热分析动力学及应用
- 格式:ppt
- 大小:754.50 KB
- 文档页数:86
热分析动力学一、 基本方程对于常见的固相反应来说,其反应方程可以表示为)(C )(B )(A g s s +→ (1)其反应速度可以用两种不同形式的方程表示:微分形式 )(d d ααf k t= (2) 和积分形式t k G =)(α (3)式中:α――t 时物质A 已反应的分数;t ――时间;k ――反应速率常数;f (α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。
由于f (α)和G (α)分别为机理函数的微分形式和积分形式,它们之间的关系为:ααααd /)]([d 1)('1)(G G f == (4)k 与反应温度T (绝对温度)之间的关系可用著名的Arrhenius 方程表示:)/exp(RT E A k -= (5)式中:A ――表观指前因子; E ――表观活化能; R ――通用气体常数。
方程(2)~(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式:t T T β0+= (6)即:β/=t d dT式中:T 0――DSC 曲线偏离基线的始点温度(K ); β――加热速率(K ·min -1)。
于是可以分别得到:非均相体系在等温与非等温条件下的两个常用动力学方程式:)E/RT)f(A t d d αexp(/-=α (等温) (7))/exp()(βd d RT E f AT -=αα (非等温) (8)动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E 、A 和f(α)对于反应过程的DSC 曲线如图所示。
在DSC 分析中,α值等于H t /H 0,这里H t 为物质A ′在某时刻的反应热,相当于DSC 曲线下的部分面积,H 0为反应完成后物质A ′的总放热量,相当于DSC 曲线下的总面积。
二、 微分法2.1 Achar 、Brindley 和Sharp 法:对方程)/exp()(βd d RT E f AT -=αα进行变换得方程:)/exp(d d )(βRT E A Tf -=αα (9)对该两边直接取对数有:RTEA T f -=ln d d )(βln αα (10)由式(11)可以看出,方程两边成线性关系。
热分析技术的应用和原理简介热分析技术是一种广泛应用于材料科学、化学工程和环境科学等领域的实验方法。
它通过对材料在不同温度条件下的热行为进行研究,揭示了材料的性质和结构信息,为材料设计、加工和性能评价提供了重要依据。
本文将介绍热分析技术的应用和原理,并重点讨论热重分析和差示扫描量热分析两种常用的热分析方法。
应用热分析技术在许多领域都有广泛的应用,以下是热分析技术的一些典型应用:1.材料性能研究:热分析技术可以用于研究材料的热稳定性、热分解特性以及热变形行为。
通过分析材料在不同温度条件下的质量变化、热吸放能量以及尺寸变化等参数,可以评估材料的热稳定性和热稳定温度范围,为材料的应用提供参考。
2.陶瓷和玻璃制备:热分析技术可以用于研究陶瓷和玻璃材料的烧结行为、相变特性以及热膨胀性能。
通过对材料在升温和降温过程中的质量变化以及热吸放能量进行分析,可以确定陶瓷和玻璃材料的烧结温度范围、烧结速率以及热膨胀系数等关键参数。
3.化学反应动力学研究:热分析技术可以用于研究化学反应的动力学特性。
通过对反应物的热分解过程进行研究,可以确定反应的起始温度、反应速率以及反应的放热或吸热特性。
这些信息对于了解反应机理和优化反应条件具有重要意义。
4.环境污染的监测与控制:热分析技术可以用于监测和分析环境样品中的有机物和无机物。
例如,热重分析可以用于测定大气颗粒物中的有机物和无机物的含量分布和热解特性,从而评估空气中的污染程度并制定相应的治理措施。
原理热分析技术的原理主要基于材料在不同温度条件下的热行为。
根据热量传递的方式不同,热分析技术可分为热重分析和差示扫描量热分析两种常见方法。
热重分析(Thermogravimetric Analysis, TGA)热重分析是一种通过测量材料在升温过程中的质量变化来研究材料热行为的方法。
其原理基于样品在升温过程中发生物理变化或化学反应时,会引起样品质量的变化。
通过测量样品质量变化与温度的关系,可以揭示样品的热分解特性、相变行为以及热稳定性。
火灾学课程热分析动力学(Thermal Analysis Kinetics)定义¾热分析动力学:用热分析技术研究某种物理变化或化学反应(以下统称反应)的动力学热分析技术的定量化方法热分析动力学的目的 理论上:探讨物理变化或化学反应的机理(尤其是非均相、不等温)生产上:提供反应器设计参数应用上:建立过程进度、时间和温度之间的关系,可用于预测材料的使用寿命和产品的保质稳定期,评估含能材料的危险性,从而提供储存条件。
