江苏中考数学复习考点精练:第27课时与圆有关的计算
- 格式:doc
- 大小:369.50 KB
- 文档页数:9
苏教版九年级上册数学重难点突破知识点梳理及重点题型巩固练习《圆》全章复习与巩固—知识讲解(提高)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可; ②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. (3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有 点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为.(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA 、OB、OC 分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的基础知识【362179 课程名称:《圆》单元复习:经典例题3】1. 如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行(或重合)的直线与⊙O有公共点, 设OP=x,则x的取值范围是().≤x≤2C.0≤x≤2 D.x>2 A.-1≤x≤1 B.2【答案】B;【解析】如图,平移过P点的直线到P′,使其与⊙O相切,设切点为Q,连接OQ,由切线的性质,得∠OQP′=90°,∵OA∥P′Q,∴∠OP′Q=∠AOB=45°,∴△OQP′为等腰直角三角形,在Rt△OQP′中,OQ=1,OP′=2,∴当过点P且与OA平行的直线与⊙O有公共点时,0≤OP≤,当点P在x轴负半轴即点P向左侧移动时,结果为-2≤OP≤0.故答案为:-2≤OP≤2.【点评】本题考查了直线与圆的位置关系问题.关键是通过平移,确定直线与圆相切的情况,求出此时OP的值.举一反三:【变式】如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OB平行的直线于⊙O有公共点,设P(x,0),则x的取值范围是().A.-1≤x<0或0<x≤1 B.0<x≤1 C.-2≤x<0或0<x≤2 D.x>1【答案】∵⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,∴过点P′且与OB平行的直线与⊙O相切时,假设切点为D,∴OD=DP′=1,OP′=2,∴0<OP≤2,同理可得,当OP与x轴负半轴相交时,-2≤OP<0,∴-2≤OP<0,或0<OP≤2.故选C.类型二、弧、弦、圆心角、圆周角的关系及垂径定理,2.如图所示,已知在⊙O中,AB是⊙O的直径,弦CG⊥AB于D,F是⊙O上的点,且CF CB BF交CG于点E,求证:CE=BE.【答案与解析】证法一:如图(1),连接BC ,∵ AB 是⊙O 的直径,弦CG ⊥AB ,∴ CB GB =.∵ CF BC =,∴ CF GB =.∴ ∠C =∠CBE .∴ CE =BE .证法二:如图(2),作ON ⊥BF ,垂足为N ,连接OE . ∵ AB 是⊙O 的直径,且AB ⊥CG ,∴ CB BG =.∵ CB CF =,∴ CF BC BG ==.∴ BF =CG ,ON =OD .∵ ∠ONE =∠ODE =90°,OE =OE ,ON =OD , ∴ △ONE ≌△ODE ,∴ NE =DE . ∵ 12BN BF =,12CD CG =, ∴ BN =CD ,∴ BN-EN =CD-ED ,∴ BE =CE .证法三:如图(3),连接OC 交BF 于点N .∵ CF BC =,∴ OC ⊥BF . ∵ AB 是⊙O 的直径,CG ⊥AB ,∵ BG BC =,CF BG BC ==.∴ BF CG =,ON OD =.∵ OC =OB ,∴ OC-ON =OB-OD ,即CN =BD .又∠CNE =∠BDE =90°,∠CEN =∠BED , ∴ △CNE ≌△BDE ,∴ CE =BE .【点评】上述各种证明方法,虽然思路各异,但都用到了垂径定理及其推论.在平时多进行一题多解、一题多证、一题多变的练习,这样不但能提高分析问题的能力,而且还是沟通知识体系、学习知识,使用知识的好方法.举一反三:【362179 课程名称:《圆》单元复习 :经典例题1-2】【变式】如图所示,在⊙O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )A .19B .16C .18D .20【答案】如图,延长AO交BC于点D,过O作OE⊥BC于E.则三角形ABD为等边三角形,DA=AB=BD=12,OD=AD-AO=4在Rt△ODE中,∠ODE=60°,∠DOE=30°,则DE=12OD=2,BE=BD-DE=10OE垂直平分BC,BC=2BE=20. 故选D类型三、与圆有关的位置关系3.一个长方体的香烟盒里,装满大小均匀的20支香烟.打开烟盒的顶盖后,二十支香烟排列成三行,如图(1)所示.经测量,一支香烟的直径约为0.75cm,长约为8.4cm.(1)试计算烟盒顶盖ABCD的面积(本小题计算结果不取近似值);(2)制作这样一个烟盒至少需要多少面积的纸张(不计重叠粘合的部分,计算结果精确到,取)0.1cm3173..