测量显微维氏硬度,作显微组织和力学性能分析。
1实验原理:1.1 Q345(16Mn)焊接性分析及焊接方法的选择Q345应用最广用量最大的低合金高强度结构钢,综合性能好,低温冲击韧性,冷冲压性及切削性能均好,屈服强度≥345MPa,抗拉强度≥490Mpa,适用于多种焊接方法,本次实验选择焊接性能良好的埋弧焊。
1.2埋弧焊焊接工艺1.2.1埋弧焊简介埋弧自动焊是指电弧在颗粒状焊剂层下燃烧的一种自动焊方法,是目前广泛使用的一种高效的机械化焊接方法。
广泛用于锅炉、压力容器、石油化工、船舶、桥梁、冶金及机械制造工业中。
1.2.2埋弧焊焊接原理埋弧焊的焊接过程:先送丝,经导电嘴与焊件轻微接触,焊剂堆敷在待焊处,引弧。
随着电弧向前移动,熔池液态金属冷却凝固形成焊缝,液态熔渣冷却而形成渣壳。
焊接时,焊机的启动、引弧、送丝、机头(或焊件)移动等过程全由焊机机械化控制。
1.2.3焊前准备1.坡口的选择与加工由于埋弧焊的使用的电流比较大,熔透深度比较大,因此当焊件厚度小于14mm时可以不开坡口,这样仍能保证焊透和良好的焊缝成形;因为此次实验所选钢板为10mm厚,故不开坡口。
2.焊件的清理焊接前,必须将坡口及焊接部位表面的锈蚀、油污、水分、氧化皮等清楚干净。
方法有手工清除、机械清除等。
3.焊丝的清理和焊剂的烘干焊接前,必须将焊丝表面的油污、铁锈等污物清除干净。
为防止氢侵入焊缝,对焊剂必须严格烘干,而且要求烘干后立即使用。
不同类型的焊剂要求烘干温度不同,这次实验所用焊剂为HJ431,查焊接材料手册知要求250℃、2h烘干。
4.焊件的装配焊件装配时,必须保证间隙均匀,高低平整。
定位焊的位置应在第一道焊缝的背面,长度一般应大于30mm。
此次定位焊选用CO2气体保护焊。
第3章焊接接头的组织和性能★焊接熔池和焊缝焊接熔池的结晶特点、结晶形态,焊缝的相变组织及焊缝组织和性能的控制。
★焊接热影响区焊接热影响区的组织转变特点、组织特性及性能。
★熔合区熔合区的边界,熔合区的形成机理,熔合区的特征焊接熔池:由熔化的局部母材和填加材料所组成的具有一定几何形状的液态区域。
焊缝:熔池凝固后所形成的固态区域。
焊缝组织性能不仅取决于焊缝的相变行为,而且受到焊接熔池结晶行为的直接影响。
一. 焊接熔池的结晶特点(1) 熔池体积小、冷却速度大局部加热,熔池体积小;熔池被很大体积的母材包围,界面导热很好,熔池冷速很快。
碳当量高的钢种焊接时,易产生淬硬组织,甚至产生冷裂纹。
(2) 熔池过热、温度梯度大焊接加热速度快,熔池金属处于过热状态;熔池体积小,温度高,熔池边界的温度梯度很大。
非自发晶核质点显著减少,柱状晶得到显著发展。
(3) 熔池在动态下结晶熔池结晶和母材熔化同时进行,焊接区内各种力交互作用,使正在结晶中的熔池受到激烈的搅拌。
有利于气体的排除、夹杂物的浮出以及焊缝的致密化。
2. 联生结晶和竞争成长(1) 联生结晶焊接熔池结晶一般是从熔池边界开始,即在半熔化的母材晶粒表面上开始并长大。
结晶取向与焊缝边界母材晶粒的取向相同,初始晶粒尺寸等于焊缝边界母材晶粒的尺寸。
结晶取向与焊缝边界母材晶粒的取向相同,初始晶粒尺寸等于焊缝边界母材晶粒的尺寸。
(2) 竞争成长晶粒在不同方向上的成长趋势不同,只有最优结晶取向与温度梯度最大的方向(即散热最快的方向,亦即熔池边界的垂直方向)相一致的晶粒才有可能持续成长,并一直长到熔池中心;反之,只能长到一定尺寸而中止每个晶粒都是在不断的竞争中成长的,只有竞争优势明显的晶粒才能得到不断的成长,而竞争优势较弱的晶粒将在成长的中途夭折。
3. 结晶速度和方向动态变化(1) 结晶速度的表达式设任意晶粒主轴、任意点的结晶等温面法线方向与焊接方向的夹角为a,晶粒成长方向与焊接方向之间的夹角为在dt时间内熔池边界的结晶等温面从t时刻的位臵移到t+dt时刻的位臵。
6061铝合金中温钎焊接头组织与性能6061铝合金是一种非常重要的工程材料,用于制造许多结构部件,其中最常见的就是中温钎焊接头组织与性能。
本文旨在研究6061铝合金中温钎焊接头的组织结构及其性能表现。
