《余角和补角》教学设计 [
- 格式:docx
- 大小:13.86 KB
- 文档页数:2
数学教案-余角和补角一、教学目标1.理解余角和补角的概念。
2.掌握余角和补角的性质。
3.学会应用余角和补角的知识解决实际问题。
二、教学内容1.余角和补角的定义。
2.余角和补角的性质。
3.余角和补角的应用。
三、教学重点与难点1.重点:理解余角和补角的概念及性质。
2.难点:灵活运用余角和补角的知识解决问题。
四、教学过程第一环节:导入新课1.利用多媒体展示一张图片,图片中有两个相交的直线和一个角。
2.引导学生观察这个角,提问:“这个角有什么特点?”第二环节:探究新知1.余角的定义(1)讲解余角的定义,即一个角的余角等于90°减去这个角的度数。
(2)举例说明,如:30°的余角是60°,60°的余角是30°。
(3)让学生尝试找出几个角的余角。
2.补角的定义(1)讲解补角的定义,即一个角的补角等于180°减去这个角的度数。
(2)举例说明,如:45°的补角是135°,135°的补角是45°。
(3)让学生尝试找出几个角的补角。
3.余角和补角的性质(1)讲解余角和补角的性质,如:互为余角的两个角的和等于90°,互为补角的两个角的和等于180°。
(2)让学生通过举例验证这些性质。
第三环节:巩固练习1.让学生独立完成课本上的练习题,巩固余角和补角的概念及性质。
2.对学生的作业进行点评,指出错误和不足之处。
第四环节:拓展提高1.提问:“在日常生活中,你们能找到哪些与余角和补角有关的现象?”2.学生分享自己的发现,教师给予点评和指导。
第五环节:课堂小结2.强调余角和补角在实际生活中的重要性。
五、作业布置1.完成课后习题,巩固所学知识。
2.收集生活中的余角和补角现象,下节课分享。
六、教学反思本节课通过讲解、举例、练习等形式,让学生掌握了余角和补角的概念、性质及运用。
在教学过程中,注意引导学生主动参与,培养学生的观察能力和思维能力。
《余角和补角》教案教学目标课题 6.3.3 余角和补角授课人素养目标1.理解余角、补角的概念.2.探索并掌握同角(等角)的余角相等、同角(等角)的补角相等.3.通过余角和补角的学习过程,进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理.教学重点角的互余、互补关系及其性质.教学难点通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质.教学活动教学步骤师生活动活动一:创设情境,导入新课【情境引入】意大利著名建筑比萨斜塔的塔身与地面、塔身与垂直于地面的方向会形成夹角.图中的∠1和∠2、∠3和∠4分别有怎样的数量关系呢?经测量可知:∠1+∠2=90°,∠3+∠4=180°.学完本节课,你就知道啦!下面我们一起走进本节课的学习.【教学建议】教师不要限制学生的思维,鼓励学生思考解决方案,并敢于表达自我.设计意图为学生创设一种思考的情境,自然而然地导入,为本节课的探究活动做好铺垫.活动二:实践探究,获取新知探究点1余角和补角的概念问题1(1)在一副三角尺中,大家观察一下每个三角尺的度数有什么特点?每个三角尺都有一个角是90°,而其他两个角的和是90°(30°+60°=90°,45°+45°=90°).知识引入:(2)钝角有余角吗?钝角没有余角,只有锐角有余角.问题2 类似地,如果两个角的和等于180°(平角),这两个角有什么数量关系?知识引入:【教学建议】教师提醒学生注意区分互补和互余,前者两角的和是180°,后者两角的和是90°,在对比中记忆.根据余角和补角的概念,我们能够直接得出互余(补)两角之间的数量关系.设计意图从直观的角度去感受互为余(补)角的概念.并用语言去表达这个概念,培养口头表达能力.教学步骤师生活动追问改变问题1,2中∠1与∠2(或∠3与∠4)的位置关系,它们仍然互余(互补)吗?因为∠1+∠2=90°,∠3+∠4=180°,所以∠1和∠2仍互余,∠3和∠4仍互补.例1 (教材P177例4)如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC. 图中哪些角互为余角?分析:互为余角的两个角的和是90°,而已知条件中隐含互为补角的条件,再利用角平分线的条件,便可以发现互为余角的角.解:因为点A,O,B在同一条直线上,所以∠AOC和∠BOC互为补角. 