热分析动力学
- 格式:ppt
- 大小:3.78 MB
- 文档页数:85
热分析动力学一、 基本方程对于常见的固相反应来说,其反应方程可以表示为)(C )(B )(A g s s +→ (1)其反应速度可以用两种不同形式的方程表示:微分形式 )(d d ααf k t= (2) 和积分形式t k G =)(α (3)式中:α――t 时物质A 已反应的分数;t ――时间;k ――反应速率常数;f (α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。
由于f (α)和G (α)分别为机理函数的微分形式和积分形式,它们之间的关系为:ααααd /)]([d 1)('1)(G G f == (4)k 与反应温度T (绝对温度)之间的关系可用著名的Arrhenius 方程表示:)/exp(RT E A k -= (5)式中:A ――表观指前因子; E ――表观活化能; R ――通用气体常数。
方程(2)~(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式:t T T β0+= (6)即:β/=t d dT式中:T 0――DSC 曲线偏离基线的始点温度(K ); β――加热速率(K ·min -1)。
于是可以分别得到:非均相体系在等温与非等温条件下的两个常用动力学方程式:)E/RT)f(A t d d αexp(/-=α (等温) (7))/exp()(βd d RT E f AT -=αα (非等温) (8)动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E 、A 和f(α)对于反应过程的DSC 曲线如图所示。
在DSC 分析中,α值等于H t /H 0,这里H t 为物质A ′在某时刻的反应热,相当于DSC 曲线下的部分面积,H 0为反应完成后物质A ′的总放热量,相当于DSC 曲线下的总面积。
二、 微分法2.1 Achar 、Brindley 和Sharp 法:对方程)/exp()(βd d RT E f AT -=αα进行变换得方程:)/exp(d d )(βRT E A Tf -=αα (9)对该两边直接取对数有:RTEA T f -=ln d d )(βln αα (10)由式(11)可以看出,方程两边成线性关系。
热分析动力学实验报告1 实验简介该实验的样品为六硝基芪,分子式为[C6H2(NO2)3CH]2,是—种低感度单体猛炸药,代号为HNS。
升温速率分别为2 K/min,5 K/min,10 K/min,15 K/min 和20 K/min。
2 实验数据处理根据实验采集并处理后的数据可以得到HNS在5个不同升温速率下热分解的TG和DSC图谱。
如图1、图2所示:图1 HNS热分解的TG图谱图2 HNS热分解的DSC图谱根据图1的TG 图谱,可得到5个升温速率下HNS 的相对失重量,起始温度和终止温度,具体如表1所示:表1 HNS 的TG 图谱解析表升温速率β 相对失重量/%起始温度/K 终止温度/K2 K/min 70.56 553.15 698.155 K/min 69.69 10 K/min 68.05 15 K/min 68.15 20 K/min 69.34根据图2中的DSC 图谱,可得到5个不同升温速率下HNS 热分解的峰值温度T p ,如表2所示:表2 峰值温度T p升温速率β 峰值温度T p /K2 K/min 598.15 5 K/min 608.15 10 K/min 620.65 15 K/min 630.65 20 K/min635.65根据实验采集并处理后的数据,可以得到HNS 分别在5个升温速率的条件下转化率随温度变化而变化的曲线,如图3所示:图3 HNS 转化率曲线根据图3的转化率曲线可以得到在不同升温速率下,转化率为10%,20%,30%,40%,50%,60%,70%,80%和90%对应的温度,如表3-表7所示:表3 升温速率为2 K/min转化率/% 10 20 30 40 50 60 70 80 90 温度/K579585589591593595598602626表4 升温速率为5 K/min转化率/% 10 20 30 40 50 60 70 80 90 温度/K586592596600603606609616641表5 升温速率为10 K/min转化率/% 10 20 30 40 50 60 70 80 90 温度/K592599604608612615619625650表6 升温速率为15 K/min转化率/% 10 20 30 40 50 60 70 80 90 温度/K596604610615619623626631650表7 升温速率为20 K/min转化率/% 10 20 30 40 50 60 70 80 90 温度/K6026096156206246286326376553 活化能计算3.1 Ozawa 法已知Ozawa 法的方程为lg lg(/()) 2.3050.4567/AE RG E RT βα=--将lg β与1/T 作图,然后经过线性拟合可得该拟合直线的斜率,如图4所示,得到的斜率值即为-0.4567E/R 的值。