首先,我们介绍6061铝合金的化学成分,它由碳、锰、铬、铝、锌、铜、铁、钛和锡等元素组成,具有高强度、高硬度、低成本、耐腐蚀性好等特点,对很多建筑和飞机相关任务有着重要的应用。
在制备6061铝合金中温钎焊接头时,首先进行预处理,即清洗钎焊接头表面,去除表面污垢,然后进行中温钎焊,采用氩弧焊方式,控制焊接参数,包括焊接电流、焊接电压和焊锡时间等,有利于得到良好的焊接质量。
焊接后,我们需要对焊接接头的微观结构进行检查,可以采用扫描电子显微镜(SEM)、能量散射光谱(EDS)、X射线衍射(XRD)研究其微观组织。
SEM观察可以看到焊接接头中熔核、晶粒和金属晶界等;EDS分析可以用于检测元素的分布情况;XRD分析可以较为准确地测定晶体结构和晶粒尺寸。
此外,我们还可以使用拉伸试验、抗拉强度试验、冲击试验、断裂试验、硬度试验等来研究焊接接头的性能表现。
拉伸试验结果表明,6061铝合金中温钎焊接头的抗拉强度较高;冲击试验结果表明,焊接接头对冲击荷载具有较高的抗冲击能力;硬度试验结果表明,6061铝合金中温钎焊接头具有较高的硬度。
综上所述,6061铝合金中温钎焊接头的组织结构主要由晶界、熔核和晶粒组成,元素分布均匀,抗拉强度、抗冲击性和硬度较高。
因此,6061铝合金中温钎焊接头是一种很好的连接材料,具有广泛的应用前景。
本文就6061铝合金中温钎焊接头的组织结构及其性能进行了研究。
它有助于我们更好地理解焊接接头的微观结构,更好地掌握其特性,从而为6061铝合金中温钎焊接头的广泛应用提供参考和指导。
从本文研究可以得出结论:6061铝合金中温钎焊接头具有良好的微观结构特性,抗拉强度优良,抗冲击性和硬度也较高,发挥着重要的作用,可以很好地应用于工程建筑和飞机结构件制造。
焊接接头的力学性能与微观组织关系在现代工业生产中,焊接是一种广泛应用的连接技术。
从建筑结构到航空航天设备,从汽车制造到船舶工程,焊接在各个领域都发挥着至关重要的作用。
而焊接接头的质量直接影响着整个结构的性能和可靠性,其中力学性能和微观组织的关系是焊接领域中一个关键的研究方向。
要理解焊接接头的力学性能与微观组织的关系,首先需要明确什么是力学性能和微观组织。
力学性能主要包括强度、硬度、韧性、延展性等指标,这些性能决定了焊接结构在承受外力时的表现。
而微观组织则是指在显微镜下观察到的金属材料的组织结构,如晶粒大小、相组成、晶界特征等。
焊接过程是一个极其复杂的热循环过程,这会对焊接接头的微观组织产生显著影响。
在焊接时,局部区域会迅速升温到很高的温度,然后又快速冷却。
这种剧烈的温度变化导致了焊接接头不同区域的微观组织存在差异。
比如在焊缝区,由于熔化和凝固的过程,往往会形成柱状晶组织。
柱状晶的生长方向通常与散热方向相反,其晶粒较为粗大。
这种粗大的晶粒结构会使得焊缝区的强度和韧性相对较低。
而在热影响区,根据距离焊缝的远近,又可以分为过热区、正火区和部分相变区。
过热区由于受到高温的影响,晶粒严重长大,导致强度和韧性下降;正火区则由于经历了适当的加热和冷却,晶粒得到细化,力学性能相对较好;部分相变区的组织不均匀,性能也较为复杂。
微观组织的特征直接决定了焊接接头的力学性能。
晶粒越细小,晶界越多,材料的强度和韧性通常就越高。
这是因为晶界能够阻碍位错的运动,从而提高材料的强度。
同时,细小的晶粒也有利于改善韧性,因为裂纹在扩展过程中需要跨越更多的晶界,消耗更多的能量。
相组成也是影响力学性能的重要因素。
例如,在钢中,如果存在较多的马氏体相,通常会使材料的硬度和强度增加,但韧性可能会有所降低。
而铁素体和珠光体的比例不同,也会对力学性能产生影响。
此外,微观组织中的缺陷,如气孔、夹杂物、裂纹等,会严重削弱焊接接头的力学性能。
气孔和夹杂物会成为应力集中的源头,容易引发裂纹的萌生和扩展;而裂纹一旦形成,就会极大地降低接头的承载能力。
第三章焊接接头组织与力学性能分析本章对不同焊接参数的接头试件,分别进行了拉伸、冲击、弯曲、硬度以及金相组织分析试验,通过接头的各项力学性能指标、组织和硬度,来研究不同焊接工艺对低温钢06Cr19Ni10与16MnDR的焊缝组织性能的影响,从中选择最优的焊接工艺。
