【步步高 学案导学设计】2014-2015学年高中人教B版数学必修二课时作业:模块综合检测(A)]
- 格式:doc
- 大小:291.00 KB
- 文档页数:7
2.2.2 椭圆的几何性质课时目标 1.掌握椭圆的范围、对称性、顶点、离心率等几何性质.2.明确标准方程中a ,b 以及c ,e 的几何意义,a 、b 、c 、e 之间的相互关系.3.能利用椭圆的几何性质解决椭圆的简单问题.1.椭圆的简单几何性质焦点的 位置焦点在x 轴上 焦点在y 轴上图形标准 方程范围顶点轴长 短轴长=____,长轴长=____ 焦点 焦距对称性 对称轴是________,对称中心是________离心率2.直线与椭圆直线y =kx +b 与椭圆x 2a 2+y 2b2=1 (a >b >0)的位置关系:直线与椭圆相切⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1有______组实数解,即Δ______0.直线与椭圆相交⇔⎩⎪⎨⎪⎧ y =kx +b x 2a 2+y 2b 2=1有______组实数解,即Δ______0.直线与椭圆相离⇔⎩⎪⎨⎪⎧y =kx +b x 2a 2+y 2b2=1__________实数解,即Δ______0.一、选择题1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( )A .5,3,45B .10,6,45C .5,3,35D .10,6,352.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( ) A.x 236+y 216=1 B.x 216+y 236=1 C.x 26+y 24=1 D.y 26+x 24=1 3.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为12,则m 等于( )A. 3B.32C.83D.234.如图所示,A 、B 、C 分别为椭圆x 2a 2+y2b 2=1 (a >b >0)的顶点与焦点,若∠ABC =90°,则该椭圆的离心率为( )A.-1+52 B .1-22C.2-1D.225.若直线mx +ny =4与圆O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为( )A .至多一个B .2C .1D .06.已知F 1、F 2是椭圆的两个焦点.满足1MF ·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫0,22 D.⎣⎡⎭⎫22,1二、填空题7.已知椭圆的中心在原点,焦点在x 轴上,离心率为55,且过点P (-5,4),则椭圆的标准方程为___________________.8.直线x +2y -2=0经过椭圆x 2a 2+y 2b2=1 (a >b >0)的一个焦点和一个顶点,则该椭圆的离心率等于______________.9.已知F1、F2是椭圆C :x 2a 2+y 2b2=1 (a >b >0)的两个焦点,P 为椭圆C 上一点,且1PF ⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 三、解答题10.设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点的距离为4(2-1),求此椭圆方程及它的离心率、焦点坐标、顶点坐标. 11.如图,已知P 是椭圆x 2a 2+y 2b2=1 (a >b >0)上且位于第一象限的一点,F 是椭圆的右焦点,O 是椭圆中word 格式-可编辑-感谢下载支持心,B 是椭圆的上顶点,H 是直线x =-a 2c(c 是椭圆的半焦距)与x 轴的交点,若PF ⊥OF ,HB ∥OP ,试求椭圆的离心率e .能力提升12.如图,在平面直角坐标系xOy 中,A 1、A 2、B 1、B 2为椭圆x 2a 2+y 2b2=1(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为________. 13.已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为F 1(-3,0),且右顶点为D (2,0).设点A 的坐标是⎝⎛⎭⎫1,12. (1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段P A 的中点M 的轨迹方程.1.椭圆的范围实质就是椭圆上点的横坐标和纵坐标的取值范围,在求解一些存在性和判断性问题中有着重要的应用.2.椭圆既是一个轴对称图形,又是一个中心对称图形.椭圆的对称性在解决直线与椭圆的位置关系以及一些有关面积的计算问题时,往往能起到化繁为简的作用.3.椭圆的离心率是反映椭圆的扁平程度的一个量,通过解方程或不等式可以求得离心率的值或范围. 4.在与椭圆有关的求轨迹方程的问题中要注意挖掘几何中的等量关系.2.2.2 椭圆的几何性质知识梳理 1.焦点的 位置焦点在x 轴上焦点在y 轴上图形标准 方程 x 2a 2+y 2b 2=1 y 2a 2+x 2b 2=1 范围 -a ≤x ≤a ,-b ≤y ≤b -b ≤x ≤b ,-a ≤y ≤a顶点 (±a,0),(0,±b) (±b,0),(0,±a)轴长 短轴长=2b ,长轴长=2a 焦点 (±c,0) (0,±c)焦距 2c =2a 2-b 2对称性 对称轴是坐标轴,对称中心是原点离心率e =ca,0<e<1 2.一 作业设计1.B [先将椭圆方程化为标准形式:x 29+y 225=1,其中b =3,a =5,c =4.] 2.A 3.B4.A [由(a +c)2=a 2+2b 2+c 2, ∵b 2=a 2-c 2,∴c 2+ac -a 2=0,∵e =c a ,∴e 2+e -1=0,∴e =-1+52.]5.B [∵4m 2+n 2>2,∴m 2+n 2<4.∴点P(m ,n)在椭圆x 29+y 24=1的内部,∴过点P(m ,n)的直线与椭圆x 29+y 24=1有两个交点.]6. [∵MF 1→·MF 2→=0,∴M 点轨迹方程为x 2+y 2=c 2,其中F 1F 2为直径, 由题意知椭圆上的点在圆x 2+y 2=c 2外部, 设点P 为椭圆上任意一点,则|OP|>c 恒成立, 由椭圆性质知|OP|≥b ,其中b 为椭圆短半轴长, ∴b>c ,∴c 2<b 2=a 2-c 2,∴a 2>2c 2,∴⎝⎛⎭⎫c a 2<12,∴e =c a <22. 又∵0<e<1,∴0<e<22.]7.x 245+y236=1 解析 设椭圆的方程为x 2a 2+y 2b 2=1 (a>b>0),将点(-5,4)代入得25a 2+16b2=1,又离心率e =c a =55,即e 2=c 2a 2=a 2-b 2a 2=15,解之得a 2=45,b 2=36,故椭圆的方程为x 245+y 236=1.8.255解析 由题意知椭圆的焦点在x 轴上,又直线x +2y -2=0与x 轴、y 轴的交点分别为(2,0)、(0,1),它们分别是椭圆的焦点与顶点,所以b =1,c =2,从而a =5,e =c a =255.9.3解析 由题意,得⎩⎪⎨⎪⎧12|PF 1||PF 2|=9, ①|PF 1|2+|PF 2|2=(2c )2, ②|PF 1|+|PF 2|=2a , ③解得a 2-c 2=9,即b 2=9,所以b =3. 10.解 设所求的椭圆方程为x 2a 2+y 2b2=1或y 2a 2+x2b2=1(a>b>0),则⎩⎪⎨⎪⎧b =c ,a -c =4(2-1),a 2=b 2+c 2,解得⎩⎪⎨⎪⎧a =42,b =4,c =4.所以所求的椭圆方程为x 232+y 216=1,或y 232+x 216=1.离心率e =c a =22,当焦点在x 轴上时,焦点为(-4,0),(4,0), 顶点(-42,0),(42,0),(0,-4),(0,4), 当焦点在y 轴上时,焦点为(0,-4),(0,4), 顶点(-4,0),(4,0),(0,-42),(0,42).11.解 依题意知H ⎝⎛⎭⎫-a 2c ,0,F(c,0),B(0,b). 设P(x P ,y P ),且x P =c ,代入到椭圆的方程, 得y P =b 2a.∴P ⎝⎛⎭⎫c ,b 2a .word 格式-可编辑-感谢下载支持∵HB ∥OP ,∴k HB =k OP ,即b -00+a 2c =b 2ac .∴ab =c 2.∴e =c a =bc ,∴e 2=a 2-c 2c 2=e -2-1.∴e 4+e 2-1=0.∵0<e<1,∴e =5-12. 12.27-5解析 ∵A 1(-a,0),B 1(0,-b),B 2(0,b),F(c,0),∴直线A 1B 2的方程为-bx +ay =ab ,① 直线B 1F 的方程为bx -cy =bc.②由①②得T(2ac a -c ,b (a +c )a -c ),∴M(ac a -c ,b (a +c )2(a -c )).又∵M 在椭圆x 2a 2+y 2b 2=1上,∴a 2c 2a 2(a -c )2+b 2(a +c )24(a -c )2b 2=1, 即3a 2-10ac -c 2=0,∴e 2+10e -3=0.∵0<e<1,∴e =27-5. 13.解 (1)∵a =2,c =3,∴b =a 2-c 2=1.∴椭圆的标准方程为x 24+y 2=1.(2)设P(x 0,y 0),M(x ,y),由中点坐标公式,得⎩⎨⎧x =x 0+12,y =y 0+122,∴⎩⎪⎨⎪⎧x 0=2x -1,y 0=2y -12.又∵x 204+y 20=1,∴(2x -1)24+⎝⎛⎭⎫2y -122=1 即为中点M 的轨迹方程.。
