第3章 焊接接头的组织和性能
- 格式:ppt
- 大小:1.11 MB
- 文档页数:78
第3章焊接接头组织和性能第3章焊接接头组织和性能焊接过程中焊缝及母材金属发生一系列金属形态的变化,包括焊缝金属的凝固和结晶,母材与热影响区金属在焊接加热和冷却过程中的组织变化,以及与凝固结晶相变有密切关系的各种缺陷的形成,这些过程直接关系到焊后接头的性能,因此,研究接头各区的组织特征和形成机制,对于提高接头性能具有重要的指导意义。
3.1焊接熔池和焊缝3.2焊接热影响区3.3熔合区3.1焊接熔池和焊缝基本概念:焊接熔池:由熔化的局部母材和填加材料所组成的具有一定几何形状的液态区域。
焊缝:焊接熔池凝固后形成的固态区域。
熔池的结晶行为(一次结晶)+焊缝金属的固态相变→焊缝金属的组织和性能。
3.1.13.1.23.1.33.1.4熔池的结晶特点熔池的结晶形态焊缝的固态相变组织焊缝组织和性能的控制3.1.1熔池的结晶特点1、非平衡的动态结晶1)熔池体积小,冷却速度大手工电弧焊V=2-10cm3,Vma某=30cm3υ焊泠=4~100℃/υ铸泠=(3~150)某10-4℃/S约为铸造的104倍由于体积小,冷却速度快,对含碳量高的合金钢易产生淬硬组织,裂纹,熔池中心与边缘有较大的温度梯度,焊缝中柱状晶发达。
2)熔池过热、温度梯度大熔池温度1770100℃溶滴2300℃±200℃铸件浇铸温度<1500℃熔池体积小、温度高,边界的温度梯度很大,可比铸造大104倍过热度大(烧损合金元素,自发晶核的质点减少)+大温度梯度→“柱状晶”发达3)熔池在运动中结晶熔池前部金属熔化,后部金属结晶。
焊接熔池所特有的金属结晶过程,与铸锭的金属结晶过程不同之处有下述各点。
(1)焊接熔池即受焊接热源的加热作用,同时又受到固体金属的冷却作用;(2)焊接熔池的液体金属为加热到不同温度的固体金属所包围。
焊接熔池侧壁的焊件金属加热的程度比熔池后壁焊缝金属的加热程度小。
(3)焊缝金属的平均结晶速度等于熔池的移动速度,也就是等于焊接速度。
第七章 焊接接头组织和性能的控制1.焊接热循环对被焊金属近缝区的组织、性能有什么影响?怎样利用热循环和其他工艺措施改善HAZ 的组织性能?答:(1)在热循环作用下,近缝区的组织分布是不均匀的,融合去和过热去出现了严重的晶粒粗化,是整个接头的薄弱地带,而行能也是不均匀的,主要是淬硬、韧化和脆化,及综合力学性能,抗腐蚀性能,抗疲劳性能等。
(2)焊接热循环对组织的影响主要考虑四个因素:加热速度、加热的最高温度,在相等温度以上的停留时间,冷却速度和冷却时间,研究它是研究焊接质量的主要途径,而在工艺措施上,常可采用长段的多层焊合短道多层焊,尤其是短道多层焊对热影响区的组织有以定的改善作用,适于焊接晶粒易长而易淬硬的钢种。
2. 冷却时间100t t 8385、、t 的各自应用对象,为什么不常用某温度下(如540℃)的冷却速度?答:对于一般碳钢和低合金钢常采用相变温度范围800~500℃冷却时间(85t )对冷裂纹倾向较大的钢种,常采用800~300℃的冷却时间83t ,各冷却时间的选定要根据不同金属材料做存在的问题来决定为了方便研究常用某一温度范围内的冷却时间来讨论热影响组织性能的变化,而某个温度下 比如540℃则为一个时刻即冷却至540℃时瞬时冷却速度 和组织性能。
故不常用某以温度下的冷却速度,对于一般低合金钢来讲,主要研究热影响区溶合线附近冷却过程中540℃时瞬时冷却速度3. 低合金钢焊接时,HAZ 粗晶区奥氏体的均质化程度对冷却时变相有何影响? 答:奥氏体的均质化过程为扩散过程,因此焊接时焊接速度快和相变以上停留时间短都不利于扩散过程的进行,从而均质化过程差而 影响到冷却时间的组织相变,低合金钢在焊接条件下的CCT 曲线比热处理条件下的曲线向做移动,也就是在同样冷却速度下焊接时比热处理的淬硬倾向小,例如冷却速度为36s C / 时可得到100%的马氏体,在焊接时由于家人速度快,高温停留时间短使合金元素不能充分溶解在奥氏体内,奥氏体均质化过成差,使相变组织差。