又因为射线OD和射线OE分别平分∠AOC和∠BOC,所以所以∠COD和∠COE互为余角.同理,∠AOD和∠BOE,∠AOD和∠COE , ∠COD和∠BOE也互为余角.【对应训练】教材P177练习第1,2,4题.【教学建议】提醒学生注意:互为补角和互为余角反映的是角的数量关系,而非角的位置关系.教科书在画图时(图6.3-13,图6.3-14)把互为补角或互为余角的角画成互相分离的样子,是为了避免学生误认为互为补角或互为余角的两角一定有公共顶点和公共边(例如学生容易混淆补角和邻补角).设计意图探究点2余角和补角的性质问题1已知∠1与∠2互为余角,∠1与∠3互为余角,那么∠2与∠3的大小有什么关系?请说明理由.因为∠1与∠2互为余角,所以∠2=90°-∠1.因为∠1与∠3互为余角,所以∠3=90°-∠1,所以∠2=∠3.教师归纳:同角(等角)的余角相等.问题2已知∠1与∠2互为补角,∠1与∠3互为补角,那么∠2与∠3的大小有什么关系?请说明理由.因为∠1与∠2互为补角,所以∠2=180°-∠1.因为∠1与∠3互为补角,所以∠3=180°-∠1,所以∠2=∠3.教师归纳:同角(等角)的补角相等.例2如图,如果∠AOB=∠COD=90°,那么∠1与∠2有什么数量关系?为什么?解:∠1=∠2. 理由:因为∠AOB=∠COD=90°,所以∠1+∠BOC=90°,∠2+∠BOC=90°,所以∠1=∠2.【对应训练】如图,点C,O,E在同一条直线上,∠AOB=∠EOD=90°.比较∠1与∠3的大小,并说明理由.解:∠1=∠3. 理由:因为∠DOE=90°,所以∠DOC=180°-∠DOE=90°.因为∠DOC=∠AOB=90°,所以∠DOC-∠2=∠AOB-∠2,所以∠1=∠3. 【教学建议】这里开始要让学生简单说理,要求学生能用数学语言表达思考过程,不要求严格的推理形式.【教学建议】例题和习题是两个补充的说理题,旨在进一步强化学生的说理能力.教师引导学生分析角重叠时的角度关系.通过对两个问题的分析得出关于余角和补角的两个性质,开始让学生简单说理,用数学语言表达自己的思考过程,逐步强化推理能力.教学步骤师生活动活动三:典例精析,巩固提升例3一个角的余角与这个角的3倍互补,求这个角的度数.解:设这个角的度数为x°.根据题意得90-x+3x=180.解得x=45.所以这个角的度数是45°.【对应训练】教材P177练习第3题.【教学建议】教师引导学生厘清相等关系:设计意图综合余角、补角的概念和性质,培养学生用方程思想解题.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.余角和补角的概念是什么?2.余角和补角的性质是什么?【知识结构】【作业布置】1.教材P178习题6.3第2(3)(4),4,7,11题.2.《创优作业》主体本部分相应课时训练.板书设计教学反思本节课在具体的教学过程中坚持“数形结合”,从学生熟悉的知识着手,例如讲解余角和补角的性质时,先以数的形式出现,然后在练习中再强化从图形上形象地理解性质,激发学生的学习兴趣,促成好的学习方法,养成良好的学习习惯.解题大招余角、补角与三角尺的结合以三角尺为背景的角的问题(30°,60°,45°,90°),寻找图形中角之间的和、差关系并结合余角、补角的性质求角的度数或角之间的关系.例如图,把一副三角尺按不同的方式摆放,其中∠α与∠β不相等的是(C)课后·知能演练一、基础巩固1.将一副三角尺分别按图中甲至丁的位置摆放,下列说法错误的是()A.甲图中α与β相等B.乙图中α与β相等C.丙图中α与β互余D.丁图中α与β互补2.填写下表(若不存在,则填“无”):∠A∠A的余角∠A的补角35°25°90°60°n°(0<n<90)3.如果两个角的和等于90°,就说这两个角互为余角.如果两个角的和等于180°,就说这两个角互为补角.(1)若∠A的余角是∠α,∠A的补角是∠β,则∠α和∠β之间有怎样的数量关系?(2)若一个角的补角是这个角的余角的4倍,求这个角的度数.二、能力提升4.如图,点A,O,B在同一条直线上,过点O作射线OC,OD,OE,OF,且∠AOC和∠BOD互余,∠AOE与∠BOF互余,OA平分∠COE.(1)判断∠COE和∠DOF之间满足的数量关系,并说明理由;(2)判断OB是否平分∠DOF,并说明理由.三、思维拓展5.【探索与解决】如图1,点A,O,B在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC.(1)与∠AOD互余的角是________;(2)与∠AOD互补的角是________;(3)∠DOE是多少度?请简单写出理由.【拓展与延伸】如图2,点A,O,B不在同一条直线上,射线OD和射线OE分别平分∠AOC和∠BOC,请你直接写出∠DOE与∠AOB之间的数量关系.【课后·知能演练】1.B2.从左往右,第1行:55°,145°;第2行:65°,115°;第3行:无,90°;第4行:120°,无;第5行:(90-n)°,(180-n)°.3.解:(1)因为∠α=90°-∠A,∠β=180°-∠A,所以∠β-∠α=180°-∠A-(90°-∠A)=90°.(2)设这个角为x度,则它的余角为(90-x)度,它的补角为(180-x)度.根据题意可得180-x=4(90-x),解得x=60.答:这个角的度数为60度.4.解:(1)∠COE+∠DOF=180°,理由如下:因为∠AOC和∠BOD互余,∠AOE和∠BOF互余,所以∠AOC+∠BOD=90°,∠AOE+∠BOF=90°,所以∠COE+∠DOF=∠AOC+∠AOE+∠BOD+∠BOF=180°.(2)OB平分∠DOF,理由如下:因为OA平分∠COE,所以∠AOC=∠AOE.因为∠AOC和∠BOD互余,∠AOE与∠BOF互余,所以∠BOD=90°-∠AOC,∠BOF=90°-∠AOE,即∠BOD=∠BOF.所以OB平分∠DOF.5.解:[探索与解决](1)∠COE,∠BOE因为射线OD和射线OE分别平分∠AOC和∠BOC,所以∠AOD=∠COD=∠AOC,∠BOE=∠COE=∠BOC.因为∠AOC+∠BOC=180°,所以∠DOE=∠COD+∠COE=∠AOC+∠BOC=90°.即∠AOD+∠COE=90°,∠AOD+∠BOE=90°,所以与∠AOD互余的角是∠COE和∠BOE.(2)∠BOD因为∠AOD+∠BOD=180°,所以与∠AOD互补的角是∠BOD.(3)∠DOE是90°,理由如下:因为射线OD和射线OE分别平分∠AOC和∠BOC,所以∠COD=∠AOC,∠COE=∠BOC.因为∠AOC+∠BOC=180°,所以∠DOE=∠COD+∠COE=∠AOC+∠BOC=90°. [拓展与延伸]∠DOE=∠AOB.提示:因为射线OD和射线OE分别平分∠AOC和∠BOC,所以∠AOD=∠COD=∠AOC,∠BOE=∠COE=∠BOC.因为∠AOB=∠AOC+∠BOC,所以∠DOE=∠COD+∠COE=∠AOC+∠BOC=∠AOB.。
余角和补角教学设计3篇余角和补角教学设计3篇作为一名优秀的教育工作者,常常需要准备教学设计,借助教学设计可以提高教学效率和教学质量。
我们该怎么去写教学设计呢?下面是小编收集整理的余角和补角教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
余角和补角教学设计1教学目标1、知识目标:结合具体图形认识一个角的余角和补角,掌握余角和补角的性质2、能力目标:通过观察、猜想、推理、归纳、交流等活动,发展学生空间观念,提高学生的抽象概括能力,培养学生简单的逻辑推理能力和知识运用能力。
3、情感目标:体会观察、归纳、推理对数学知识获取的重要作用,并通过看一看,想一想,猜一猜,说一说,画一画等活动发挥学生的主动作用。
重点、难点、关键1、重点:认识角的互余、互补关系及其性质。
2、难点:通过简单的推理,归纳出余角、补角的性质。
3、关键:了解推理的意义和推理过程,是掌握性质的关键。
数学准备量角器、三角板、多媒体设备。
教学过程一、设情引入(1)(2)提问:怎样把角铁(1)变成角架(2)?教师展开模型角架(2),学生观察发现:要把角铁(1)变成角架(2),需在角架(1)上截出一个缺口。
如果要把角铁(1)弯成120°的角,你知道截去的缺口是多少度吗?要求截去的缺口是多少度,实质上是求什么呢?通过今天的学习,你将会解决这些问题。
二、探究新知 1、余角和补角的概念猜一猜,量一量,图中哪两个角的和是多少?1(答:∠1+∠2=90°,∠4+∠5=90°)象这样,如果两个角的和等于90°,那么这两个角就称为互为余角,其中一个角就叫做另一个角的余角。
类似地,如下图,∠α+∠β=180°。
象这样,如果两个角的和等于180°,那么这两个就叫做互为补角,其中一个角就叫做另一个角的补角。