1.3.2命题的四种形式课时目标、否命题与逆否命题,.1.命题p⇒q是由条件p及结论q组成的,对q进行“换位”和“换质”后,可构成四种不同形式的命题.(1)原命题:p⇒q;(2)条件和结论“换位”得:q⇒p,称为原命题的__________;(3)条件和结论“换质”(分别否定)得:(綈p)⇒(綈q),称为原命题的__________;(4)条件和结论“换位”又“换质”得:(綈q)⇒(綈p),称为原命题的______________.2.四种命题间的关系3.四种命题的真假判断(1)原命题为真,它的逆命题可以为______,也可以为______.(2)原命题为真,它的否命题可以为______,也可以为______.(3)原命题为真,它的逆否命题____________.(4)互为逆否的两个命题是________命题,它们同真同假,同一个命题的逆命题和__________是一对互为逆否的命题,所以它们______________.一、选择题1.命题“若A∩B=A,则A⊆B”的逆否命题是()A.若A∪B≠A,则A⊇BB.若A∩B≠A,则A⊆BC.若A⊆B,则A∩B≠AD.若A⊇B,则A∩B≠A2.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为() A.1B.2C.3D.43.命题:“若a2+b2=0 (a,b∈R),则a=b=0”的逆否命题是()A.若a≠b≠0 (a,b∈R),则a2+b2≠0B.若a=b≠0 (a,b∈R),则a2+b2≠0C.若a≠0,且b≠0 (a,b∈R),则a2+b2≠0D.若a≠0,或b≠0 (a,b∈R),则a2+b2≠04.有下列四个命题:①“若xy=1,则x、y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;④若“A∪B=B,则A⊇B”的逆否命题.其中的真命题是()A.①②B.②③C.①③D.③④5.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是()A.4 B.3 C.2 D.06.命题“若函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数,则log a 2<0”的逆否命题是( )A .若log a 2≥0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内不是减函数B .若log a 2<0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内不是减函数C .若log a 2≥0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数D .若log a 2<0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数题 号 1 2 3 4 5 6答 案二、填空题7.命题“若x >y ,则x 3>y 3-1”的否命题是________________________.8.“已知a ∈U (U 为全集),若a ∉∁U A ,则a ∈A ”的逆命题是______________________________________,它是______命题(填“真”“假”).9.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题.其中是假命题的是________.(填序号)三、解答题10.已知命题:若m >2,则方程x 2+2x +3m =0无实根,写出该命题的逆命题、否命题和逆否命题,并判断真假.11.已知奇函数f (x )是定义域为R 的增函数,a ,b ∈R ,若f (a )+f (b )≥0,求证:a +b ≥0.能力提升12.命题“若f (x )是奇函数,则f (-x )是奇函数”的否命题是( )A .若f (x )是偶函数,则f (-x )是偶函数B .若f (x )不是奇函数,则f (-x )不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数13.命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.1.对条件、结论不明显的命题,可以先将命题改写成“若p则q”的形式后再进行转换.2.分清命题的条件和结论,然后进行互换和否定,即可得到原命题的逆命题、否命题和逆否命题.3.互为逆否的命题真假性相同,可以利用这个性质判定一个命题的真假.1.3.2命题的四种形式知识梳理1.(2)逆命题(3)否命题(4)逆否命题3.(1)真假(2)真假(3)一定为真(4)等价否命题同真同假作业设计1.C[先明确命题的条件和结论,然后对命题进行转换.]2.B[由a>-3⇒a>-6,但由a>-6 a>-3,故原命题及原命题的逆否命题为真命题,故选B.]3.D[a=b=0的否定为a,b至少有一个不为0.]4.C5.C[原命题和它的逆否命题为真命题.]6.A[由互为逆否命题的关系可知,原命题的逆否命题为:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.]7.若x≤y,则x3≤y3-18.已知a∈U(U为全集),若a∈A,则a∉∁U A真解析“已知a∈U(U为全集)”是大前提,条件是“a∉∁U A”,结论是“a∈A”,所以原命题的逆命题为“已知a∈U(U为全集),若a∈A,则a∉∁U A”.它为真命题.9.①②10.解逆命题:若方程x2+2x+3m=0无实根,则m>2,假命题.否命题:若m≤2,则方程x2+2x+3m=0有实根,假命题.逆否命题:若方程x2+2x+3m=0有实根,则m≤2,真命题.11.证明假设a+b<0,即a<-b,∵f(x)在R上是增函数,∴f(a)<f(-b).又f(x)为奇函数,∴f(-b)=-f(b),∴f(a)<-f(b),即f(a)+f(b)<0.即原命题的逆否命题为真,故原命题为真.∴a+b≥0.12.B[命题“若p,则q”的否命题为“若綈p,则綈q”,而“是”的否定是“不是”,故选B.] 13.解逆命题:已知a、b为实数,若a2-4b≥0,则关于x的不等式x2+ax+b≤0有非空解集.否命题:已知a、b为实数,若关于x的不等式x2+ax+b≤0没有非空解集,则a2-4b<0.逆否命题:已知a、b为实数,若a2-4b<0,则关于x的不等式x2+ax+b≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.。
§3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程 课时目标 1.理解直线的方向向量,了解直线的向量方程.2.会用向量方法证明线线、线面、面面的平行.3.会用向量运算证线线垂直,会求两直线所成的角.1.用向量表示直线或点在直线上的位置(1)在直线l 上给定一个定点A 和它的一个方向向量a ,对于直线l 上的任意一点P ,则有AP →=________或OP →=____________或OP →=________________(AB →=a ),上面三个向量等式都叫做空间直线的________________.向量a 称为该直线的方向向量.(2)线段AB 的中点M 的向量表达式OM →=________________.2.用向量方法证明直线与直线平行、直线与平面平行、平面与平面平行(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则由向量共线的条件,得l 1∥l 2或l 1与l 2重合⇔______________.(2)已知两个不共线向量v 1,v 2与平面α共面,一条直线l 的一个方向向量为v ,则由共面向量定理,得l ∥α或l 在α内⇔____________________________________.(3)已知两个不共线向量v 1,v 2与平面α共面,则由两平面平行的判定与性质,得α∥β或α与β重合⇔____________________________________.3.用向量运算证明两条直线垂直或求两条直线所成的角(1)设两条直线所成的角为θ(锐角),则两条直线的方向向量的夹角与θ________________.(2)设直线l 1和l 2的方向向量分别为v 1和v 2,l 1与l 2的夹角为θ,则l 1⊥l 2⇔______________,cos θ=________________.一、选择题1.若A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量为( )A .(1,2,3)B .(1,3,2)C .(2,1,3)D .(3,2,1)2.设直线l 1,l 2的方向向量分别为a =(1,2,-2),b =(-2,3,m ),若l 1⊥l 2,则m 等于( )A .1B .2C .3D .43.已知A (3,0,-1),B (0,-2,-6),C (2,4,-2),则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形4.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M ,N 分别为A 1B 1和BB 1的中点,那么异面直线AM 与CN 所成角的余弦值为( ) A.32 B.1010 C.35 D.255.