第3章焊接接头的组织和性能★焊接熔池和焊缝焊接熔池的结晶特点、结晶形态,焊缝的相变组织及焊缝组织和性能的控制。
★焊接热影响区焊接热影响区的组织转变特点、组织特性及性能。
★熔合区熔合区的边界,熔合区的形成机理,熔合区的特征焊接熔池:由熔化的局部母材和填加材料所组成的具有一定几何形状的液态区域。
焊缝:熔池凝固后所形成的固态区域。
焊缝组织性能不仅取决于焊缝的相变行为,而且受到焊接熔池结晶行为的直接影响。
一. 焊接熔池的结晶特点(1) 熔池体积小、冷却速度大局部加热,熔池体积小;熔池被很大体积的母材包围,界面导热很好,熔池冷速很快。
碳当量高的钢种焊接时,易产生淬硬组织,甚至产生冷裂纹。
(2) 熔池过热、温度梯度大焊接加热速度快,熔池金属处于过热状态;熔池体积小,温度高,熔池边界的温度梯度很大。
非自发晶核质点显著减少,柱状晶得到显著发展。
(3) 熔池在动态下结晶熔池结晶和母材熔化同时进行,焊接区内各种力交互作用,使正在结晶中的熔池受到激烈的搅拌。
有利于气体的排除、夹杂物的浮出以及焊缝的致密化。
2. 联生结晶和竞争成长(1) 联生结晶焊接熔池结晶一般是从熔池边界开始,即在半熔化的母材晶粒表面上开始并长大。
结晶取向与焊缝边界母材晶粒的取向相同,初始晶粒尺寸等于焊缝边界母材晶粒的尺寸。
结晶取向与焊缝边界母材晶粒的取向相同,初始晶粒尺寸等于焊缝边界母材晶粒的尺寸。
(2) 竞争成长晶粒在不同方向上的成长趋势不同,只有最优结晶取向与温度梯度最大的方向(即散热最快的方向,亦即熔池边界的垂直方向)相一致的晶粒才有可能持续成长,并一直长到熔池中心;反之,只能长到一定尺寸而中止每个晶粒都是在不断的竞争中成长的,只有竞争优势明显的晶粒才能得到不断的成长,而竞争优势较弱的晶粒将在成长的中途夭折。
3. 结晶速度和方向动态变化(1) 结晶速度的表达式设任意晶粒主轴、任意点的结晶等温面法线方向与焊接方向的夹角为a,晶粒成长方向与焊接方向之间的夹角为在dt时间内熔池边界的结晶等温面从t时刻的位臵移到t+dt时刻的位臵。
电焊接头的力学性能与强度分析电焊接头是一种常见的连接方法,在工业生产和建筑领域得到广泛应用。
它通过电弧将金属材料熔化并连接在一起,形成一个稳固的结构。
然而,电焊接头的力学性能和强度对于确保连接的可靠性和安全性至关重要。
本文将对电焊接头的力学性能和强度进行分析。
1. 电焊接头的构成和作用电焊接头由两个或多个金属工件通过电焊熔化连接而成。
它主要用于连接钢材、铝材等金属材料。
电焊接头的构成包括焊缝、熔合区和热影响区。
焊缝是焊接过程中形成的金属熔化区域,熔合区是焊接过程中热影响下的金属区域,热影响区是焊接过程中受热影响而发生的组织和性能变化的区域。
2. 电焊接头的力学性能电焊接头的力学性能包括强度、韧性和硬度等指标。
强度是指电焊接头在外力作用下能够承受的最大力量。
韧性是指电焊接头在受力过程中能够吸收能量而不发生破坏的能力。
硬度是指电焊接头的抗划伤能力。
这些性能指标直接影响着电焊接头的使用寿命和安全性。
3. 电焊接头的强度分析电焊接头的强度分析是对其承载能力进行评估和计算。
强度分析需要考虑焊接材料的强度、焊缝的形状和尺寸、焊接工艺参数等因素。
焊接材料的强度是指焊缝和母材的抗拉强度、屈服强度和冲击韧性等力学性能。
焊缝的形状和尺寸对于承载能力的影响很大,通常采用焊缝的有效截面面积进行计算。
焊接工艺参数包括焊接电流、焊接速度、焊接时间等,这些参数会影响焊缝的质量和强度。