想一想:(1)锐角的余角是什么角?锐角的补角是什么角?直角和余角吗?钝角呢?(2)如果∠1+∠2+∠3=90°,那么∠1、∠2、∠3互余,对吗?如果∠3+∠4=180°,那么∠3与∠4互余吗?(3)说说图中哪两个角互为余角?哪两个角互为补角(多媒体出示)2、余角和补角的性质思考:(1)如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3有什么关系?由此你可得到什么结论?(2)如果∠1与∠2互余,∠3与∠4互余,且∠1=∠3,那么∠2与∠4有什么关系?由此你可得到什么结论?学生分组讨论、交流,然后共同归纳出:由(1)可得:同角的余角相等;由(2)可得:等角的余角相等。
《余角和补角》精品教案精品一、教学内容本节课选自《初中数学》八年级下册第四章《角度与三角》,具体内容包括余角和补角的定义、性质及计算。
重点章节为4.3节和4.4节,详细内容如下:1. 余角的定义及性质;2. 补角的定义及性质;3. 求解余角和补角的计算方法。
二、教学目标1. 让学生掌握余角和补角的定义,了解它们之间的关系;2. 培养学生运用余角和补角的性质解决实际问题的能力;3. 提高学生的逻辑思维能力和空间想象能力。
三、教学难点与重点1. 教学难点:余角和补角的性质及计算方法;2. 教学重点:余角和补角的定义,以及它们在实际问题中的应用。
四、教具与学具准备1. 教具:三角板、量角器、多媒体课件;2. 学具:三角板、量角器、练习本。
五、教学过程1. 导入:通过生活中的实例(如剪刀、三角板等)引出余角和补角的概念,激发学生兴趣;2. 新课导入:讲解余角和补角的定义,以及它们之间的关系;3. 例题讲解:求解具体角的余角和补角,并说明计算方法;4. 随堂练习:让学生运用所学知识解决实际问题,巩固所学;6. 课后作业布置:布置具有代表性的作业,巩固所学知识。
六、板书设计1. 定义:余角:两个角的和等于180°的两个角;补角:两个角的和等于90°的两个角。
2. 性质:余角的性质:同角的余角相等,互余角的和为180°;补角的性质:同角的补角相等,互补角的和为90°。
3. 计算方法:求解余角:180° 已知角度;求解补角:90° 已知角度。
七、作业设计1. 作业题目:(1)求下列角的余角和补角:40°,70°,120°;(2)已知一个角的余角是50°,求这个角的度数;(3)已知一个角的补角是30°,求这个角的度数。
2. 答案:(1)余角分别为:140°,110°,60°;补角分别为:50°,20°,30°;(2)这个角的度数为130°;(3)这个角的度数为60°。
《余角和补角》教案精品一、教学内容本节课我们将学习《余角和补角》的内容。
这部分内容位于教材第四章第二节,详细内容包括:余角的定义与性质,补角的定义与性质,以及如何运用这些概念解决实际问题。
二、教学目标1. 理解并掌握余角和补角的概念。
2. 学会运用余角和补角的性质解决数学问题。
3. 培养学生的逻辑思维能力和空间想象能力。
三、教学难点与重点重点:余角和补角的定义及性质。
难点:如何运用余角和补角的性质解决实际问题。
四、教具与学具准备教具:三角板、直尺、圆规、多媒体课件。
学具:三角板、直尺、圆规、练习本。
五、教学过程1. 实践情景引入利用三角板展示一个角的补角和余角,让学生观察并思考这两个角的关系。
2. 例题讲解(1)讲解余角的定义及性质,通过例题让学生学会求一个角的余角。
(2)讲解补角的定义及性质,通过例题让学生学会求一个角的补角。
3. 随堂练习(1)让学生独立完成求一个角的余角和补角的练习题。
(2)让学生互相讨论,解决实际问题中涉及余角和补角的问题。
4. 小结5. 课堂反馈了解学生对本节课内容的掌握情况,针对问题进行解答。
六、板书设计1. 余角的定义及性质2. 补角的定义及性质3. 例题及解答过程4. 课堂小结七、作业设计1. 作业题目(2)已知一个角的补角是它的2倍,求这个角。
答案:(1)30°的余角为60°,补角为150°;45°的余角为135°,补角为135°;60°的余角为120°,补角为120°;90°的余角为0°,补角为90°。
(2)设这个角为x,则其补角为180°x。
根据题意,有180°x=2x,解得x=60°。
2. 拓展延伸(1)讨论余角和补角在生活中的应用。
(2)探讨如何运用余角和补角的性质简化计算过程。
八、课后反思及拓展延伸本节课通过实践情景引入,让学生直观地理解余角和补角的概念。