从点A (2,-1,7)沿向量a =(8,9,-12)的方向取线段长AB =34,则B 点的坐标为( )A .(-9,-7,7)B .(18,17,-17)C .(9,7,-7)D .(-14,-19,31)题 号 1 2 3 4 5答 案二、填空题6.如图,在平行六面体ABCD—A1B1C1D1中,M、P、Q分别为棱AB、CD、BC的中点,若平行六面体的各棱长均相等,则①A1M∥D1P;②A1M∥B1Q;③A1M∥面DCC1D1;④A1M∥面D1PQB1.以上结论中正确的是________.(填写正确的序号)7.已知点A(4,1,3),B(2,-5,1),C为线段AB上一点且AC AB =13,则点C的坐标为____________.8.已知点A、B、C的坐标分别为(0,1,0)、(-1,0,-1)、(2,1,1),点P的坐标为(x,0,z),若P A⊥AB,P A⊥AC,则P点的坐标为____________.9.已知线段AB的两端点的坐标为A(9,-3,4),B(9,2,1),则与线段AB平行的坐标平面是____________.三、解答题10.在正方体ABCD—A1B1C1D1中,O是B1D1的中点,求证:B1C∥平面ODC1.11.长方体ABCD—A1B1C1D1中,AB=4,BC=BB1=2,E,F分别是面A1B1C1D1与面B1BCC1的中心,求异面直线AF与BE所成角的余弦值.能力提升12.如图,四棱锥P -ABCD 中,底面ABCD 为矩形,P A ⊥底面ABCD ,P A =AB =2,点E 是棱PB 的中点.证明:AE ⊥平面PBC .1.利用向量可以确定直线,表示点在直线上的位置.2.用向量方法证明直线与直线平行、直线与平面平行、平面与平面平行(1)直线与直线平行、直线与平面平行的向量证法的根据是空间向量共线、共面定理.(2)利用直线的方向向量证明直线与直线平行、直线与平面平行时,要注意向量所在的直线与所证直线或平面无公共点.(3)关于直线与平面平行、平面与平面平行的证明,还可以用平面的法向量来完成.3.用向量运算证明两条直线垂直或求两条直线所成的角非零向量a ,b ,a ⊥b ⇔a·b =0是证明两条直线垂直的依据;两条直线所成的角是通过求两个向量的夹角得到的.§3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程知识梳理1.(1)t a OA →+t a (1-t ) OA →+t OB → 向量参数方程(2)12( OA →+OB →) 2.(1)v 1∥v 2 (2)存在两个实数x ,y ,使v =x v 1+y v 2(3)v 1∥β且v 2∥β3.(1)相等或互补 (2)v 1⊥v 2 |cos 〈v 1,v 2〉| 作业设计1.A [∵AB →=(2,4,6),而与AB →共线的非零向量都可以作为直线l 的方向向量,故选A.]2.B [∵l 1⊥l 2,∴a ⊥b ,∴a·b =(1,2,-2)·(-2,3,m )=-2+6-2m =0,∴m =2.]3.C4.D[如图所示,建立空间直角坐标系,则A (1,0,0),M ⎝⎛⎭⎫1,12,1,C (0,1,0), N ⎝⎛⎭⎫1,1,12. ∴AM →=⎝⎛⎭⎫0,12,1,CN →=⎝⎛⎭⎫1,0,12. ∴AM →·CN →=12,|AM →|=52=|CN →|.∴cos 〈AM →,CN →〉=1252·52=25.] 5.B [设B (x ,y ,z ),AB →=(x -2,y +1,z -7)=λ(8,9,-12),λ>0.故x -2=8λ,y +1=9λ,z -7=-12λ,又(x -2)2+(y +1)2+(z -7)2=342,得(17λ)2=342,∵λ>0,∴λ=2.∴x =18,y =17,z =-17,即B (18,17,-17).]6.①③④解析 ∵A 1M →=AM →-AA 1→=DP →-DD 1→=D 1P →,∴A 1M ∥D 1P .∵D 1P ⊂面D 1PQB 1,∴A 1M ∥面D 1PQB 1.又D 1P ⊂面DCC 1D 1,∴A 1M ∥面DCC 1D 1.∵B 1Q 为平面DCC 1D 1的斜线,∴B 1Q 与D 1P 不平行,∴A 1M 与B 1Q 不平行.7.⎝⎛⎭⎫103,-1,73 解析 设C (x ,y ,z ),∵C 为线段AB 上一点且ACAB =13,∴AC →=13AB →, 即(x -4,y -1,z -3)=13(-2,-6,-2), ∴x =103,y =-1,z =73. 8.(-1,0,2)解析 由已知,AB →=(-1,-1,-1),AC →=(2,0,1),P A →=(-x,1,-z ),由,得⎩⎪⎨⎪⎧ x -1+z =0-2x -z =0,解得⎩⎪⎨⎪⎧x =-1z =2. ∴P (-1,0,2).9.yOz 平面解析 ∵AB →=(0,5,-3),∴AB →平行于平面yOz .10.证明 方法一 ∵B 1C →=A 1D →,B 1在直线A 1D 外,∴B 1C ∥A 1D ,又A 1D ⊂平面ODC 1,∴B 1C ∥平面ODC 1.方法二 ∵B 1C →=B 1C 1→+B 1B →=B 1O →+OC 1→+D 1O →+OD →=OC 1→+OD →.∴B 1C →,OC 1→,OD →共面.又B 1C ⊄平面ODC 1,∴B 1C ∥平面ODC 1.11.解 以D 为原点建立空间直角坐标系,则A (2,0,0),B (2,4,0),C 1(0,4,2),A 1(2,0,2),∴E (1,2,2),F (1,4,1),AF →=(-1,4,1),BE →=(-1,-2,2),∴|AF →|=18=32,|BE →|=9=3,AF →·BE →=1-8+2=-5,∴cos 〈AF →,BE →〉=-532·3=-5218. ∵异面直线所成角的范围是⎝⎛⎦⎤0,π2, 设AF 与BE 所成角为θ,则cos θ=|cos 〈AF →,BE →〉|=5218. 12.证明 如图所示,以A 为坐标原点,射线AB 、AD 、AP 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系Axyz .设D (0,a,0),则B (2,0,0),C (2,a,0),P (0,0,2),E (22,0,22). 于是AE →=(22,0,22), BC →=(0,a,0), PC →=(2,a ,-2),则AE →·BC →=0,AE →·PC →=0.所以AE ⊥BC ,AE ⊥PC .又因为BC ∩PC =C ,所以AE ⊥平面PBC .。
3.2.4 二面角及其度量课时目标 理解二面角和二面角的平面角的概念,会用向量的方法求二面角.1.从一条直线出发的______________所组成的图形叫做二面角,这条直线叫做________________,每个半平面叫做________________.棱为l ,两个面分别为α、β的二面角,记为____________. 2.在二面角α—l —β的______上任取一点O ,在______________内分别作射线OA ⊥l ,OB ⊥l ,则________叫做二面角α—l —β的平面角.3.平面角是________的二面角叫做直二面角,相交成______________的两个平面,叫做相互垂直的平面.4.二面角的平面角,它的两边在__________平面内,且都________于棱,两个条件缺一不可. 5.用向量夹角来研究二面角性质及其度量的方法(如图所示) (1)分别在二面角α—l —β的面α、β内,并沿α,β________的方向,作向量n 1⊥l ,n 2⊥l ,则__________等于该二面角的平面角.(2)设m 1⊥α,m 2⊥β,则〈m 1,m 2〉与该二面角____________________.一、选择题1.自二面角内一点分别向二面角的两个面引垂线,这两条垂线所成的角与二面角的大小关系是( )A .相等B .互为补角C .互为余角D .相等或互为补角 2.如图所示,已知二面角α—l —β的大小为60°,m ,n 为异面直线,且m ⊥α,n ⊥β,则直线m ,n 的夹角为( ) A .30° B .60° C .90° D .120°3.如果二面角α—l —β的平面角是锐角,点P 到α,β和棱l 的距离分别为22,4和42,则二面角的大小为( ) A .45°或30° B .15°或75° C .30°或60° D .15°或60°4.从点P 引三条射线P A 、PB 、PC ,每两条夹角均为60°,则二面角B —P A —C 的余弦值是( ) A.12 B.13 C.33 D.325.在正方体ABCD —A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22 6.如图所示,在边长为a 的等边△ABC 中,AD ⊥BC ,沿AD 将△ABD 折起,若折起后B 、C 两点间距离为12a ,则二面角B —AD —C 的大小为( )A .30°B .45°C .60°D .90°题 号 1 2 3 4 5 6 答 案二、填空题7.若两个平面α,β的法向量分别是n =(1,0,1),ν=(-1,1,0).则这两个平面所成的锐二面角的度数是____________. 8.在直三棱柱ABC —A 1B 1C 1中,底面为正三角形,若AA 1=AB =1,E 为棱BB 1的中点,则平面AEC 与平面ABC 所成锐二面角的大小为________. 9.