3_热分析动力学(II)
- 格式:pdf
- 大小:475.72 KB
- 文档页数:38
热分析动力学一、 基本方程对于常见的固相反应来说,其反应方程可以表示为)(C )(B )(A g s s +→ (1)其反应速度可以用两种不同形式的方程表示:微分形式 )(d d ααf k t= (2) 和积分形式t k G =)(α (3)式中:α――t 时物质A 已反应的分数;t ――时间;k ――反应速率常数;f (α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。
由于f (α)和G (α)分别为机理函数的微分形式和积分形式,它们之间的关系为:ααααd /)]([d 1)('1)(G G f == (4)k 与反应温度T (绝对温度)之间的关系可用著名的Arrhenius 方程表示:)/exp(RT E A k -= (5)式中:A ――表观指前因子; E ――表观活化能; R ――通用气体常数。
方程(2)~(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式:t T T β0+= (6)即:β/=t d dT式中:T 0――DSC 曲线偏离基线的始点温度(K ); β――加热速率(K ·min -1)。
于是可以分别得到:非均相体系在等温与非等温条件下的两个常用动力学方程式:)E/RT)f(A t d d αexp(/-=α (等温) (7))/exp()(βd d RT E f AT -=αα (非等温) (8)动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E 、A 和f(α)对于反应过程的DSC 曲线如图所示。
在DSC 分析中,α值等于H t /H 0,这里H t 为物质A ′在某时刻的反应热,相当于DSC 曲线下的部分面积,H 0为反应完成后物质A ′的总放热量,相当于DSC 曲线下的总面积。
二、 微分法2.1 Achar 、Brindley 和Sharp 法:对方程)/exp()(βd d RT E f AT -=αα进行变换得方程:)/exp(d d )(βRT E A Tf -=αα (9)对该两边直接取对数有:RTEA T f -=ln d d )(βln αα (10)由式(11)可以看出,方程两边成线性关系。
热分析动力学一、 基本方程对于常见的固相反应来说,其反应方程可以表示为)(C )(B )(A g s s +→ (1)其反应速度可以用两种不同形式的方程表示:微分形式 )(d d ααf k t= (2) 和积分形式t k G =)(α (3)式中:α――t 时物质A 已反应的分数;t ――时间;k ――反应速率常数;f (α)—反应机理函数的微分形式; G(α)――反应机理函数的积分形式。
由于f (α)和G (α)分别为机理函数的微分形式和积分形式,它们之间的关系为:ααααd /)]([d 1)('1)(G G f == (4)k 与反应温度T (绝对温度)之间的关系可用著名的Arrhenius 方程表示:)/exp(RT E A k -= (5)式中:A ――表观指前因子; E ――表观活化能; R ――通用气体常数。
方程(2)~(5)是在等温条件下出来的,将这些方程应用于非等温条件时,有如下关系式:t T T β0+= (6)即:β/=t d dT式中:T 0――DSC 曲线偏离基线的始点温度(K ); β――加热速率(K ·min -1)。
于是可以分别得到:非均相体系在等温与非等温条件下的两个常用动力学方程式:)E/RT)f(A t d d αexp(/-=α (等温) (7))/exp()(βd d RT E f AT -=αα (非等温) (8)动力学研究的目的就在于求解出能描述某反应的上述方程中的“动力学三因子” E 、A 和f(α)对于反应过程的DSC 曲线如图所示。
在DSC 分析中,α值等于H t /H 0,这里H t 为物质A ′在某时刻的反应热,相当于DSC 曲线下的部分面积,H 0为反应完成后物质A ′的总放热量,相当于DSC 曲线下的总面积。
二、 微分法2.1 Achar 、Brindley 和Sharp 法:对方程)/exp()(βd d RT E f AT -=αα进行变换得方程:)/exp(d d )(βRT E A Tf -=αα (9)对该两边直接取对数有:RTEA T f -=ln d d )(βln αα (10)由式(11)可以看出,方程两边成线性关系。