黄克智版张量分析习题解析
- 格式:pptx
- 大小:641.04 KB
- 文档页数:51
张量分析作业1.2题 证明:()()()()()()()()()()()()()()()()()()()()()()()()()C B AD D B A C D C B A U B A D C B A D C A B U B A U A B B A U A B U BA U AB U B A U B A DC wv u v w u w v u U D C B A D C D C B A ⨯∙-⨯∙=⨯⨯⨯=⨯⨯∙-⨯∙=∙-∙=∙+∙-∙+∙-=⨯⨯-=⨯⨯⨯-∙-∙=⨯⨯=⨯⨯⨯⨯-=⨯⨯⨯令同理可证得:利用点积交换律得:得:,利用公式设1.5 求证:0a b ⨯=⇔,a b 线性相关。
证明: a b ⨯=xy z xy zij ka a ab b b =()()()0y z z y z x x z x y y x a b a b i a b a b j a b a b k -+-+-= ∴i j j i a b a b =即i ji ja a kb b == i i a kb = i j k i j k k k k a i a j a k b i b j b k ∴++=++即k =a b ,a b ∴线性相关 同理可证 当,a b 线性相关时,0a b ⨯= ∴0a b ⨯=⇔,a b 线性相关。
1-7解:c mb a =+ ()1,2,3c =()2,,2mb m m m =- (),,a x y z =22021223x y z m x m y z m +-=+=+=-=解得1320234,,,9999x y z m ====-132023999a i j k =++1.8 试求线元d kx 的长度d k s 。
解:d d d d =d d d k ki k k ki i i x g x x x g r g r r δ=⇒==⇒1.10、解:(1)由公式g 1=g1(g 2×g 3)g 2=g 1(g 3×g 1)g 3=g1(g 1×g 2)又g =[g 1 g 2 g 3]=k ×i ·j ,得g 1=j i k jk i k j i ∙⨯⨯+⨯+⨯g 2=j i k kj k i j i ∙⨯⨯+⨯+⨯g 3=ji k jk k i j i ∙⨯⨯+⨯+⨯(2)g rs =323121g g g g g g g g s r ∙+∙+∙=⨯=()()()()()()j i k i j i k j k i k j +∙+++∙+++∙+ =222j k i ++1-10、解:(1)由公式g 1=g1(g 2×g 3)g 2=g 1(g 3×g 1)g 3=g1(g 1×g 2)又g =[g 1 g 2 g 3]=k ×i ·j ,得g 1=j i k jk i k j i ∙⨯⨯+⨯+⨯g 2=j i k kj k i j i ∙⨯⨯+⨯+⨯g 3=ji k jk k i j i ∙⨯⨯+⨯+⨯(2)g rs =323121g g g g g g g g s r ∙+∙+∙=⨯=()()()()()()j i k i j i k j k i k j +∙+++∙+++∙+ =222j k i ++1.17求:题1.13所示圆柱坐标和球坐标i x ,与笛卡尔坐标j x '的转换系数'i j β与'j i β。