如图,已知正四棱锥的体积为12,底面对角线的长为26,则侧面与底面的夹角等于________. 三、解答题10.自二面角α—l —β的棱上一点A 在平面β内引一条射线AC ,它与棱l 成45°角,和平面α成30°角,求二面角α—l —β的大小. 11.ABCD 是直角梯形,∠ABC =∠BAD =90°,又SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,求面SCD与面SAB 所成二面角的正切值.能力提升12.在正方体AC1中,求二面角A—BD1—C的大小.13.如图,直三棱柱ABC-A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE =3EB1.(1)证明:DE为异面直线AB1与CD的公垂线;(2)设异面直线AB1与CD的夹角为45°,求二面角A1-AC1-B1的正弦值.1.二面角有三个要素:两个半平面和一条棱;二面角大小范围是[0,π].2.求二面角的大小的一般步骤是:(1)找出或作出平面角;(2)证明它符合定义;(3)通过解三角形计算.3.与二面角有关的问题中找或作平面角的常用方法:(1)根据定义找出二面角的平面角;(2)根据三垂线定理或其逆定理作出二面角的平面角;(3)作二面角棱的垂面,则垂面和二面角的两个面的交线所成的角是该二面角的平面角. 4.利用射影面积公式cos α=S 射影S 原求二面角的大小.5.利用平面的法向量来求二面角.3.2.4 二面角及其度量知识梳理1.两个半平面 二面角的棱 二面角的面 α—l —β 2.棱 两半平面 ∠AOB 3.直角 直二面角 4.同一个 垂直5.(1)延伸 〈n 1,n 2〉 (2)大小相等或互补 作业设计 1.D 2.B3.B [如图①,②所示,分别是P 在二面角α—l —β的内部、外部时的情况.因为P A ⊥α,所以P A ⊥l ,因为PC ⊥l ,所以l ⊥面P AC ,同理,l ⊥面PBC ,而面P AC 与面PBC 有公共点,所以面P AC 和面PBC 应重合,即A ,B ,C ,P 在同一平面内,∠ACB 是二面角的平面角.在Rt △APC 中,sin ∠ACP =P A PC =2242=12,所以∠ACP =30°.在Rt △BPC 中,sin ∠BCP =PB PC =442=22,所以∠BCP =45°,故∠ACB =30°+45°=75°(图①),或∠ACB =45°-30°=15°(图②).]① ②4.B [在射线P A 上取一点O ,分别在平面P AB 、P AC 内作OE ⊥P A ,OF ⊥P A 交PB 、PC 于E 、F ,则∠EOF 为所求二面角的平面角.在△EOF 中,令EF =1,则由题意可求得,OE =OF =32,∴cos ∠EOF =34+34-12×32×32=13.故选B.]5.B[建立如图所示的直角坐标系,设正方体的棱长为1,则DA 1→=(1,0,1),DE →=(1,1,12)设平面A 1DE 的法向量n 1=(x ,y ,z ),则∴⎩⎪⎨⎪⎧ x +z =0x +y +z2=0.解得⎩⎪⎨⎪⎧x =-z ,y =z 2. 令z =1,∴n 1=(-1,12,1)平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=11+14+1·1=23.]6.C [∵AD ⊥CB ,∴BD ⊥AD ,CD ⊥AD , ∠BDC 为二面角B -AD -C 的平面角,又∵BD =CD =BC =a2,∴△BDC 为等边三角形,∴∠BDC =60°.] 7.60°解析 cos 〈n ,ν〉=n ·v |n ||v |=-12·2=-12.∴〈n ,ν〉=120°.8.30° 9.π3解析 作VO ⊥底面ABCD ,OM ⊥BC ,连结VM ,则VM ⊥BC ,所以∠VMO 为侧面和底面的夹角.由题意知O 为底面中心,设底面边长为a ,则2a 2=(26)2,解得a =23,所以OM = 3.又V V —ABCD =13·(23)2·h =12,得h =3.所以tan ∠VMO =33=3,所以∠VMO =π3.本题还可利用向量法求二面角. 10.解 如图所示,过C 作CD ⊥平面α,在α内作DB ⊥AB ,垂足为B ,连结BC .由三垂线定理知BC ⊥AB , 则∠CBD 为二面角α—l —β的平面角. 设CD =a ,又∠CAD 为AC 与面α所成的角, 即∠CAD =30°,∴AC =2a . 又∠CAB =45°,∴BC =2a . 在Rt △CDB 中,sin ∠CBD =CD BC =22, ∴∠CBD =45°,即二面角α—l —β为45°. 11.解 建立如图的空间直角坐标系Axyz ,则A (0,0,0),D ⎝⎛⎭⎫12,0,0,C (1,1,0),S (0,0,1),则AD →=⎝⎛⎭⎫12,0,0是平面SAB 的法向量. 设面SCD 的法向量n =(1,λ,μ),易得λ=-12,μ=12.∴n =⎝⎛⎭⎫1,-12,12. 若以θ表示欲求二面角的值,则cos θ=〈AD →,n 〉=.∵AD →·n =⎝⎛⎭⎫12,0,0·⎝⎛⎭⎫1,-12,12=12, |AD →|=12,|n |= 1+⎝⎛⎭⎫-122+⎝⎛⎭⎫122= 32, ∴cos θ=1212·32= 23,sin θ= 13,∴tan θ=12=22.12.解 以D 为原点建立如图所示的空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),C 1(0,1,1). DA 1→=(1,0,1)是平面ABD 1的一个法向量, DC 1→=(0,1,1)是平面BCD 1的一个法向量. 所以cos 〈DA 1→,DC 1→〉==12. 所以〈DA 1→,DC 1→〉=60°.由图形可知二面角A —BD 1—C 为120°.13.(1)证明 以B 为坐标原点,射线BA 、BB 1为x 轴正半轴、y 轴正半轴,建立如图所示的空间直角坐标系B -xyz .设AB =2,则A (2,0,0),B 1(0,2,0),D (0,1,0),E (12,32,0).又设C (1,0,c ),则DE →=(12,12,0),B 1A →=(2,-2,0),DC →=(1,-1,c ).于是DE →·B 1A →=0,DE →·DC →=0,故DE ⊥B 1A ,DE ⊥DC ,又DE ∩AB 1=E ,CD ∩DE =D . 所以DE 为异面直线AB 1与CD 的公垂线.(2)解 因为〈B 1A →,DC →〉等于异面直线AB 1与CD 的夹角, 故B 1A →·DC →=|B 1A →||DC →|cos 45°, 即22×c 2+2×22=4. 解得c =2,故AC →=(-1,0,2). 又AA 1→=BB 1→=(0,2,0),所以AC 1→=AC →+AA 1→=(-1,2,2). 设平面AA 1C 1的法向量m =(x ,y ,z ),则m ·A C 1→=0,m ·AA 1→=0, 即-x +2y +2z =0,2y =0.令x =2,则z =1,y =0.故m =(2,0,1). 设平面AB 1C 1的法向量为n =(p ,q ,r ),则n ·A C 1→=0,n ·B 1A →=0, 即-p +2q +2r =0,2p -2q =0,令p =2,则q =2,r =-1.故n =(2,2,-1).所以cos 〈m ,n 〉=m ·n |m ||n |=115.由于〈m ,n 〉等于二面角A 1-AC 1-B 1的平面角, 所以二面角A 1-AC 1-B 1的正弦值为1-115=21015.。
第三章 空间向量与立体几何§3.1 空间向量及其运算3.1.1 空间向量的线性运算 课时目标 1.理解空间向量的概念,掌握空间向量的几何表示和字母表示.2.掌握空间向量的加减运算及其运算律,能借助图形理解空间向量及其运算的意义.3.掌握数乘运算的定义和运算律.1.空间向量2.几类特殊向量(1)零向量:______________的向量叫做零向量,记为______.(2)单位向量:____________的向量称为单位向量.(3)相等向量:方向________且模________的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.(4)相反向量:与向量a 长度______而方向________的向量,称为a 的相反向量,记为________.3.空间向量的加减法与运算律空间向量的加减法 类似平面向量,定义空间向量的加、减法运算(如图):OB →=OA →+AB →=__________;CA →=OA →-OC →=________.加法运 算律(1)交换律:a +b =________(2)结合律:(a +b )+c =____________.;4.空间向量的数乘运算(1)向量的数乘:实数λ与空间向量a 的乘积仍然是一个向量,记作________,称为向量的数乘运算.当λ>0时,λa 与向量a 方向________;当λ<0时,λa 与向量a 方向________;λa 的长度是a 的长度的________倍.(2)空间向量的数乘运算满足分配律与结合律.分配律:______________;结合律:______________.一、选择题1.下列命题中,假命题是( )A. 向量AB →与BA →的长度相等B .两个相等的向量,若起点相同,则终点也相同C .只有零向量的模等于0D .共线的单位向量都相等2.