弹塑性力学陈明祥版的课后习题答案
- 格式:pptx
- 大小:3.38 MB
- 文档页数:205
弹塑性力学习题答案弹塑性力学习题答案弹塑性力学是力学中的一个重要分支,研究物体在外力作用下的弹性变形和塑性变形。
通过学习弹塑性力学,我们可以更好地理解材料的变形行为以及结构的稳定性。
下面是一些弹塑性力学学习题的答案,希望对大家的学习有所帮助。
1. 什么是弹性变形和塑性变形?弹性变形是指物体在外力作用下发生的可逆变形,当外力撤除后,物体可以恢复到原来的形状。
而塑性变形是指物体在外力作用下发生的不可逆变形,即使外力撤除,物体也无法完全恢复到原来的形状。
2. 什么是弹性模量和塑性模量?弹性模量是衡量物体抵抗弹性变形的能力的物理量,记作E。
它的单位是帕斯卡(Pa)。
弹性模量越大,物体越难发生弹性变形。
塑性模量是衡量物体抵抗塑性变形的能力的物理量,记作G。
它的单位也是帕斯卡(Pa)。
塑性模量越大,物体越难发生塑性变形。
3. 什么是屈服点和屈服强度?屈服点是指物体在外力作用下发生塑性变形的临界点,即当外力超过一定程度时,物体开始发生塑性变形。
屈服强度是指物体在屈服点处所承受的最大外力,也就是物体开始发生塑性变形时的外力大小。
4. 什么是弹性极限和断裂强度?弹性极限是指物体在外力作用下能够恢复到原来形状的最大外力,也就是物体发生弹性变形的临界点。
断裂强度是指物体在外力作用下发生断裂的最大外力,也就是物体完全破坏的外力大小。
5. 什么是杨氏模量和泊松比?杨氏模量是衡量物体在弹性变形时应力和应变之间关系的物理量,记作Y。
它的单位是帕斯卡(Pa)。
杨氏模量越大,物体越难发生弹性变形。
泊松比是衡量物体在受到外力作用时,横向收缩相对于纵向伸长的比例关系的物理量,记作ν。
它是一个无单位的数值,通常在0和0.5之间。
泊松比越大,物体在受到外力作用时横向收缩的程度越大。
这些弹塑性力学学习题的答案只是对相关概念的简单解释,实际的弹塑性力学问题可能更加复杂。
在解决实际问题时,我们需要综合运用弹塑性力学的理论知识,并结合实际情况进行分析和计算。
第四章 习题答案4.3有一块宽为a ,高为b 的矩形薄板,其左边及下边受链杆支承,在右边及上边分别受均布压力1q 和2q 作用,见题图4.1,如不计体力,试求薄板的位移。
题图4-1解:1.设置位移函数为123123()()u x A A x A y v y B B x B y =+++⎫⎬=+++⎭(1)因为边界上没有不等于零的已知位移,所以式00,m m m m mmu u A u v v A v =+=+∑∑中的0u 、0v 都取为零,显然,不论式(1)中各系数取何值,它都满足左边及下边的位移边界条件,但不一定能满足应力边界条件,故只能采用瑞兹法求解。
2.计算形变势能。
为简便起见,只取1A 、1B 两个系数。
111111,u A x Au v B y B v ==== (2) 11,0,,0uuvu A B x yyx∂∂∂∂====∂∂∂∂ ()()2222111111112200222(1)2(1)a b E Eab U A B A B dxdy A B A B v v νν=++=++--⎰⎰ (3) 3.确定系数1A 和1B ,求出位移解答。
因为不计体力()0X Y ==,且注意到1m =,式4-14简化为11UXu ds A ∂=∂⎰ (4)11UYv ds B ∂=∂⎰ (5) 对式(4)右端积分时,在薄板的上下边和左边,不是0X =,就是10u =,故积分值为零。
在右边界上有11,,X q u x a ds dy =-===()111bXu ds q ady q ab =-=-⎰⎰ (6)同理,式(5)右端的积分只需在薄板的上边界进行,()1220aYv ds q bdx q ab =-=-⎰⎰ (7)将式(3)、式(6)、式(7)分别代入式(4)、式(5)可解出1A 和1B :()1112222(1)EabA B q ab v ν+=---()1122222(1)EabB A q ab v ν+=--- 121q q A E ν-=-, 211q q B E ν-=- (8) 122111,q q q q u A x x v B y y E Eνν--==-==- (9)4.分析:把式(8)代入几何和物理方程可求出应力分量,不难验证这些应力分量可以满足平衡微分方程和应力边界条件,即式(8)所示位移为精确解答。
.本教材习题和参考答案及部分习题解答第二章2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。
答案 (1)pi iq qj jkpk δδδδδ=;答案 (2)pqi ijk jk pq qp e e A A A =-;解:(3)()ijp klp ki ljik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。
2.2证明:若ijji a a =,则0ijk jk e a =。