【答案与解析】(1)如图(2),作O1E⊥O2O3()3333332844AB cm +∴=⨯+=∴四边形ABCD 的面积是:(2)制作一个烟盒至少需要纸张:.【点评】四边形ABCD 中,AD 长为7支香烟的直径之和,易求;求AB 长,只要计算出如图(2)中的O 1E长即可.类型四、圆中有关的计算4.(2015•丹东)如图,AB 是⊙O 的直径,=,连接ED 、BD ,延长AE 交BD 的延长线于点M ,过点D 作⊙O 的切线交AB 的延长线于点C . (1)若OA=CD=2,求阴影部分的面积; (2)求证:DE=DM .【答案与解析】解:如图,连接OD , ∵CD 是⊙O 切线, ∴OD ⊥CD ,∵OA=CD=2,OA=OD , ∴OD=CD=2,∴△OCD 为等腰直角三角形, ∴∠DOC=∠C=45°, ∴S 阴影=S △OCD ﹣S 扇OBD=﹣=4﹣π;(2)证明:如图,连接AD , ∵AB 是⊙O 直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.【点评】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.举一反三:【变式】(2015•贵阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【答案】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF+S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.类型五、圆与其他知识的综合运用5..【答案与解析】延长DB至点E,使BE=DC,连结AE∵△ABC是等边三角形∴∠ACB=∠ABC=60°,AB=AC∴∠ADB=∠ACB=60°∵四边形ABDC是圆内接四边形∴∠ABE=∠ACD在△AEB和△ADC中,∴△AEB≌△ADC∴AE=AD∵∠ADB=60°∴△AED是等边三角形∴AD=DE=DB+BE∵BE=DC∴DB+DC=DA.【点评】由已知条件,等边△ABC可得60°角,根据圆的性质,可得∠ADB=60°,利用截长补短的方法可得一个新的等边三角形,再证两个三角形全等,从而转移线段DC.本例也可以用其他方法证明.如:(1)延长DC至F,使CF=BD,连结AF,再证△ACF≌△ABD,得出AD=DF,从而DB+CD=DA.(2)在DA上截取DG=DC,连结CG,再证△BDC≌△AGC,得出BD=AG,从而DB+CD=DA.6.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π【答案】B;【解析】阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=6π故选B.【点评】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.即可求解.举一反三:【变式】某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( ).A. B.72 C.36 D.72【答案】本题解法很多,如两个小半圆面积和减去两个弓形面积等.但经过认真观察等腰直角三角形其对称性可知,阴影部分的面积由两个小半圆面积与三角形面积的和减去大半圆面积便可求得,所以由已知得直角边为,小半圆半径为(cm),因此阴影部分面积为. 故选C.。
第六章圆第27课时与圆有关的位置关系江苏近4年中考真题精选(2013~命题点1 点、直线与圆的位置关系(2016年连云港8题,2015年盐城16题,2014年常州8题,2013年常州6题)1. (2013常州6题2分)已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是( )A。
相离 B. 相切 C。
相交 D. 无法判断2. (2016连云港8题3分)如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点..A·外.恰好有3个在圆内,则r的取值范围为( )第2题图A。
2错误!<r<错误! B. 错误!<r<3错误!C。
错误!<r<5 D。
5<r<错误!3。
(2014常州8题2分)在平面直角坐标系xOy中,直线l经过点A(-3,0),点B(0,3),点P的坐标为(1,0),⊙P与y轴相切于点O,若将⊙P沿x轴向左平移,平移后得到⊙P′(点P的对应点为P′),当⊙P′与直线l相交时,横坐标为整数的点P′共有( ) A。
1个 B。
2个 C. 3个 D. 4个第4题图4。
(2015盐城16题3分)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是________.命题点2 错误!(2016年12次,2015年11次,2014年12次,2013年13次)5。
(2015南京6题2分)如图,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分别与⊙O相切于E、F、G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为( )第5题图A。
错误! B. 错误! C. 错误!错误!D。
2错误!6。
(2014无锡8题3分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是( )A. 3 B。