如图所示,平行四边形ABCD 的对角线的交点为O ,则下列等式成立的是( )A.OA →+OB →=AB →B. OA →+OB →=BA →C. AO →-OB →=AB →D. OA →-OB →=CD →3.已知O 是△ABC 所在平面内一点,D 为BC 边中点且2OA →+OB →+OC →=0,则AO →等于( )A. OB →B. OC →C. OD → D .2OD→ 4.已知向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC →|,则( )A.AB →=AC →+BC →B. AB →=-AC →-BC →C. AC →与BC →同向D. 与AC →与CB →同向5.在正方体ABCD —A 1B 1C 1D 1中,向量表达式DD 1→-AB →+BC →化简后的结果是( )A. BD 1→B. 1D BC.1B DD. 1DB6.平行六面体ABCD —A 1B 1C 1D 1中,E ,F ,G ,H ,P ,Q 分别是A 1A ,AB ,BC ,CC 1,C 1D 1,D 1A 1的中点,则( )A.EF →+GH →+PQ →=0B. EF→-GH →-PQ →=0 C.EF →+GH →-PQ →=0 D.EF→-GH →+PQ →=0 二、填空题7.在平行六面体ABCD -A ’B’C ’D ’中,与向量''A B 的模相等的向量有________个.8.若G 为△ABC 内一点,且满足AG +BG →+CG →=0,则G 为△ABC 的________.(填“外心”“内心”“垂心”或“重心”)9.判断下列各命题的真假:①向量a 与b 平行,则a 与b 的方向相同或相反;②两个有公共终点的向量,一定是共线向量;③有向线段就是向量,向量就是有向线段.其中假命题的个数为________.三、解答题10.判断下列命题是否正确,若不正确,请简述理由.①向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在一条直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形的充要条件是AB →=DC →;⑤模为0是一个向量方向不确定的充要条件.11.如图所示,已知空间四边形ABCD ,连结AC,BD,E,F,G 分别是BC,CD,DB 的中点,请化简:AB →+BC →+CD →,(2)AB →+GD →+EC →,并标出化简结果的向量.能力提升12.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F.若AC →=a ,BD →=b ,则AF →等于( )A.14a +12bB.13a +23b C.12a +14b D.23a +13b 13.证明:平行六面体的对角线交于一点,并且在交点处互相平分.1.在掌握向量加减法的同时,应首先掌握有特殊位置关系的两个向量的和或差,如共线、共起点、共终点等.2.通过掌握相反向量,理解两个向量的减法可以转化为加法.3.注意向量的三角形法则和平行四边形法则的要点.对于向量加法运用平行四边形法则要求两向量有共同起点,运用三角形法则要求向量首尾顺次相连.对于向量减法要求两向量有共同的起点.4.a -b 表示的是由b 的终点指向a 的终点的一条有向线段.第三章 空间向量与立体几何§3.1 空间向量及其运算3.1.1 空间向量的线性运算知识梳理1.(1)大小 方向 (2)大小 模(3)①有向线段 ②AB →2.(1)长度为0 0 (2)模为1 (3)相同 相等(4)相等 相反 -a3.空间向量的加减法 类似平面向量,定义空间向量的加、减法运算(如图):OB →=OA →+AB →=a +b ;CA →=OA →-OC →=a -b .加法运 算律 (1)交换律:a +b =b +a ;(2)结合律:(a +b )+c =a +(b +c ).4.(1)λa 作业设计1.D [共线的单位向量是相等向量或相反向量.]2.D [OA →-OB →=BA →=CD →.]3.C [∵D 为BC 边中点,∴OB →+OC →=2OD →,∴OA →+OD →=0,∴AO →=OD →.]4.D [由|AB →|=|AC →|+|BC →|=|AC →|+|CB →|,知C 点在线段AB 上,否则与三角形两边之和大于第三边矛盾,所以AC →与CB →同向.]5.A[如图所示,∵DD 1→=AA 1→,DD →1-AB →=AA 1→-AB →=BA 1→,BA 1→+BC →=BD →1,∴DD 1→-AB →+BC →=BD 1→.]6.A [观察平行六面体ABCD —A 1B 1C 1D 1可知,向量EF →,GH →,PQ →平移后可以首尾相连,于是EF →+GH →+PQ →=0.]7.7解析 |D'C'→|=|DC →|=|C'D'→|=|CD →|=|BA →|=|AB →|=|B'A'→|=|A'B'→|.8.重心解析 如图,取BC 的中点O ,AC 的中点D ,连结OG 、DG .由题意知AG →=-BG →-CG →=GB →+GC →=2GO →,同理BG →=2GD →,故G 为△ABC 的重心.9.3解析 ①假命题,若a 与b 中有一个为零向量时,其方向是不确定的;②假命题,终点相同并不能说明这两个向量的方向相同或相反;③假命题,向量可用有向线段来表示,但并不是有向线段.10.解 ①不正确,共线向量即平行向量,只要求两个向量方向相同或相反即可,并不要求两个向量AB →,CD →在同一条直线上.②不正确,单位向量模均相等且为1,但方向并不一定相同.③不正确,零向量的相反向量仍是零向量,但零向量与零向量是相等的.④正确.⑤正确.11.解 (1) AB →+BC →+CD →=AC →+CD →=AD →.(2)∵E ,F ,G 分别为BC ,CD ,DB 的中点.∴BE →=EC →,EF →=GD →.∴AB →+GD →+EC →=AB →+EF →+BE →=AF →.故所求向量AD →,AF →,如图所示.12.D [AF →=AC →+CF →=a +23CD → =a +13(b -a )=23a +13b .]13.证明 如图所示,平行六面体ABCD —A ′B ′C ′D ′,设点O 是AC ′的中点,则AO →=12AC'→ =12(AB →+AD →+AA'→). 设P 、M 、N 分别是BD ′、CA ′、DB ′的中点.则AP =AB →+BP →=AB →+12BD'→ =AB →+12(BA →+BC →+B B'→) =AB →+12(-AB →+AD →+AA'→) =12(AB →+AD →+AA'→). 同理可证:AM →=12(AB →+AD →+AA'→) AN →=12(AB →+AD →+AA'→). 由此可知O ,P ,M ,N 四点重合.故平行六面体的对角线相交于一点,且在交点处互相平分.。
3.1.4 空间向量的直角坐标运算课时目标 掌握空间向量的坐标运算,会根据向量的坐标判断两个向量共线或垂直,掌握向量长度、两向量夹角和两点间距离公式.1.建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则{i ,j ,k }叫做________________.单位向量i ,j ,k 都叫做______________.2.在空间直角坐标系中,已知任一向量a ,根据________________定理,存在唯一实数组(a 1,a 2,a 3)使a =a 1i +a 2j +a 3k ,a 1i ,a 2j ,a 3k 分别为向量a 在i ,j ,k 方向上的__________,有序实数组________________叫做向量a 在此直角坐标系中的坐标,可记作a =________________.3.设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =________________________________,a -b =________________________________,λa =________________________,a·b =________________________.a ∥b (b ≠0)⇔________________________,或当b 与三个坐标平面都不平行时,a ∥b ⇔________________________________________;a ⊥b ⇔________________________.4.向量的坐标与点的坐标之间的关系设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB →=OB →-OA →=________________________.5.设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3).则|a |=________________,|b |=______________,a·b =________________,从而有cos 〈a ,b 〉=____________________________.6.设A (x 1,y 1,z 1),B (x 2,y 2,z 2),则|AB →|=______________________________.一、选择题1.在空间直角坐标系Oxyz 中,已知点A 的坐标为(-1,2,1),点B 的坐标为(1,3,4),则( )A. AB →=(-1,2,1) C. AB →=(1,3,4)B. AB →=(2,1,3) D.AB →=(-2,-1,-3)2.