6.3.3 余角和补角教学目标1.在具体的现实情境中,理解余角、补角的概念,掌握余角和补角的性质.2.通过探索余角和补角的性质,发展几何直观和推理能力.3.体会观察、归纳、推理对获取数学猜想和论证的重要作用,初步体会数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益.重点难点重点余角、补角的概念和性质.难点通过简单的推理,归纳出余角、补角的性质,并用规范的语言描述性质.教学准备课件师生活动:教师提出问题,学生思考.教师指出:学完今天的内容就能解决这个问题了.【设计意图】通过生活问题设疑,激发学生的学习兴趣,让学生体会数学与生活的联系.高效课堂任务一:探究余角和补角的概念问题:求下列各图中的两个角的和,并根据这些和把这四个图分成两组,你是怎么分的?每一组中的两个角的和有什么共同的特点?①②③④师生活动:教师提出问题,学生讨论交流.学情预设:通过计算,②④为一组,它们的和都是90°,①③为一组,它们的和都是180°.归纳概念:如图,如果两个角的和等于90°(直角),就说这两个角互为余角,简称这两个角互余,其中一个角是另一个角的余角.符号语言:因为∠1+∠2=90∘,所以/1和/2互为余角.反之,因为/1和/2互为余角,所以∠1+∠2=90∘°(或∠1=90∘−∠2).如图,如果两个角的和等于180°(平角),就说这两个角互为补角,简称这两个角互补,其中一个角是另一个角的补角.符号语言:因为∠3+∠4=180∘,所以<3和/4互为补角.反之,因为<3和/4互为补角,所以∠3+∠4=180∘(或∠3=180∘−∠4).【设计题图】让学生通过观察,从直观的角度去感受余角和补角的概念,培养学生的观察、归纳能力及文字语言、符号语言的表述能力.练一练:图中给出的各角中,哪些互为余角?哪些互为补角?师生活动:学生根据余角和补角的概念独立解决,并口答,教师评价.学情预设:互为余角有:①与④,②与③.互为补角有:①与⑧,②与⑦,③与⑥,④与⑤.小游戏:同桌之间,一个同学说出一个角,让另一个同学说出它的余角和补角,说完之后交换角色.教师指出:同学说出的角,如果有余角和补角,则需注意这个角一定是小于90度的.【设计息图】通过练一练和小游戏,让学生再一次加深对余角和补角概念的理解,并能让学生会求一个角的余角和补角.任务二:探究余角和补角的性质问题1:/1与/2,<3都互为余角,/2与/3的大小有什么关系?师生活动:根据余角的概念,学生找出/1与<2,/3之间的数量关系,并自主探究/2与/3的大小关系,教师关注学生的表现.学情预设:因为/1与<2,<3都互为余角,所以,所以∠2=∠3.师生共同归纳余角的性质:同角的余角相等.问题2:∠1与/2互余,<3与/4互余,如果∠1=∠,那么/2与/4相等吗?为什么?师生活动:根据刚才的经验,学生可讨论交流,并书写证明过程,教师关注学生推理是否规范严谨.解:∠2与<4相等,理由如下:因为<1与/2互余,所以∠1+∠2=90∘.因为∠3与∠4互余,所以∠3+∠4=90∘,所以∠1+∠2=∠3+∠4.又因为∠1=∠3,所以∠1+∠2=,∠1+∠4,,所以∠2=∠4.师生共同归纳余角的性质:等角的余角相等.教师让学生类比探究余角性质的方法,来探究补角的性质:同角(等角)的补角相等.学生积极探讨,教师适时点评.【设计意图】通过师生合作得出余角的性质,教师引导学生学会说理,规范几何书写过程.通过类比,探究补角的性质,并独立推导证明,在多种形式的数学活动中,发展演绎推理能力.任务三:应用新知,解决问题例如图,点A,O,B在同一条直线上,射线OD和射线OE分别平分/AOC和/BOC.(1)图中相等的角有哪些?(2)求/DOE的度数.(3)图中哪些角互为余角?师生活动:教师引导学生观察图形,找到图中角之间的关系,第(2)题注意几何书写过程.解:(1)根据射线OD和射线OE分别平分∠AOC和∠BOC,,可得∠AOD=∠DOC,∠COE=∠BOE.(2∠DDD=∠DDD+∠DDD=12∠DDD+12∠DDD=12(∠DDD+∠DDD)=90∘.(3)由(2)知∠DDD=90∘,所以∠DOC和/COE互为余角.同理,∠AOD和∠BOE,,∠AOD和∠COE,,∠DOC和/BOE也互为余角.【设计意图】学生初学几何推理,将大问题分解成小问题,层层递进,从而让学生能更快更准确地解决问题,通过例题讲解巩固新知.