3.1力学性能按照表2-7和表2-8提供的焊接工艺,焊制不同坡口和不同焊接参数条件下的异种钢接头,制备标准试样并按要求进行了拉伸、冲击及弯曲试验。
3.1.1拉伸试验结果及分析在WE-1000液压式万能试验机上对不同焊接接头分别作拉伸试验,每组焊接参数制备2个试样,共3组。
试验结果见表3-1。
表3-1 焊接接头拉伸试验参数试样编号试样厚度(mm)断裂载荷( kN )抗拉强度(Mpa)断裂部位和特征L1-A 16 175 545 断于焊缝L1-B 16 170 530 断于焊缝L2-A 16 172 540 断于焊缝L2-B 16 176 550 断于焊缝L3-A 16 168.0 525 断于焊缝L3-B 16 175.0 545 断于焊缝根据标准NBT 47014-2011拉伸试验合格指标,试验母材为两种金属材料时,每个试样的抗拉强度应不低于本标准规定的两种母材抗拉强度最低值中的较小值。
从试验结果看,不同焊接工艺下的焊接接头的抗拉强度基本上等同于两侧母材强度,且高于两种母材抗拉强度最低值中的较小值。
焊接的接头均满足关于拉伸试验的评定要求。
对比之下横位焊接中编号2的抗拉强度要略高于其他两组。
其焊接速度较快,虽然钝边略小,但焊接的坡口也较小,使其焊接时熔化的母材较少,因此熔合比相对其他组会较小。
这使其抗拉强度高的原因。
3.1.2 冲击试验结果及分析在JB-300B冲击试验机上对不同焊接接头分别进行冲击试验,每组焊接参数制备9个试样,在两侧热影响区和焊缝区各3个,共3组。
试验结果见表3-3。
表3-3 焊接接头的冲击试验参数试样编号试样尺寸(厚×宽×长)(mm)缺口类型缺口位置试验温度(℃) 冲击吸收功(J)C1-1-15×10×55 V型热影响区(不锈钢侧)-40℃C1-1-2C1-1-3C1-2-15×10×55 V型焊缝-40℃C1-2-2C1-2-3C1-3-15×10×55 V型热影响区(低温钢侧)-40℃C1-3-2 C1-3-3C2-1-15×10×55 V型热影响区(不锈钢侧)-40℃C2-1-2C2-1-3C2-2-15×10×55 V型焊缝-40℃C2-2-2C2-2-3C2-3-15×10×55 V型热影响区(低温钢侧)-40℃C2-3-2 C2-3-3C3-1-15×10×55 V型热影响区(不锈钢侧)-40℃C3-1-2C3-1-3C3-2-15×10×55 V型焊缝-40℃C3-2-2C3-2-3C3-3-15×10×55 V型热影响区(低温钢侧)-40℃C3-3-2C3-3-3根据标准NBT 47014-2011冲击试验合格指标,钢质焊接接头每个区3个标准试样为一组冲击吸收功平均值应符合设计文件或相关技术文件规定,且不低于表3-4中规定值,至多有一个试样的冲击吸收功低于规定值,但不得低于规定值的70%。
6061铝合金中温钎焊接头组织与性能
6061铝合金是铝系合金中应用非常广泛的一种,由于它容易加工、成本低廉、加工精度好及其各种特性优越,使其在航空、汽车、电子等行业有着重要的用途。
6061铝合金的焊接也是它的工艺处理的一部分,中温钎焊接是它的一种焊接方法,常用于中小尺寸的焊接接头。
由于6061铝合金具有较高的硬度和硬化深度,因此对于中温钎焊接接头组织形成情况的影响需要重点考虑。
一般而言,中温钎焊接接头的焊接温度为450~550℃,因此,6061铝合金的中温钎焊接接头的组织构成一般会发生变化。
一般来说,6061铝合金在焊接中温度范围内形成的焊接接头组织,其主要构成者是融化还原和熔渣的析出体质。
熔渣的析出体质主要由溶解态铝、铝镁合金和部分铜等组成。
由于6061铝合金具有较高的温度硬化深度,因而产生了这种焊接接头组织。
此外,6061铝合金焊接接头除了组织结构相关的影响外,其性能也会受到一定程度的影响。
一般而言,中温钎焊接接头易于形成熔穿、熔渣内晶等缺陷,但通过合理的控制工艺可以得到接近原材料的强度,它可以满足6061铝合金的工程实际需要。