已知a =(1,2,-y ),b =(x,1,2),且(a +2b )∥(2a -b ),则( )A .x =13,y =1B .x =12,y =-4 C .x =2,y =-14D .x =1,y =-1 3.若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a 1b 1=a 2b 2=a 3b 3是a ∥b 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件4.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值是( )A .1 B.15 C.35 D.755.已知a =(2,-1,2),b =(2,2,1),则以a 、b 为邻边的平行四边形的面积为( )A.65B.652C .4D .8 6.已知a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值是( )A.55 B.555 C.355 D.115题 号 1 2 3 4 5 6答 案二、填空题7.已知三个力f 1=(1,2,3),f 2=(-1,3,-1),f 3=(3,-4,5),若f 1,f 2,f 3共同作用于同一物体上,使物体从点M 1(1,-2,1)移动到点M 2(3,1,2),则合力所做的功是________.8.已知A (4,1,3),B (2,3,1),C (3,7,-5),点P (x ,-1,3)在平面ABC 内,则x =______.9. 已知A (1,-1,2),B (5,-6,2),C (1,3,-1),则AB →在AC →上的投影为______.三、解答题10.设a =(1,5,-1),b =(-2,3,5).(1)若(k a +b )∥(a -3b ),求k ;(2)若(k a +b )⊥(a -3b ),求k .11.在直三棱柱ABC —A 1B 1C 1中,AC =BC =1,∠BCA =90°,AA 1=2, 并取A 1B 1、A 1A 的中点分别为P 、Q .(1)求向量BQ →的长;(2)cos 〈BQ →,CB 1→〉,cos 〈BA 1→,CB 1→〉,并比较〈BQ →,CB 1→〉与〈BA 1→,CB 1→〉的大小;(3)求证:AB 1⊥C 1P .能力提升12.在长方体OABC —O 1A 1B 1C 1中,|OA |=2,|AB |=3,|AA 1|=2,E 是BC 的中点,建立空间直角坐标系,用向量方法解下列问题:(1)求直线AO 1与B 1E 所成角的余弦值;(2)作O 1D ⊥AC 于D ,求点O 1到点D 的距离.13.在棱长为1的正方体ABCD—A1B1C1D1中,E、F分别为AB、BC的中点,在棱BB1上是否存在点M,使得D1M⊥平面EFB1?1.空间向量在几何中的应用有了向量的坐标表示,利用向量的平行、垂直判定几何中线线、线面的平行与垂直,利用向量长度公式、夹角公式求两点间的距离和两异面直线所成的角,只需通过简单运算即可.在此处,要认真体会向量的工具性作用.2.关于空间直角坐标系的建立建系时,要根据图形特点,充分利用图形中的垂直关系确定原点和各坐标轴.同时,使尽可能多的点在坐标轴上或坐标平面内.这样可以较方便的写出点的坐标.3.1.4空间向量的直角坐标运算知识梳理1.单位正交基底坐标向量2.空间向量分解分向量(a1,a2,a3)(a1,a2,a3)3.(a1+b1,a2+b2,a3+b3)(a1-b1,a2-b2,a3-b3)(λa1,λa2,λa3)a1b1+a2b2+a3b3a1=λb1,a2=λb2,a3=λb3 (λ∈R)a1b1=a2b2=a3b3(b1≠0,b2≠0,b3≠0)a1b1+a2b2+a3b3=04.(x2-x1,y2-y1,z2-z1)5.a21+a22+a23b21+b22+b23a1b1+a2b2+a3b3a1b1+a2b2+a3b3a21+a22+a23·b21+b22+b236.作业设计1.C2.B [∵a +2b =(1+2x,4,4-y ),2a -b =(2-x,3,-2y -2),且(a +2b )∥(2a -b ),∴3(1+2x )=4(2-x )且3(4-y )=4(-2y -2),∴x =12,y =-4.] 3.A [设a 1b 1=a 2b 2=a 3b 3=k ,易知a ∥b ,即条件具有充分性.又若b =0时,b =(0,0,0), 虽有a ∥b ,但条件a 1b 1=a 2b 2=a 3b 3显然不成立,所以条件不具有必要性,故选A.] 4.D [∵k a +b =(k -1,k,2),2a -b =(3,2,-2),∴3(k -1)+2k -4=0.∴k =75.]5.A [设向量a 、b 的夹角为θ,于是cos θ=4-2+23×3=49,由此可得sin θ=659.所以以a 、b 为邻边的平行四边形的面积为S =2×12×3×3×659=65.]6.C7.16解析 合力f =f 1+f 2+f 3=(3,1,7),位移s =M 1M 2→=(2,3,1),∴功w =f·s =(3,1,7)·(2,3,1)=6+3+7=16.8.11解析 ∵点P 在平面ABC 内,∴存在实数k 1,k 2,使AP →=k 1AB →+k 2AC →,即(x -4,-2,0)=k 1(-2,2,-2)+k 2(-1,6,-8),∴⎩⎪⎨⎪⎧ 2k 1+6k 2=-2,k 1+4k 2=0, 解得⎩⎪⎨⎪⎧ k 1=-4,k 2=1.∴x -4=-2k 1-k 2=8-1=7,即x =11.9.-4解析 ∵AB →=(5,-6,2)-(1,-1,2)=(4,-5,0).AC →=(1,3,-1)-(1,-1,2)=(0,4,-3),∴cos 〈AB →,AC →=-20541,AB →在AC →上的投影为|AB →|cos〈AB →,AC →〉⎝⎛⎭⎫-20541=-4.10.解 k a +b =(k -2,5k +3,-k +5),a -3b =(7,-4,-16).(1)若(k a +b )∥(a -3b ),则k -27=5k +3-4=-k +5-16,解得k =-13. (2)若(k a +b )⊥(a -3b ),则(k -2)×7+(5k +3)×(-4)+(-k +5)×(-16)=0,解得k =1063. 11.解以C 为原点,建立如图所示的空间直角坐标系Cxyz ,则由已知,得C (0,0,0),A (1,0,0),B (0,1,0),C 1(0,0,2),P ⎝⎛⎭⎫12,12,2,Q (1,0,1),B 1(0,1,2),A 1(1,0,2).∴BQ →=(1,-1,1),CB 1→=(0,1,2),BA 1→=(1,-1,2),AB 1→=(-1,1,2),C 1P →=⎝⎛⎭⎫12,12,0.(1)| BQ →|=BQ BQ •=12+-12+12= 3.(2)∵BQ →·CB 1→=0-1+2=1,|BQ →|=3,|CB 1→|=02+12+22=5,∴cos 〈BQ →,CB 1→〉=13×5=1515. 又BA 1→·CB 1→=0-1+4=3,|BA 1→|=1+1+4=6,|CB 1→|=5,∴cos 〈BA 1→,CB 1→〉=330=3010. 又0<1515<3010<1, ∴〈BQ →,CB 1→〉,〈BA 1→,CB 1→〉∈⎝⎛⎭⎫0,π2. 又y =cos x 在⎝⎛⎭⎫0,π2内单调递减, ∴〈BQ →,CB 1→〉>〈BA 1→,CB 1→〉.(3)证明 ∵AB 1→·C 1P →=(-1,1,2)·⎝⎛⎭⎫12,12,0=0, ∴AB 1→⊥C 1P →.12.解建立如图所示的空间直角坐标系.(1)由题意得A (2,0,0),O 1(0,0,2),B 1(2,3,2),E (1,3,0). ∴AO 1→=(-2,0,2),B 1E →=(-1,0,-2),∴cos 〈AO 1→,B 1E →〉=-2210=-1010, ∴AO 1与B 1E 所成角的余弦值为1010. (2)由题意得O 1D →⊥AC →,AD →∥AC →,∵C (0,3,0),设D (x ,y,0),∴O 1D →=(x ,y ,-2),AD →=(x -2,y,0),AC →=(-2,3,0),∴⎩⎪⎨⎪⎧ -2x +3y =0,x -2-2=y 3, 解得⎩⎨⎧x =1813,y =1213. ∴D ⎝⎛⎭⎫1813,1213,0,∴O 1D =|O 1D →|= ⎝⎛⎭⎫18132+⎝⎛⎭⎫12132+4=228613. 即点O 1到点D 的距离为228613. 13.解 如图所示,分别以DA →,DC →,DD 1→为单位正交基底,建立空间直角坐标系Dxyz ,则D 1(0,0,1),B 1(1,1,1),E ⎝⎛⎭⎫1,12,0,F ⎝⎛⎭⎫12,1,0,设M (1,1,m ),∴EF →=⎝⎛⎭⎫-12,12,0, B 1E →=⎝⎛⎭⎫0,-12,-1,D 1M →=(1,1,m -1). 若D 1M ⊥平面EFB 1,则D 1M ⊥EF 且D 1M ⊥B 1E .即D 1M →·EF →=0,D 1M →·B 1E →=0,∴⎩⎨⎧-12+12+m -1×0=00-12+1-m =0,∴m =12, 即存在点M 且为B 1B 的中点,使D 1M ⊥平面EFB 1.。