课时训练(二十七)圆的基本概念和性质(限时:30分钟)|夯实基础|1。
到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C。
三条中线的交点D。
三条边的垂直平分线的交点2。
如图K27-1,在半径为5 cm的☉O中,弦AB=6 cm,OC⊥AB于点C,则OC= ()图K27-1A。
3 cm B.4 cm C.5 cm D。
6 cm3.如图K27-2,AB为☉O的直径,点C在☉O上,若∠ACO=50°,则∠B的度数为()图K27—2A.60° B。
50° C.40° D。
30°4.[2017·苏州]如图K27-3,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的☉O交AB 于点D,E是☉O上一点,且=,连接OE,过点E作EF⊥OE,交AC的延长线于点F,则∠F的度数为()图K27-3A。
92° B.108° C.112°D.124°5.如图K27-4所示,点P在以AB为直径的半圆O内,连接AP,BP,并延长分别交半圆于点C,D,连接AD,BC,并延长交于点F,作直线PF,与AB交于点E,下列说法一定正确的是()图K27-4①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF。
A。
①③ B.①④C。
②④D。
③④6.[2018·无锡]如图K27—5,点A,B,C都在☉O上,OC⊥OB,点A在劣弧上,且OA=AB,则∠ABC= 。
图K27-57.[2018·南通]如图K27—6,AB是☉O的直径,点C是☉O上的一点,若BC=3,AB=5,OD⊥BC 于点D,则OD的长为.图K27-68。
[2018·嘉兴]如图K27—7,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10 cm,点D在量角器上的读数为60°,则该直尺的宽度为cm.图K27-79.[2016·扬州]如图K27—8,☉O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC的长为.图K27-810.[2017·盐城]如图K27—9,将☉O沿弦AB折叠,点C在上,点D在上,若∠ACB=70°,则∠ADB= °.图K27-911.[2017·南京]如图K27—10,四边形ABCD是菱形,☉O经过点A,C,D,与BC相交于点E,连接AC,AE,若∠D=78°,则∠EAC= 。
第27课时 与圆有关的位置关系 学案【考点梳理】:1.弧长公式:l 弧=n360×2πr2.扇形的面积公式:(1)S 扇形=n 360×πr 2;(2)S 扇形=12lr .3.正多边形与圆(1)正多边形:各边相等 ,各角 相等 的多边形叫做正多边形. (2)正n 边形酌内角和=(n -2)×180° ;正n 边形的每个内角度数=180(2)n n︒- ; (3)正n 边形外角和=360°;正n 边形的每个外角度数=360n︒. 【典例分析】【例1】 (1)扇形的半径为30cm ,圆心角为120°,此扇形的弧长是 ( ) A .20πcm B .10 πcm C .10 cm D .20 cm(2)半径为6,圆心角为120°的扇形的面积是 ( ) A .31π B .61π C .91π D .12π (3)4若一个正多边形的内角和是900°,则这个多边形的边数为________(4)如图,半圆O 的直径AB =2,弦CD ∥AB ,∠COD = 90°,则图中阴影部分的面积为________(5)如图,在Rt △ABC 中,∠A =30°,BC =23,以直角边AC 为直径作⊙O 交AB 于点D ,则图中阴影部分的面积是( ) A32π B32π C6π- D6π-【例2】(1)如图,在△ABC 中,∠ACB =90°,∠ABC =30°,AB =2,将△ABC 绕直角顶点C 逆时针旋转60°得△A'B'C ,则点B 转过的路径长为( )A .3πB.3 C .23π D .π(2)如图,△ABC 是正三角形,曲线CDEF …叫做“正三角形的渐开线”,其中⌒CD ,⌒DE , ⌒EF .……的圆心按点A ,B ,C 循环.如果AB =1,那么曲线CDEF 的长是________(结果保留π)(3)如图,半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA ,OB 为直径作半圆,则图中阴影部分的面积为________cm 2.FED ABC【例3】如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作⊙O 的切线DF ,交AC 于点F .(1)求证:DF ⊥AC ;(2)若⊙O 的半径为4,∠CDF =22.5°,求阴影部分的面积【随堂演练】1.如图,要拧开一个边长为a =6mm 的正六边形螺帽,扳手张开的开口b 至少为( )A.62 mmB.12 mmC.63 mm D.43 mm2.如图,以AD 为直径的的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E .B ,E 是半圆弧的三等分点,弧BE 的长为2π/3,则圆中阴影部分的面积为 ( )A .9πB C 32π D . 23π 3.