4. 电焊接头的强度测试为了验证电焊接头的强度,需要进行强度测试。
常见的强度测试方法包括拉伸试验、冲击试验和硬度测试等。
拉伸试验通过施加拉力来测试电焊接头的抗拉强度和屈服强度。
冲击试验通过施加冲击载荷来测试电焊接头的韧性。
硬度测试通过测量焊缝和母材的硬度来评估电焊接头的硬度。
5. 电焊接头的强度提升措施为了提高电焊接头的强度,可以采取一些措施。
首先,选择合适的焊接材料,确保其具有良好的力学性能。
其次,优化焊接工艺参数,使焊接过程中的温度和应力分布均匀,减少焊接缺陷的产生。
第三章焊接接头组织与力学性能分析本章对不同焊接参数的接头试件,分别进行了拉伸、冲击、弯曲、硬度以及金相组织分析试验,通过接头的各项力学性能指标、组织和硬度,来研究不同焊接工艺对低温钢06Cr19Ni10与16MnDR的焊缝组织性能的影响,从中选择最优的焊接工艺。
3.1力学性能按照表2-7和表2-8提供的焊接工艺,焊制不同坡口和不同焊接参数条件下的异种钢接头,制备标准试样并按要求进行了拉伸、冲击及弯曲试验。
3.1.1拉伸试验结果及分析在WE-1000液压式万能试验机上对不同焊接接头分别作拉伸试验,每组焊接参数制备2个试样,共3组。
试验结果见表3-1。
表3-1 焊接接头拉伸试验参数试样编号试样厚度(mm)断裂载荷( kN )抗拉强度(Mpa)断裂部位和特征L1-A 16 175 545 断于焊缝L1-B 16 170 530 断于焊缝L2-A 16 172 540 断于焊缝L2-B 16 176 550 断于焊缝L3-A 16 168.0 525 断于焊缝L3-B 16 175.0 545 断于焊缝根据标准NBT 47014-2011拉伸试验合格指标,试验母材为两种金属材料时,每个试样的抗拉强度应不低于本标准规定的两种母材抗拉强度最低值中的较小值。
从试验结果看,不同焊接工艺下的焊接接头的抗拉强度基本上等同于两侧母材强度,且高于两种母材抗拉强度最低值中的较小值。
焊接的接头均满足关于拉伸试验的评定要求。
对比之下横位焊接中编号2的抗拉强度要略高于其他两组。
其焊接速度较快,虽然钝边略小,但焊接的坡口也较小,使其焊接时熔化的母材较少,因此熔合比相对其他组会较小。
这使其抗拉强度高的原因。
3.1.2 冲击试验结果及分析在JB-300B冲击试验机上对不同焊接接头分别进行冲击试验,每组焊接参数制备9个试样,在两侧热影响区和焊缝区各3个,共3组。
试验结果见表3-3。
表3-3 焊接接头的冲击试验参数试样编号试样尺寸(厚×宽×长)(mm)缺口类型缺口位置试验温度(℃) 冲击吸收功(J)C1-1-15×10×55 V型热影响区(不锈钢侧)-40℃C1-1-2C1-1-3C1-2-15×10×55 V型焊缝-40℃C1-2-2C1-2-3C1-3-15×10×55 V型热影响区(低温钢侧)-40℃C1-3-2 C1-3-3C2-1-15×10×55 V型热影响区(不锈钢侧)-40℃C2-1-2C2-1-3C2-2-15×10×55 V型焊缝-40℃C2-2-2C2-2-3C2-3-15×10×55 V型热影响区(低温钢侧)-40℃C2-3-2 C2-3-3C3-1-15×10×55 V型热影响区(不锈钢侧)-40℃C3-1-2C3-1-3C3-2-15×10×55 V型焊缝-40℃C3-2-2C3-2-3C3-3-15×10×55 V型热影响区(低温钢侧)-40℃C3-3-2C3-3-3根据标准NBT 47014-2011冲击试验合格指标,钢质焊接接头每个区3个标准试样为一组冲击吸收功平均值应符合设计文件或相关技术文件规定,且不低于表3-4中规定值,至多有一个试样的冲击吸收功低于规定值,但不得低于规定值的70%。