任务四:回归情境,解决问题如图,要测量两堵围墙所形成的/AOB的度数,但人不能进入围墙,如何测量?师生活动:教师再出示情境问题,学生合作探究讨论交流,画出示意图,有两种方法可求得/AOB的度数.方法一:延长AO至D(或者延长BO至C),测得<AOC(或者<BOD)的度数,则∠AOB是它的补角.方法二:根据同角的补角相等,只要测得<COD的度数,那么∠AOB=∠COD.课堂总结教师引导学生回顾本节课所学内容:1.余角和补角的概念.2.余角和补角的性质.作业设计基础性作业:教材练习第1~3题.提高性作业:教材习题6.3第15题.板书设计6.3.3 余角和补角1.余角和补角的概念余角:如果两个角的和等于90°(直角),就说这两个角互为余角,简称这两个角互余,其中一个角是另一个角的余角补角:如果两个角的和等于180°(平角),就说这两个角互为补角,简称这两个角互补,其中一个角是另一个角的补角2.余角和补角的性质同角(等角)的余角相等,同角(等角)的补角相等3.应用新知例教学特色1.发展几何直观,深化数学理解发展学生的几何直观、培养学生的空间想象力是本节课教学的一个重要目标,应重视让学生从事动手操作、观察、思考、想象、交流等活动,为学生提供一些有意义的、有一定挑战性的学习任务,如对于余角和补角的概念和性质,鼓励学生勤思考、多动手、善交流,在活动中获得几何概念和性质,以及读图、表达、推理等技能,从而发展学生的几何直观.2.联系生活实际,注重概念理解本节内容涉及的概念与性质较多,大多数几何图形与性质是学生初次接触,且比较抽象.作为几何入门阶段的学习,要善于培养学生学习的兴趣,注意揭示所学概念与性质同现实生活的联系.本节课在情境导入时,创设了生活中测量围墙内角的度数的情境,激发了学生的学习兴趣,让学生体会到所学知识在实际生活中有着广泛的应用.本教学案例设计中通过设置一些问题,让学生体验到几何探究的乐趣,成功体会解决问题的喜悦.3.多种教学活动,培养逻辑推理学习“图形与几何”与“数与代数”的方式、方法有所不同.本节课通过自主探究、合作交流,通过练一练、小游戏等活动,加深对余角和补角概念的理解.对于余角和补角的性质,让学生独立思考,观察角之间的联系,从而得出性质.同时,要养成勇于质疑、善于说理和独立思考、认真严谨的学习习惯,逐步提升学生的空间想象能力、逻辑推理能力、动手操作能力和应用几何图形知识解决实际问题的能力.。
余角和补角教案余角和补角教案余角和补角教案1教学目标:1、知识与技能:⑴、在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。
⑵、了解方位角,能确定具体物体的方位。
2、过程与方法:进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。
3、情感态度与价值观:体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。
重、难点及关键:1、重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点。
2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。
3、关键:了解推理的意义和推理过程是掌握性质的关键。
教学过程:一、引入新课:让学生观察意大利著名建筑比萨斜塔。
比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。
设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。
二、新课讲解:1、探究互为余角的定义:如果两个角的和是90(直角),那么这两个角叫做互为余角,其中一个角是另一个角的余角。
即:1是2的余角或2是1的余角。
2、练习⑴:图中给出的各角,那些互为余角?3、探究互为补角的定义:如果两个角的和是180(平角),那么这两个角叫做互为补角,其中一个角是另一个角的补角。
即:3是4的补角或4是3的补角。
4、练习⑵:(1)图中给出的各角,那些互为补角?(2)填下列表:a的余角 a的补角53245776223x结论:同一个锐角的补角比它的余角大90。
(3)填空:①70的余角是,补角是。
②a(90)的它的余角是,它的补角是。
重要提醒:ⅰ(如何表示一个角的余角和补角)锐角a的余角是(90a )a的补角是(180a )ⅱ互余和互补是两个角的数量关系,与它们的位置无关。