(需证明)2.3设a 、b 和c 是三个矢量,试证明:2[,,]⋅⋅⋅⋅⋅⋅=⋅⋅⋅a a a b a cb a b b bc a b c c a c b c c证:因为123111123222123333i i i i i i i i i i i i i ii i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以123111123222123333123111123222123333det det()i ii i i i i ii i i i i ii ii i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即得 1231112123222123333[,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ⋅⋅⋅⋅⋅⋅=⋅⋅⋅==a a a b a c b a b b b c a b c c a c b c c 。
塑性:弹性:2-16设有任意形状的等厚度薄板,体力可以不计,在全部边界上(包括孔口边界上)受有均匀压力q 试证q y x -==σσ 及0=xy τ能满足平衡微分方程、相容方程和应力边界条件,也能满足位移单值条件,因而就是正确的解答。
证明: 〔1〕将应力分量q y x -==σσ,0=xy τ和0==y x f f 分别代入平衡微分方程、相容方程⎪⎪⎩⎪⎪⎨⎧=+∂∂+∂∂=+∂∂+∂∂00y x xy yy x y yx x x f f τστσ 〔a 〕 0)1())((2222=∂∂+∂∂+-=+∂∂+∂∂)(y f x f yx y x y x μσσ 〔b 〕 显然〔a 〕、〔b 〕是满足的〔2〕对于微小的三角板dy dx A ,,都为正值,斜边上的方向余弦),cos(x n l =,),cos(y n m =,将q y x -==σσ,0=xy τ代入平面问题的应力边界条件的表达式⎪⎩⎪⎨⎧=+=+)()()()(s f l m s f m l y s xy y x s yx x τστσ 〔c 〕 那么有),cos(),cos(x n q x n x -=σ),cos(),cos(y n q y n y -=σ所以q x -=σ,q y -=σ。
对于单连体,上述条件就是确定应力的全部条件。
〔3〕对于多连体,应校核位移单值条件是否满足。
该题为平面应力的情况,首先,将应力分量q y x -==σσ及0=xy τ代入物理方程,得形变分量q E x )1(-=με,q Ey )1(-=με,0=xy γ 〔d 〕 然后,将〔d 〕的变形分量代入几何方程,得q Ex u )1(-=∂∂μ,q E y v )1(-=∂∂μ,0=∂∂+∂∂y u x v 〔e 〕 前而式的积分得到 )()1(1y f qx E u +-=μ,)()1(2x f qy Ev +-=μ 〔f 〕 其中的1f 和2f 分别是y 和x 的待定函数,可以通过几何方程的第三式求出,将式〔f 〕代入〔e 〕的第三式得 dxx df dy y df )()(21=- 等式左边只是y 的函数,而等式右边只是x 的函数。
第七章 习题答案7.3 设123S S S 、、为应力偏量,试证明用应力偏量表示Mises 屈服条件时,其形式为:s σ= 证明:Mises 屈服条件为()()()22221223312s σσσσσσσ-+-+-=()()()()()()2221223312221231223312222123123231222S S S S S S S S S S S S S S S S S S S S S =-+-+-=++---⎡⎤=++-++⎢⎥⎣⎦左式()1232222123032s S S S S S S σ++=∴=++= 左式故有s σ= 7.4 试用应力张量不变量1J 和2J 表示Mises 屈服条件。
解:1123J σσσ=++ ()2122331J σσσσσσ=-++Mises 屈服条件:()()()22221223312s σσσσσσσ-+-+-=()()()()22212312233121221223312212223232s J J σσσσσσσσσσσσσσσσσσσ=++---⎡⎤=++-++⎣⎦=+=左式 故有 22123s J J σ+= 7.5 试用Lode 应力参数σμ表达Mises 屈服条件。
解:由定义:8max ττ======即()()1313312σσσσ=-- Mises 屈服条件为()()()22221223312s σσσσσσσ-+-+-=将上式代入,得:()13sσσσ-= 即:13s σσσ-=7.6 物体中某点的应力状态为21000002000/00300MN m -⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦,该物体在单向拉伸 时2190/s MN m σ=,试用Mises 和Tresca 屈服条件分别判断该点是处于弹性状态还是塑性状态,如主应力方向均作相反的改变(即同值异号),则对被研究点所处状态的判断有无变化?解:(1)Mises 屈服条件判断()()()()()22242122331242610/7.2210/sMN m MN mσσσσσσσ-+-+-=⨯=⨯故该点处于弹性状态 (2)Tresca 屈服条件判断213200/MN m σσ-=故该点处于塑性状态如果各应力均作为变号,则以上各式不变,所作判断没有变化。