如图,等腰直角△ABC 中,AB =AC =8,以AB 为直径的半圆O 交斜边BC 于D ,则阴影部分面积为(结果保留π)( )A.24-4πB.32一4πC.32-82πD.164.如图,AB 为半圆的直径,且AB =4,半圆绕点B 顺时针转45°,点A 旋转到A'的位置,则图中阴影部分的面积为 ( )A .πB .2πC .π2D .4π5.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1.将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,则图中阴影部分的面积是A .π6B .π3C .π2 -12D .126.如图,矩形ABCD 的边AB =1,BE 平分∠ABC ,交AD 于点E ,AD =2AB ,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是________;DOCA B7.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积__________;8.如图,⊙A与⊙B外切于⊙O的圆心O,⊙O的半径为1,则阴影部分的面积是____.9.如图,Rt△ABC的边BC位于直线l上,AC=3,∠ACB=90°,∠A=30°,若由现在的位置向右无滑动翻转,当点A第3次落在直线l上时,点A所经过的路线的长为___________(结果用含根号和π的式子表示)。
第六章圆
第27课时与圆有关的计算
江苏中考真题精选
命题点1 弧长和扇形面积计算(近3年39套卷,2015年考查3次,2014年考查4次,
2013年考查5次)
1. (2013淮安5题3分)若扇形的半径为6,圆心角为120°,则此扇形的弧长是()
A. 3π
B. 4π
C. 5π
D. 6π
2. (2014常州12题3分)已知扇形的半径为3 cm,此扇形的弧长是2π cm,则此扇形的圆心角等于度,扇形的面积是_______.(结果保留π)
3.
(2015盐城17题3分)如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E ,则的长度为________.
第3题图第4题图
4.
(2013扬州15题3分)如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为_________.
5.
(2014连云港15题3分)如图①,折线段AOB将面积为S的⊙O分成两个扇形,大扇形、小扇形的面积分别为S1、
S2.若=0.618,则称分成的小扇形
...为“黄金扇形”.生活中的折扇(如图②)大致是“黄金扇形”,则“黄金扇形”的圆心角约为________°.(精确到0.1)
第5题图
6.
(2015苏州24题8分)如图,在△ABC中,AB=AC,分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.
(1)求证:AD平分∠BAC;
(2)若BC=6,∠BAC=50°,求、的长度之和(结果保留π).
第6题图
7.
(2014苏州27题10分)如图,已知⊙O上依次有A,B,C,D四个点,=,连接AB,AD,BD,弦AB不经过圆心O.延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.
(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;
(2)求证:BF=BD;
(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系.
第7题图
命题点2圆锥、圆柱的相关计算(近3年39套卷,2015年考查2次,2014年考查1
次,2013年考查4次)
1. (2013无锡6题3分)已知圆柱的底面半径为3 cm,母线长为 5 cm,则圆柱的侧面积是()
A. 30 cm2
B. 30π cm2
C. 15 cm2
D. 15π cm2
2. (2013南通8题3分)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4 cm,底面周长是6π cm,则扇形的半径为()
A.3 cm
B.5 cm
C.6 cm
D. 8 cm
第2题图第4题图
3.
(2015徐州18题3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径为______ __.
4. (2014南京14题2分)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥底面圆的半径r=2 cm,扇形的圆心角θ=120°,则该圆锥的母线长l为_______cm.
命题点3阴影部分面积的计算(近3年39套卷,2015年考查2次,2014年考查2
次,2013年考查3次)
1.
(2014扬州6题3分)如图,已知正方形的边长为1,若圆与正方形的四条边都相切,则阴影部分的面积与下列各数最接近的是()
A. 0.1
B. 0.2
C. 0.3
D. 0.4
第1题图第2题图
2.
(2015苏州9题3分)如图,AB为⊙O的切线,切点为点B,连接AO,AO与⊙O交于点C,BD为⊙O的直径,连接CD.若∠A =30°,⊙O的半径为2,则图中阴影部分的面积为()
A. B. C. π- D.
3.。