5、讲解例题:例1:若一个角的补角等于它的余角4倍,求这个角的度数。
七年级数学教案余角和补角七年级数学教案余角和补角「篇一」教学目标:1.知识与技能:通过摸球游戏,了解并掌握计算一类事件发生可能性的方法,体会概率的意义。
2.过程与方法:通过本节课的学习,帮助学生更容易地感受到数学与现实生活的联系,体验到数学在解决实际问题中的作用,培养学生实事求是的态度及合作交流的能力。
3.情感与态度:通过环环相扣的、层层深入的问题设置,鼓励学生积极参与,培养学生自主、合作、探究的能力,培养学生学习数学的兴趣。
教学重点:1.概率的定义及简单的列举法计算。
2.应用概率知识解决问题。
教学难点:灵活应用概率的计算方法解决各种类型的实际问题。
教学过程:一、复习旧知1、下面事件:①在标准大气压下,水加热到100℃时会沸腾。
②掷一枚硬币,出现反面。
③三角形内角和是360°;④蚂蚁搬家,天会下雨。
不可能事件的有,必然事件有,不确定事件有。
2、任何两个偶数之和是偶数是事件;任何两个奇数之和是奇数是事件;3、欢欢和莹莹进行“剪刀、石头、布”游戏,约定“三局两胜”决定谁最终获胜,那么欢欢获胜的可能性。
4、足球比赛前裁判通过抛硬币让双方的队长猜正反来选场地,只抛了一次,而双方的队长却都没有异议,为什么?5、一个均匀的骰子,抛掷一次,它落地时向上的数可能有几种不同的结果?每一种结果的概率分别为多少?求一个随机事件概率的基本方法是通过大量的重复试验,那么能不能不进行大量的重复试验,只通过一次试验中可能出现的结果求出随机事件的概率,这就是我们今天要探究学习的“等可能事件的概率”。
二、情境导入1、任意掷一枚均匀的硬币,可能出现哪些结果?每种结果出现的可能性相同吗?正面朝上的概率是多少?2、这个袋子中有5个乒乓球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球,拿出来后再将球放回袋子中。
(1)会出现哪些可能的结果?(2)每种结果出现的可能性相同吗?它们的概率分别是多少?你是怎么得到概率的值?学生分组讨论,教师引导三、探究新知1、请大家观察前面的抛硬币、掷骰子和摸球游戏,它们有什么共同的特点?学生分组讨论,教师引导:(1)一次试验可能出现的结果是有限的;(2)每种结果出现的可能性相同。
余角和补角的教案一、教学目标1. 知识目标:理解余角的概念;掌握求余角的方法;了解补角的概念;掌握求补角的方法。
2. 能力目标:能够熟练求解余角和补角的问题;能够运用余角和补角概念解决实际问题。
3. 情感目标:培养学生对数学的兴趣和爱好;培养学生对求解问题的思考能力。
二、教学重难点1. 教学重点:求解余角和补角的方法;运用余角和补角概念解决实际问题。
2. 教学难点:能够熟练运用余角和补角概念解决实际问题。
三、教学过程Step 1 引入新知识1. 引导学生回顾角度的概念和度量方法。
2. 提问:在角度的度量中,我们还有哪些相关的概念需要了解?3. 引入余角的概念,并通过图例解释余角的含义,引导学生理解余角的概念。
Step 2 讲解求同一角的余角1. 提问:如何求同一角的余角?2. 让学生通过观察图例来总结求同一角余角的方法,并进行讲解。
3. 练习:求解给定角的余角。
Step 3 引入补角的概念1. 提问:在角度的度量中,我们还有哪些相关的概念需要了解?2. 引入补角的概念,并通过图例解释补角的含义,引导学生理解补角的概念。
Step 4 讲解求同一角的补角1. 提问:如何求同一角的补角?2. 让学生通过观察图例来总结求同一角补角的方法,并进行讲解。
3. 练习:求解给定角的补角。
Step 5 综合运用1. 让学生通过实际问题来综合运用余角和补角的概念进行解题。
2. 分组讨论,并展示解题过程和答案。
Step 6 总结归纳1. 让学生总结余角和补角的概念和求解方法。
2. 引导学生将所学的知识归纳总结。
四、课堂练习1. 求解下列各角的余角和补角:(1) 30°;(2) 45°;(3) 60°;(4) 90°;(5) 150°。
2. 应用题:小明在做一道数学题时,发现一角的度数是40°,他想知道这个角的余角和补角各是多少度?五、作业布置1. 完成课堂练习中的题目。
余角和补角教学设计教学设计:余角和补角一、教学目标:1.知识与技能目标:了解余角和补角的概念;能够判断余角和补角的关系;能够求解给定角的余角和补角。