可估计造成环境污染物质的分解情况…发展历史化学动力学源于19世纪末-20世纪初热分析动力学始于20世纪30年代、盛于50年代(评估高分子材料在航空航天应用中的稳定性和使用寿命研究的需要))动力学模式(机理)函数均相反应: f ( c)= ( 1 -c)n非均相反应:根据控制反应速率的“瓶颈”气体扩散相界面反应成核和生长常见固态反应的机理函数(理想化)1. Acceleratory(The shape of a ~T curve) Symbol f(a)g(a)n(α)1-1/n α 1/nPnα lnαE12. Sigmoidm(1−α)[−ln(1−α)]1−1/m[-ln(1-a)]1/m Amα(1−α) ln[α/(1−α)] B1(1/2)(1−α)[−ln(1−α)]−1 [−ln(1−α)]2 B2(1/3)(1−α)[−ln(1−α)]−2[−ln(1−α)]3 B3(1/4)(1−α)[−ln(1−α)]−3 [−ln(1−α)]4 B43. Deceleratory2(1−α)1/21−(1−α)1/2R23(1−α)2/31−(1−α)1/3R31/2α α2D1[−ln(1−α)]−1(1−α)ln(1−α)+α D2D(3/2)(1−α)2/3[1−(1−α)2/3]−1[1−(1−α)1/3]2 3(3/2)[(1−α)−1/3−1]−11−2α/3−(1−α)2/3 D4D(−3/2)(1−α)2/3[(1−α)1/3−1]−1[(1−α)1/3−1]2 5D(3/2)(1−α)4/3[(1−α)−1/3−1]−1 [(1−α)−1/3−1]2 6F* 1−α −1n(1−α) 1(1-α) 21/(1-α) F2(1-α) 3/2(1/1−α) 2 F32(1−α) 3/2(1−α) −1/2 F(3/2)(2/3)(1−α) 5/2(1−α) −3/2 F(5/2)*F1 is the same as A1Sestak-Berggren empirical function(1971)f (α ) = αm (1−α) n2. 热分析动力学方法按动力学方程形式:微商法积分法按加热速率方式:单个扫描速率法(single scanning method)多重扫描速率法(multiple scanning method) (等转化率法,iso-conversional)Kissinger-Akahira-Sunose equationAnal. Chem., 29(1957)1702作多重加热速率β下的测定,选择TA 曲线峰值对应的温度T p由线性方程斜率——E ,然后由截矩——A 注:1. Kissinger(1956): 在最大速率处,适于n 级反应2.Akahira-Sunose(1969): 指定α处亦可3. Ozawa: 不限于n 级反应ppRT E E AR T /)/ln()/ln(2−=β非等温实验:特征点法举例:CaCO3热解动力学分析Friedman equation (modelfree )J. Polym. Sci. Part C, 6(1964)183作多重加热速率β下的测定,选择等α处斜率——E ;截矩——若则:斜率——E ; 截矩——ART E Af dT d /)](ln[)]/(ln[−=ααβnf )1()(αα−=)1ln(ln )](ln[αα−+=n A Af )](ln[αAf温度积分的近似表达式¾Doyle 近似式(J. Appl. Polym. Sci.,6(1962)639 )¾Schlomlich 展开级数(Doyle , Nature, 207(1965)290 )¾经验公式(Zsaco , J. Thermal Anal. 8(1975)593))1()1()3)(2(2211[)1()(−+⋅⋅⋅−+⋅⋅⋅−++++−+=−n x n x x x x x e x p n x )2)(/()(−−≈−x d x e x p x )844/(162+−=x x d xx p 4567.0315.2)(lg −−≈)6020(≤≤x2u u 2222(1)(1)u E RT e ART RT e u u EE β−−−=−2[1]}RT E E RT −−ADN的不等温热分解反应动力学参数模式 E / kJ mol-1lnA/ min-1γP4 24.5 3.9 0.9783 P3 35.1 6.9 0.9813 P2 56.2 12.7 0.9837 P2/3 182.9 46.2 0.9862 D1 246.2 62.8 0.9865 F1 139.4 35.70.9928 A4 29.5 5.3 0.9903 A3 41.7 9.0 0.9913 A2 66.1 15.9 0.9921 D3 269.1 67.4 0.9928 R3 131.0 32.0 0.9924 R2 127.6 31.3 0.9910Flynn-Wall-Ozawa equation (model free )Bull. Chem. Soc. Jpn.,38(1965)1881取不同β下曲线的等α处之温度T作lg β~1/T 图,由斜率——E注:Ozawa (1965): 在最大转化速率处Flynn-Wall (1966): 指定α处亦可RT E Rg AE /4567.0315.2)(lg lg −−=αβ参考书籍胡荣祖等. 《热分析动力学》(第二版) . 北京科学出版社, 2008.。