§ 椭圆2.2.1 椭圆的标准方程课时目标 ,明确焦点、,初步学会求简单的椭圆的标准方程.1.椭圆的概念:平面内与两个定点F 1,F 2的距离的和等于________(大于|F 1F 2|)的点的轨迹叫做________.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.设平面内一点P ,当|PF 1|+|PF 2|=|F 1F 2|时,轨迹是____________;当|PF 1|+|PF 2|<|F 1F 2|时__________轨迹. 2.椭圆的方程:焦点在x 轴上的椭圆的标准方程为________________,焦点坐标为________________,焦距为____________;焦点在y 轴上的椭圆的标准方程为________________.一、选择题1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( ) A .椭圆 B .直线 C .圆 D .线段2.椭圆x 216+y 27=1的左右焦点为F 1,F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( )A .32B .16C .8D .4 3.椭圆2x 2+3y 2=1的焦点坐标是( )A.⎝⎛⎭⎫0,±66 B .(0,±1)C .(±1,0) D.⎝⎛⎭⎫±66,04.方程x 2|a |-1+y 2a +3=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A .(-3,-1)B .(-3,-2)C .(1,+∞)D .(-3,1)5.若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点⎝⎛⎭⎫52,-32,则该椭圆的方程是( ) A.y 28+x 24=1 B.y 210+x26=1 C.y 24+x 28=1 D.y 26+x 210=1 6.设F 1、F 2是椭圆x 216+y212=1的两个焦点,P 是椭圆上一点,且P 到两个焦点的距离之差为2,则△PF 1F 2是( )A .钝角三角形B .锐角三角形C .斜三角形D .直角三角形 二、填空题7.椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.8.P 是椭圆x 24+y 23=1上的点,F 1和F 2是该椭圆的焦点,则k =|PF 1|·|PF 2|的最大值是______,最小值是______.9.“神舟六号”载人航天飞船的运行轨道是以地球中心为一个焦点的椭圆,设其近地点距地面n 千米,远地点距地面m 千米,地球半径为R ,那么这个椭圆的焦距为________千米.三、解答题10.根据下列条件,求椭圆的标准方程.(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P 到两焦点的距离之和等于10;(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点⎝⎛⎭⎫-32,52.A (0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM |=|P A |,求动点P 的轨迹方程.能力提升22143y x+=的中心和左焦点,点P 为椭圆上的任意一点,则OP ·FP →的最大值为( ) A .2 B .3 C .6 D .8 13.如图△ABC 中底边BC =12,其它两边AB 和AC 上中线的和为30,求此三角形重心G 的轨迹方程,并求顶点A 的轨迹方程.1.椭圆的定义中只有当距离之和2a>|F1F2|时轨迹才是椭圆;如果2a=|F1F2|,轨迹是线段F1F2;如果2a<|F1F2|,则不存在轨迹.2.椭圆的标准方程有两种表达式,但总有a>b>0,因此判断椭圆的焦点所在的坐标轴要看方程中的分母,焦点在分母大的对应轴上.3.求椭圆的标准方程常用待定系数法,一般是先判断焦点所在的坐标轴进而设出相应的标准方程,然后再计算;如果不能确定焦点的位置,有两种方法求解,一是分类讨论,二是设椭圆方程的一般形式,即mx2+ny2=1 (m,n为不相等的正数).§2.2椭圆2.2.1椭圆的标准方程知识梳理1.常数椭圆焦点焦距线段F1F2不存在2.x2a2+y2b2=1 (a>b>0)F1(-c,0),F2(c,0)2cy2a2+x2b2=1 (a>b>0)作业设计1.D[∵|MF1|+|MF2|=6=|F1F2|,∴动点M的轨迹是线段.]2.B[由椭圆方程知2a=8,由椭圆的定义知|AF1|+|AF2|=2a=8,|BF 1|+|BF 2|=2a =8,所以△ABF 2的周长为16.] 3.D4.B [|a|-1>a +3>0⇒-3<a<-2.]5.D [椭圆的焦点在x 轴上,排除A 、B ,又过点⎝⎛⎭⎫52,-32验证即可.] 6.D [由椭圆的定义,知|PF 1|+|PF 2|=2a =8. 由题可得||PF 1|-|PF 2||=2, 则|PF 1|=5或3,|PF 2|=3或5.又|F 1F 2|=2c =4,∴△PF 1F 2为直角三角形.]7.2 120° 解析∵|PF 1|+|PF 2| =2a =6,∴|PF 2|=6-|PF 1|=2. 在△F 1PF 2中, cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=16+4-282×4×2=-12,∴∠F 1PF 2=120°.8.4 3解析 设|PF 1|=x ,则k =x(2a -x), 因a -c ≤|PF 1|≤a +c ,即1≤x ≤3.∴k =-x 2+2ax =-x 2+4x =-(x -2)2+4, ∴k max =4,k min =3. 9.m -n解析 设a ,c 分别是椭圆的长半轴长和半焦距,则⎩⎪⎨⎪⎧a +c =m +Ra -c =n +R ,则2c =m -n.10.解 (1)∵椭圆的焦点在x 轴上,∴设椭圆的标准方程为x 2a 2+y 2b 2=1 (a>b>0).∵2a =10,∴a =5,又∵c =4. ∴b 2=a 2-c 2=52-42=9.故所求椭圆的标准方程为x 225+y 29=1.(2)∵椭圆的焦点在y 轴上,∴设椭圆的标准方程为y 2a 2+x 2b2=1 (a>b>0).由椭圆的定义知,2a = ⎝⎛⎭⎫-322+⎝⎛⎭⎫52+22+ ⎝⎛⎭⎫-322+⎝⎛⎭⎫52-22=3102+102=210, ∴a =10.又∵c =2,∴b 2=a 2-c 2=10-4=6.故所求椭圆的标准方程为y 210+x 26=1.11.解 ∵|PM|=|PA|,|PM|+|PO 1|=4, ∴|PO 1|+|PA|=4,又∵|O 1A|=23<4, ∴点P 的轨迹是以A 、O 1为焦点的椭圆, ∴c =3,a =2,b =1, ∴动点P 的轨迹方程为x 2+y 24=1. 12.C [由椭圆方程得F(-1,0),设P(x 0,y 0), 则OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 20.∵P 为椭圆上一点,∴x 204+y 203=1.∴OP →·FP →=x 20+x 0+3(1-x 204)=x 204+x 0+3=14(x 0+2)2+2. ∵-2≤x 0≤2, ∴·OP →·FP →的最大值在x 0=2时取得,且最大值等于6.]13.解 以BC 边所在直线为x 轴,BC 边中点为原点,建立如图所示坐标系,则B(6,0),C(-6,0),CE 、BD 分别为AB 、AC 边上的中线, 则|BD|+|CE|=30. 由重心性质可知|GB|+|GC| =23(|BD|+|CE|)=20. ∵B 、C 是两个定点,G 点到B 、C 距离和等于定值20,且20>12, ∴G 点的轨迹是椭圆,B 、C 是椭圆焦点. ∴2c =|BC|=12,c =6,2a =20,a =10, b 2=a 2-c 2=102-62=64,故G 点的轨迹方程为x 2100+y 264=1,去掉(10,0)、(-10,0)两点.又设G(x ′,y ′),A(x ,y),则有x ′2100+y ′264=1.由重心坐标公式知⎩⎨⎧x ′=x 3,y ′=y 3.故A 点轨迹方程为(x 3)2100+(y 3)264=1.即x 2900+y2576=1,去掉(-30,0)、(30,0)两点.。