第二章 习题解答2-1解:已知 0,0,===-==y x xy y xf f q τσσ1)⎪⎪⎩⎪⎪⎨⎧+∂∂+∂∂+∂∂+∂∂xy y yxx x y yx τστσ23()()⎩⎨⎧++s xy y s yx x l m m l σστστσ 有:lq t x -=代入(*4理、几何方程得:E x u x ==∂∂ε11E y v y ==∂∂ε0==∂∂+∂∂xy yux v γ ()()⇒=+∴0dyy df dx x dg 类似于教材题2-3,可求出 ()()wx v x g wy u y f +=-=00,001;1v wx qy Ev u wy qx Eu ++--=+---=∴υυ从v u ,表达式可见,位移分量是坐标的单值函数,满足位移单值条件。
综合1)~4),。
q xy y x 为问题的正确解答0,=-==τσσ2-2x =σxy τ注意:y x ,代入均满足。
2)验证相容方程:0)(2=+∇y x σσ 亦满足。
3)验证应力边界条件: i) 主要边界:()0,2=±=h y yx yτσ满足ii) 次要边界:()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰-=-=-=222222320)1(0h h lx xy h h l x x h h l x x Pdy ydy dy τσσ (1)、(2)满足,(3)式左=⎰-===⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-223332212*41*618218hh P h I P h h I P dy y h I P 右 结论:所列xy y x τσσ,,满足平衡方程、相容方程;在主要边界上严格满足应力边界条件,次要边界近似满足应力边界条件,又为单连体,故在圣维南原理的前提下为问题的正确解。
2-3、证明:1)由,,yVf xV fy x∂∂-=∂∂-=则平衡微分方程为: ()()⎪⎪⎩⎪⎪⎨⎧=∂τ∂+∂-σ∂=∂τ∂+∂-σ∂⇒⎪⎪⎩⎪⎪⎨⎧=∂∂-∂τ∂+∂σ∂=∂∂-∂τ∂+∂σ∂0x y V 0yx V 0y V x y 0x V y x yx y xyx yx y xy x (*) 类似于题2-10的推证过程,(*)式的通解为:y x x V yV 2xy 22y 22x ∂∂ϕ∂-=τ∂ϕ∂=-σ∂ϕ∂=-σ;;即: yx V xV y2xy 22y 22x ∂∂ϕ∂-=τ+∂ϕ∂=σ+∂ϕ∂=σ;;2) 对于平面应力问题,相容方程为:()()⎪⎪⎭⎫⎝⎛∂∂+∂∂+-=+∇y f x f y x y xυσσ12即:2222 2-4、x, y n l σσ2==2l 应力主向成∴l σn3-3、解: 1由x=0得: 2由 得: Fx Ex Cx Bx Ax y ++++=∴注:公式中已略去ϕ中与应力分量无关的一次项和常数项。
弹塑性力学课程作业1 参考答案一.问答题1. 答:请参见教材第一章。
2. 答:弹塑性力学的研究对象比材料力学的研究对象更为广泛,是几何尺寸和形态都不受任何 限制的物体。
导致这一结果的主要原因是两者研究问题的基本方法的不同。
3. 答:弹塑性力学与材料力学、结构力学是否同属固体力学的范畴,它们各自求解的主要问题都是变形问题,求解主要问题的基本思路也是相同的。
这一基本思路的主线是:(1)静 力平衡的受力分析;(2)几何变形协调条件的分析;(3)受力与变形间的物理关系分析; 4. 答:“假设固体材料是连续介质”是固体力学的一条最基本假设,提出这一基本假设得意义是为利用数学中的单值连续函数描述力学量(应力、应变和位移)提供理论依据。
5. 答:请参见本章教材。
6. 答:略(参见本章教材)7. 答:因为物体内一点某微截面上的正应力分量 σ 和剪应力分量τ 同材料的强度分析 问题直接相关,该点微截面上的全应力则不然。
8. 答:参照坐标系围绕一点截取单元体表明一点的应力状态,对单元体的几何形状并不做 特定的限制。
根据单元体所受力系的平衡的原理研究一点的应力状态。
研究它的目的是: 首先是了解一点的应力状态任意斜截面上的应力,进一步了解该点的主应力、主方向、 最大(最小)剪应力及其作用截面的方位,最终目的是为了分析解决材料的强度问题。
9.答:略(请参见教材和本章重难点剖析。
) 10. 答:略(请参见教材和本章重难点剖析。
)11. 答:略(请参见教材和本章重难点剖析。
) 这样分解的力学意义是更有利于研究材料的塑性变形行为。
12. 答:略(请参见教材和本章重难点剖析。
)纳唯叶 (Navier) 平衡微分方程的力学意义是:只有满足该方程的应力解和体力才是客观上可能存在的。