热分析动力学一、 基本方程对于常见的固相反应来说,其反应方程可以表示为)(C )(B )(A g s s +→ (1)其反应速度可以用两种不同形式的方程表示:微分形式 )(d d ααf k t= (2) 和积分形式t k G =)(α (3)式中:α――t 时物质A 已反应的分数;t ――时间;k ――反应速率常数;f (α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。
由于f (α)和G (α)分别为机理函数的微分形式和积分形式,它们之间的关系为:ααααd /)]([d 1)('1)(G G f == (4)k 与反应温度T (绝对温度)之间的关系可用著名的Arrhenius 方程表示:)/exp(RT E A k -= (5)式中:A ――表观指前因子; E ――表观活化能; R ――通用气体常数。
方程(2)~(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式:t T T β0+= (6)即:β/=t d dT式中:T 0――DSC 曲线偏离基线的始点温度(K ); β――加热速率(K ·min -1)。
于是可以分别得到:非均相体系在等温与非等温条件下的两个常用动力学方程式:)E/RT)f(A t d d αexp(/-=α (等温) (7))/exp()(βd d RT E f AT -=αα (非等温) (8)动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E 、A 和f(α)对于反应过程的DSC 曲线如图所示。
在DSC 分析中,α值等于H t /H 0,这里H t 为物质A ′在某时刻的反应热,相当于DSC 曲线下的部分面积,H 0为反应完成后物质A ′的总放热量,相当于DSC 曲线下的总面积。
二、 微分法2.1 Achar 、Brindley 和Sharp 法:对方程)/exp()(βd d RT E f AT -=αα进行变换得方程:)/exp(d d )(βRT E A Tf -=αα (9)对该两边直接取对数有:RTEA T f -=ln d d )(βln αα (10)由式(11)可以看出,方程两边成线性关系。
热分析动力学汇总热分析动力学是指研究物质在升温或降温过程中的热物性变化规律及其与化学反应动力学之间的关系。
它通过测量热量或温度随时间的变化,结合热学或动力学理论,从而揭示了化学反应的机理和动力学参数。
本文将对热分析动力学的概念、基本原理、应用领域及研究方法等方面进行详细阐述。
一、热分析动力学的概念和基本原理热分析动力学的实验方法主要有热量计法、差示扫描量热法(DSC)和热重法(TG)。
其中,热量计法通过测量材料的热量变化,得到热分解反应的热效应曲线,从而确定反应的速率等动力学参数。
差示扫描量热法是比较常用的实验方法,它通过比较样品和参比样品的热量变化,得到样品的热效应曲线,从而确定热分解反应的动力学参数。
热重法是通过测量材料在升温或降温时的质量变化,得到热分解反应的质量曲线,从而探索反应的动力学参数。
二、热分析动力学的应用领域热分析动力学在材料科学、化学工程、药学和环境科学等领域都有重要应用。
在材料科学中,热分析动力学可以用于研究材料的热性质、热稳定性和热分解反应等方面,从而指导材料的合成和加工。
在化学工程中,热分析动力学可以用于优化工艺参数、预测反应过程和评估化学工艺的安全性。
在药学中,热分析动力学可以用于研究药物的热性质和稳定性,从而指导药物的贮存和运输。
在环境科学中,热分析动力学可以用于研究污染物在环境中的分解和转化过程,从而指导环境监测和治理。
三、热分析动力学的研究方法热分析动力学的研究方法包括实验方法和理论方法。
实验方法主要是通过实验测定材料的热效应曲线或质量曲线,从而确定反应的动力学参数。
理论方法主要是通过热学和动力学理论进行模拟和计算,以预测热效应曲线或质量曲线,从而确定反应的动力学参数。
在实验方法方面,热分析动力学主要使用差示扫描量热法和热重法。
差示扫描量热法通过比较样品和参比样品的热量变化,得到样品的热效应曲线,从而确定反应的速率等动力学参数。
热重法通过测量材料在升温或降温时的质量变化,得到热分解反应的质量曲线,从而探索反应的动力学参数。