模块综合检测(A )(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.直线x =tan 60°的倾斜角是( ) A .90° B .60° C .30° D .不存在 2.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程是( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=13.方程y =ax +1a表示的直线可能是( )4.若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )A .若α∥β,l ⊂α,n ⊂β,则l ∥nB .若α⊥β,l ⊂α,则l ⊥βC .若l ⊥n ,m ⊥n ,则l ∥mD .若l ⊥α,l ∥β,则α⊥β5.直线x -2y -3=0与圆(x -2)2+(y +3)2=9交于E ,F 两点,则△EOF (O 是原点)的面积为( )A .32B .34C .2 5D .6556.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=07.过圆x 2+y 2=4外一点M (4,-1)引圆的两条切线,则经过两切点的直线方程是( ) A .4x -y -4=0 B .4x +y -4=0 C .4x +y +4=0 D .4x -y +4=08.以等腰直角三角形ABC 斜边BC 上的高AD 为折痕,将△ABC 折成二面角C -AD -B 为多大时,在折成的图形中,△ABC 为等边三角形.( )A .90°B .60°C .45°D .30° 9.经过点M (1,1)且在两坐标轴上截距相等的直线是( ) A .x +y =2 B .x +y =1C .x =1或y =1D .x +y =2或x =y10.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为22,则a 的值为( )A .-2或2B .12或32C .2或0D .-2或011.直线3x +y -23=0截圆x 2+y 2=4得的劣弧所对的圆心角是( ) A .30° B .45° C .60° D .90° 12.在平面直角坐标系中,与点A (1,2)距离为1,且与点B (3,1)的距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条二、填空题(本大题共4小题,每小题5分,共20分)13.已知点A(-2,3,4),在y轴上有一点B,且|AB|=35,则点B的坐标为________.14.圆x2+y2+x-6y+3=0上两点P、Q关于直线kx-y+4=0对称,则k=________.15.如图,某几何体的三视图,其中主视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积为________.16.已知圆C:x2+y2-4x-6y+8=0,若圆C和坐标轴的交点间的线段恰为圆C′直径,则圆C′的标准方程为__________________.三、解答题(本大题共6小题,共70分)17.(10分)已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x-3y+16=0,CA:2x+y-2=0.求AC边上的高所在的直线方程.18.(12分)求经过点P(6,-4)且被定圆O:x2+y2=20截得的弦长为62的直线AB的方程.19.(12分)如图所示,在四棱锥P -ABCD 中,底面ABCD 为正方形,E 为侧棱PC 的中点,求证P A ∥平面EDB .20.(12分)如图所示,在四棱柱(侧棱垂直于底面的四棱柱)ABCD -A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB ∥DC .(1)求证D 1C ⊥AC 1;(2)设E 是DC 上一点,试确定E 的位置,使D 1E ∥平面A 1BD ,并说明理由.21.(12分)已知M 与两定点O (0,0)、A (3,0)的距离之比为12.(1)求M 点的轨迹方程;(2)若M 的轨迹为曲线C ,求C 关于直线2x +y -4=0对称的曲线C ′的方程.22.(12分) 如图,在五面体ABC -DEF 中,四边形ADEF 是正方形,F A ⊥平面ABCD ,BC ∥AD ,CD =1,AD =22,∠BAD =∠CDA =45°.(1)求异面直线CE 与AF 所成角的余弦值; (2)证明CD ⊥平面ABF ;(3)求二面角B -EF -A 的正切值.模块综合检测(A ) 答案1.A2.A [设圆的圆心C(0,b),则(1-0)2+(2-b )2=1,∴b =2.∴圆的标准方程是x 2+(y -2)2=1.]3.B [注意到直线的斜率a 与在y 轴上的截距1a同号,故B 正确.]4.D5.D [弦长为4,S =12×4×35=655.]6.D [直线x -2y +1=0与x =1的交点为A(1,1),点(-1,0)关于x =1的对称点为B(3,0)也在所求直线上,∴所求直线方程为y -1=-12(x -1),即x +2y -3=0.]7.A [设两切线切点分别为(x 1,y 1),(x 2,y 2),则两切线方程为x 1x +y 1y =4,x 2x +y 2y =4.又M(4,-1)在两切线上,∴4x 1-y 1=4,4x 2-y 2=4. ∴两切点的坐标满足方程4x -y =4.] 8.A [关键利用折叠前后不变的垂直关系,如图所示,可知∠BDC 为二面角的平面角,设BD =CD =a ,则可求BC =AB =AC =2a ,故∠BDC =90°.]9.D [截距相等问题关键不要忽略过原点的情况.] 10.C [圆的方程可化为(x -1)2+(y -2)2=5, 则圆心为(1,2).由点到直线的距离公式得d =|1-2+a|2=22,解得a =2或0.]11.C [可先求出圆心到直线的距离d =3,由于半径为2,设圆心角为θ,则知cos θ2=32,∴θ=60°.] 12.B [满足要求的直线应为圆心分别为A 、B ,半径为1和2的两圆的公切线,而圆A 与圆B 相交,所以公切线有两条.]13.(0,8,0)或(0,-2,0) 14.2解析 由已知可知PQ 的垂直平分线为kx -y +4=0,∴直线kx -y +4=0过圆心⎝⎛⎭⎫-12,3, ∴-12k +1=0,k =2.15.36π解析 由三视图可知,该几何体是半个圆锥,底面半径为1,高为3,故体积为16π×12×3=36π. 16.x 2+(y -3)2=1解析 圆C :x 2+y 2-4x -6y +8=0与x 轴没有交点,只与y 轴相交,取x =0,得y 2-6y +8=0解得两交点分别为(0,2)和(0,4),由此得圆C ′的圆心坐标为(0,3),半径为1,所以标准方程为x 2+(y -3)2=1.17.解 由⎩⎪⎨⎪⎧3x +4y +12=04x -3y +16=0,解得交点B(-4,0),∵BD ⊥AC ,∴k BD =-1k AC =12,∴AC 边上的高线BD 的方程为 y =12(x +4),即x -2y +4=0. 18.解 由题意知,直线AB 的斜率存在, 且|AB|=62,|OA|=25,作OC ⊥AB 于C .在Rt △OAC 中,|OC|=20-(32)2=2. 设所求直线的斜率为k ,则直线的方程为y +4=k(x -6), 即kx -y -6k -4=0.∵圆心到直线的距离为2, ∴|6k +4|1+k 2=2,即17k 2+24k +7=0,∴k =-1或k =-717.故所求直线的方程为x +y -2=0或7x +17y +26=0.19.证明 如图所示,连接AC ,BD ,交于点O ,连接EO ,因为四边形ABCD 为正方形,所以O 为AC 的中点,又E 为PC 的中点,所以OE 为△PAC 的中位线,所以EO ∥PA ,又EO ⊂平面EDB ,且PA ⊄平面EDB ,所以PA ∥平面EDB .20.(1)证明在直四棱柱ABCD -A 1B 1C 1D 1中,连接C 1D , ∵DC =DD 1,∴四边形DCC 1D 1是正方形, ∴DC 1⊥D 1C .又AD ⊥DC ,AD ⊥DD 1, DC ∩DD 1=D ,∴AD ⊥平面DCC 1D 1,D 1C ⊂平面DCC 1D 1, ∴AD ⊥D 1C .∵AD ,DC 1⊂平面ADC 1,且AD ∩DC 1=D , ∴D 1C ⊥平面ADC 1,又AC 1⊂平面ADC 1, ∴D 1C ⊥AC 1. (2)解在DC 上取一点E ,连接AD 1,AE ,设AD 1∩A 1D =M ,BD ∩AE =N ,连接MN ,∵平面AD 1E ∩平面A 1BD =MN ,要使D 1E ∥平面A 1BD ,须使MN ∥D 1E ,又M 是AD 1的中点.∴N 是AE 的中点.又易知△ABN ≌△EDN ,∴AB =DE . 即E 是DC 的中点.综上所述,当E 是DC 的中点时,可使D 1E ∥平面A 1BD .21.解 (1)设M 坐标为(x ,y),由题意得x 2+y 2(x -3)2+y 2=12,整理得(x +1)2+y 2=4.所以M 点的轨迹方程为(x +1)2+y 2=4. (2)因为曲线C :(x +1)2+y 2=4,所以C 关于直线2x +y -4=0对称的曲线C ′是与C 半径相同的圆,故只需求C ′的圆心坐标即可,设C ′的圆心坐标(x 0,y 0).由题意得⎩⎨⎧y 0x 0+1=122·x 0-12+y 02-4=0,解得⎩⎨⎧x 0=195y 0=125.故曲线C ′的方程为⎝⎛⎭⎫x -1952+⎝⎛⎭⎫y -1252=4.22.(1)解 因为四边形ADEF 是正方形, 所以FA ∥ED .所以∠CED 为异面直线CE 与AF 所成的角. 因为FA ⊥平面ABCD ,所以FA ⊥CD . 故ED ⊥CD .在Rt △CDE 中,CD =1,ED =22, CE =CD 2+ED 2=3,所以cos ∠CED =ED CE =223.所以异面直线CE 与AF 所成角的余弦值为223.(2)证明 如图,过点B 作BG ∥CD ,交AD 于点G ,则∠BGA =∠CDA =45°.由∠BAD =45°,可得BG ⊥AB ,从而CD ⊥AB .又CD ⊥FA ,FA ∩AB =A , 所以CD ⊥平面ABF .(3)解 由(2)及已知,可得AG =2,即G 为AD 的中点. 取EF 的中点N ,连接GN ,则GN ⊥EF . 因为BC ∥AD ,所以BC ∥EF .过点N 作NM ⊥EF ,交BC 于点M ,则∠GNM 为二面角B -EF -A 的平面角. 连接GM ,可得AD ⊥平面GNM , 故AD ⊥GM ,从而BC ⊥GM .由已知,可得GM =22.由NG ∥FA ,FA ⊥GM ,得NG ⊥GM .在Rt △NGM 中,tan ∠GNM =GM NG =14.所以二面角B -EF -A 的正切值为14.。