13. 答:弹塑性力学关于应力分量和体力分量、面力分量的符号规则是不一样的。
它们的区别请参见教材。
14、答:弹塑性力学的应力解在物体内部应满足平衡微分方程和相容方程(关于相容方程详见第3、5、6章),在物体的边界上应满足应力边界条件。
弹塑性理论思考题⒈ 一点的应力状态?答:通过一点P 的各个面上应力状况的集合 ⒉ 一点应变状态? 答:[受力物体内某点处所取无限多方向上的线应变与剪应变(任意两相互垂直方向所夹直角的改变量)的总和,就表示了该点的应变状态。
]代表一点 P 的邻域内线段与线段间夹角的改变⒊ 应力张量?应力张量的不变量?应力球张量?体积应力?平均应力?应力偏张量?偏应力第二不变量J2的物理意义?单向应力状态、纯剪应力状态的应力张量?给出应力分分量,计算第一,第二不变量。
答:应力张量:代表一点应力状态的应力分量,当坐标变化时按一定的规律变化,其变换关系符合张量之定义,因此,表示点的应力状态的9个分量构成一个二阶张量,称为应力张量。
一点的应力状态可以借用矩阵以张量σij 表示:。
其中:xz τ=zxτ,xy τ=yx τ,yz τ=zy τ。
应力张量的不变量:对于一个确定的应力状态,只有一组(三个)主应力数值,即J 1,J 2,J 3是不变量,不随着坐标轴的变换而发生变化。
所以J 1,J 2,J 3分别被称为应力张量的第一、第二、第三不变量。
应力张量可分解为两个分量0-00+00m x m xy xz ij m yxy m yz m zx zy z m σσσττσστσστσττσσ⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,等式右端第一个张量称为应力球张量,第二个张量称为应力偏张量。
应力球张量:应力球张量,表示球应力状态(静水应力状态),只产生体积变形,不产生形状变形,任何切面上的切应力都为零,各方向都是主方向。
应力偏张量:应力偏张量,引起形状变形,不产生体积变形,切应力分量、主切应力、最大正应力及主轴同原σij ,二阶对称张量,同样存在三个不变量J 1' ,J 2' ,J 3' 体积应力:P46平均应力:12311()()33m x y z σσσσσσσ=++=++,m δ为不变量,与坐标无关。
第二章 应力理论和应变理论2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。
解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定)代入材力有关公式得:3030cos 2sin 2221041041cos 602sin 607322226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()2x yx yxy x yxy MPa MPa σσσσσατασστατα+-=+----+=++=--⨯+=----+=⋅+=⋅-=--⨯=--代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +23030()cos 2sin 2221041041cos 602sin 607322226.768 6.77()104sin 2cos 2sin 602cos 6022132 3.598 3.60()22x yx yxy x yxy MPa MPa σσσσσατασστατα+-=++---+=++=--⨯+=----+=-⋅+=-⋅+=⨯+⨯=由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2—6. 悬挂的等直杆在自重W 作用下(如图所示)。
材料比重为γ弹性模量为 E ,横截面面积为A 。
试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。
解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得:c 截面的内力:N z =γ·A ·z ;c 截面上的应力:z z N A zz A Aγσγ⋅⋅===⋅; 所以离下端为z 处的任意一点c 的线应变εz 为:题图1-3zz zE Eσγε==;则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为:()22z z z z z z z z y zz l d l d d zd EEEγγγε=⎰⋅∆=⎰⋅=⎰=⎰=;显然该杆件的总的伸长量为(也即下端面的位移):()2222ll A l lW ll d l EEAEAγγ⋅⋅⋅⋅⋅=⎰∆=== ;(W=γAl )2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-⎡⎤⎢⎥+-⎢⎥⎢⎥--⎣⎦应力单位为kg /cm 2 。
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。