余角、补角的概念和 性质
- 格式:doc
- 大小:25.00 KB
- 文档页数:2
余角和补角的定义和性质
什么是余角和补角:
余角和补角是两个平行四边形中两个角间的性质,在一条平行四边形中,所有相邻的两个角相加总和为360°,其中有一个角称为余角,另外一个角称为补角。
余角的性质:
余角是平行四边形中所有相邻的两个角相加,余出的那个角,余角小于180°,在正六边形、正八边形、正十边形等多边形中,所有的角都是余角。
补角的性质:
补角是平行四边形中所有相邻的两个角相加,补到360°的那个角,补角大于180°,在正六边形、正八边形、正十边形等多边形中,所有的角有一个是补角。
余角和补角的关系:
余角与补角是平行四边形中一种互补的关系,它们的总和总是等于360°。
例如,如果一个角为100°,它的余角是100°,它的补角就是260°;如果一个角是240°,它的补角就是240°,它的余角就是120°。
余角和补角是平行四边形中两个相邻角之间的性质,它们的总和等于360°,其中一个角被称为余角,另一个角被称为补角,余角小于180°,而补角大于180°,它们之间有着一种互补的关系。
余角、补角的概念余角、补角是几何图形中两个重要的数量关系角概念,与角的位置无关.它们分别与两个特殊角直角、平角联系起来,在分析几何图形角的关系时占有十分重要的地位.借助余角、补角的概念,我们可以探究出它们很多有用的性质.由于余角、补角是数量关系角,而方程所表达的是一种相等的数量关系,因此借助方程求解余角、补角问题是最常用的思想方法.一、正确理解互余、互补⑴互余、互补是指两个角的数量关系,而不是三个或更多角的关系.两个角的和等于90°(直角)时,称这两个角互为余角.而三个或更多角的和也为90°(直角)时,则不能称它们互为余角.两个角的和等于180°(平角)时,称这两个角互为补角.而三个或更多角的和也为180°(平角)时,则不能称它们互为补角.⑵余角、补角都是一种“相互”关系.如∠1、∠2互余,即∠1+∠2=90°,此时∠1叫∠2的余角,而∠2也叫∠1的余角.同时一个角∠α的余角都可以用90°-∠α来表示.⑶余角、补角都是数量关系角,与位置关系无关.余角、补角都是数量关系角,与位置关系无关.因此考虑两个角是否互余、互补,只考虑角的大小,而不需考虑这两个角是否有公共顶点、公共边等关系二、余角、补角性质的探究①两角互余,则这两个角必都为锐角;②两角互补,则这两个角不可能同时为锐角或钝角.(只可能1锐1钝或两个角都为直角)③一个角的余角必为锐角;④一个角的补角可能为锐角、直角、钝角.(其中锐角的补角为钝角、钝角的补角为锐角、直角的补角还是直角.)⑤一个锐角的补角比这个角的余角大90°⑥同角或等角的余(补)角相等三、巧用方程求解余角、补角问题两点注意:⑴正确设未知数并用含所设未知数的式子表示出相关的量:一般设某个角为x,根据余角、补角定义,则这个角的余角为90-x,这个角的补角为180-x.⑵依据已知条件,寻找出正确的相等关系,列出方程.例.⑴互余且相等的两个角,各是多少度?⑵已知∠A和∠B互为余角,∠A与∠C互为补角,∠B和∠C的和等于周角的.求∠A+∠B+∠C的度数.分析:⑴设其中一个角为x,由两角互余,则另一个角为90-x.又这两角相等,∴x=90-x 解得 x=45⑵设∠A=x,依题意∠B=90-x,∠C=180-x由∠B和∠C的和等于周角的,∴(90-x)+(180-x)=×360解得 x=75 ∴∠B=90-x=15 ∠C=180-x=105∴∠A+∠B+∠C=75+15+105=185°。
余角、补角的概念和性质
教学目标 1、通过现实情境,掌握余角和补角的概念;
2、使学生能用简单的代数思想——方程思想来处理图形的数量关系;
3、培养学生的识图能力、发展空间观念和知识运用能力,进一步感受学习数学的意义。
教学重点
认识角的互余、互补关系
教学难点认识角的互余、互补关系
学情分析
本节内容是《4.3角》这一节中的第三节,在前面知识的学习过程中,学生已经经历了一些探索、发现的数学活动,积累了初步的数学活动经验。
具备了一定的图形认识能力和借助图形分析和解决问题的能力,同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
我校学生学习基础比较薄弱,识图能力较差,基于以上原因,为更好的使学生理解余角和补角的概念,并为下一节性质作铺垫,特制定此教学内容。
学法指导
通过学生动脑想,勤钻研,主动地学习,增加学生主动参与的机会,增加学生的参与意识,教给学生获取知识的途径,思考问题的方法。
教学过程
教学内容教师活动学生活动效果预测(可能出现的问题)补救措施w 修改意见
一、创设情境,引入新课:
二、新课:
三、巩固练习
四、课堂小结
五、作业布置
1、让学生观察意大利著名建筑比萨斜塔。
比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。
设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。
提出问题:图中∠1与∠2、∠3与∠4有什么关系?
2、引出课题并板书:余角与补角
(一)、探究互余的定义:
1、操作多媒体演示。
引导观察图形的运动,得出结果:∠1+∠2=90°
2、定义:如果两个角的和等于90°(直角),就说这两个角互为余角. 简称互余。
其中一个角是另一个角的余角。
(二)、探究互为补角的定义:
1、操作多媒体演示。
引导观察图形的运动,得出结果:∠3+∠4=180°。
2、定义:如果两个角的和等于180°(平角),就说这两个角互为补角. 简称互补。
其中一个角是另一个角的补角。
(三)、练习(课件出示)
1、帮∠α找朋友。
小结1:互为余角、互为补角主要反映两个角之间的数量关系,与角的位置无关。
2、一个角的补角是它的余角的4倍,求这个角的余角是多少度?
3、如图两堵墙围一个角∠AOB ,但人不能进入围墙,我们如何去测量这个角的大小呢?
(四)、延伸(课件演示)
1 、等角的余角之间的关系
2、等角的补角之间的关系
课件出示巩固练习3小题,引导学生完成。
学生完成后引导评议
1、这节课我们主要学习了什么?(课件展示,引导小结)
P139习题第6题学生观察意大利著名建筑比萨斜塔。
思考提出的问题。
观察图形的运动,得出结果:∠1+∠2=90°
引导观察图形的运动,得出结果:∠3+∠4=180°
完成老师课件出示的练习题:先独立思考后小组交流
引导观察图形,得出:
1、等角的余角相等
2、等角的补角之间的关系相等
完成老师课件出示巩固练习3小题。
后交流评价
板书设计 4.3.3余角与补角
参考书目及
推荐资料
教学反思
文章
来源莲山
课件w w w.5y K J.Co m
相关教案:
∙ 2.1余角与补角导学案
∙余角与补角导学案。