张量分析课件-1.6 张量的基本概念
- 格式:pdf
- 大小:296.94 KB
- 文档页数:6
简单的说:张量概念是矢量概念和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是二阶张量,而三阶张量则好比立体矩阵,更高阶的张量用图形无法表达。
向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。
而一个线性空间有一个伴随的对偶空间。
张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。
我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。
张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。
在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。
而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。
要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。
进而发展了张量分析。
现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。
比如泛函分析、纤维从理论等。
代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。
其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。
而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。
线性代数的精髓概念根本涉及不到。
这也就造成了很多同学理解现代数学中很多概念的困难。
现代数学的一个非常重要的方法论就是公理化的方法。
这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。
公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。
武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。
应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。
张量的基本概念
嘿,咱来说说“张量”是啥玩意儿哈。
有一回我看一本很复杂的物理书,里面提到了张量。
我当时就懵了,这是啥神秘的东西呢?后来我专门去研究了一下。
张量呢,简单来说就是一种比普通数字和向量更复杂的东西。
就像你玩游戏,有普通的道具,还有那种很厉害很复杂的超级道具。
张量就有点像那个超级道具。
比如说,我们平时说的速度、力这些都是向量,只有大小和方向。
但是张量呢,它可以描述更多的信息。
我记得有一次,我看到一个工程师在计算桥梁的受力情况。
他就用到了张量,因为桥梁的受力很复杂,不是简单的一个方向的力就能说清楚的。
所以啊,张量就是一种很厉害的数学和物理工具,可以帮助我们描述更复杂的情况。
下次你看到那些很复杂的科学问题的时候,说不定就有张量在里面发挥作用呢。