2.过程与方法目标:通过多媒体展示、示例分析、小组合作等多种方式,激发学生的学习兴趣;通过思维导图和练习题,培养学生的逻辑思维和练习能力。
3.情感态度与价值观目标:培养学生合作学习的意识和团队合作的精神,以及对数学学习的兴趣和积极态度。
二、教学重点:1.掌握余角和补角的概念。
2.能够判断余角和补角的关系。
3.能够求解给定角的余角和补角。
三、教学难点:1.如何帮助学生理解余角和补角的概念。
2.如何培养学生的逻辑思维和练习能力。
四、教学过程:1.情境引入教师出示一个平面角,并提问:“这个角度大小是多少?”。
学生回答后,教师再问:“这个角度的余角和补角分别是多少?”引导学生思考。
2.概念讲解教师通过多媒体展示,结合示例,讲解余角和补角的概念。
并引导学生总结出以下规律:余角:两角之和等于90°;两角之差等于90°。
补角:两角之和等于180°;两角之差等于180°。
3.理解和归纳教师通过引导学生观察示例,进行分析和讨论,引导学生总结如何判断角的余角和补角。
4.思维导图教师引导学生使用思维导图的方式,将余角和补角的概念、判断关系和求解方法整理分类。
5.小组合作演练将学生分为小组,每个小组给出一个角度大小,要求分别求出余角和补角。
学生在小组内互相讨论,共同解决问题,并在黑板上展示答案。
6.讲评讲解教师批评讲解学生在小组活动中的答案,引导学生共同找出问题所在,并给予正确定理。
7.练习巩固教师提供一些练习题,让学生在课堂上完成。
通过练习的深入巩固理解,让学生对余角和补角的概念和应用更为熟练。
8.拓展练习如果还有时间,教师可以给学生提供一些拓展练习题,让学生进一步巩固和拓展知识。
五、教学评价与反思:通过这节课的教学,学生能够准确理解和运用余角和补角的概念,能够判断角的余角和补角的关系,并能够灵活运用求解任意给定角的余角和补角的方法。
《余角和补角》优质教案精品一、教学内容1. 余角的定义与性质:理解余角的定义,掌握余角的性质,能够运用余角进行简单的计算。
2. 补角的定义与性质:理解补角的定义,掌握补角的性质,能够运用补角进行简单的计算。
二、教学目标1. 知识目标:使学生掌握余角和补角的概念,理解它们之间的区别与联系,并能够运用这些知识解决实际问题。
2. 技能目标:培养学生的逻辑思维能力和解决问题的能力,提高他们在实际情境中运用角度概念的能力。
3. 情感目标:激发学生对数学学科的兴趣,培养他们的合作意识和探究精神。
三、教学难点与重点1. 教学难点:理解并区分余角和补角的概念,掌握它们的基本性质。
2. 教学重点:运用余角和补角进行计算,解决实际问题。
四、教具与学具准备1. 教具:三角板、量角器、多媒体课件。
2. 学具:练习本、三角板、量角器。
五、教学过程1. 实践情景引入利用三角板展示一个直角三角形,引导学生观察并提问:直角三角形的两个锐角之间有什么关系?2. 新课导入根据学生的回答,引出余角和补角的概念,并进行讲解。
3. 例题讲解选取一道例题,讲解如何求两个角的余角和补角,以及如何利用余角和补角进行计算。
4. 随堂练习学生独立完成练习题,巩固所学知识。
5. 课堂小结六、板书设计1. 余角和补角的定义2. 余角和补角的性质3. 例题及解答过程4. 课堂练习题目七、作业设计1. 作业题目:(1)求出下列各角的余角和补角:30°、45°、60°、90°。
(2)已知一个角的度数,求它的余角和补角,并解释它们之间的关系。
2. 答案:(1)30°的余角:60°,补角:150°;45°的余角:45°,补角:135°;60°的余角:30°,补角:120°;90°的余角:0°,补角:90°。
余角和补角优秀教学设计教案一、教学内容本节课选自《初中数学》教材第七章第二节,详细内容为余角和补角的概念及其应用。
主要包括:余角的定义、性质和计算;补角的定义、性质和计算;运用余角和补角解决实际问题。
二、教学目标1. 理解并掌握余角和补角的概念,能够辨别并计算各种角度的余角和补角;2. 能够运用余角和补角的性质解决实际问题,提高逻辑思维能力和解决问题的能力;3. 培养学生的合作意识,激发学习兴趣,提高数学素养。
三、教学难点与重点教学难点:余角和补角的性质及其应用。
教学重点:余角和补角的定义、计算及实际问题解决。
四、教具与学具准备教具:三角板、圆规、直尺、多媒体设备。
学具:练习本、铅笔、直尺、量角器。
五、教学过程1. 实践情景引入通过展示一个时钟,让学生观察并思考:当时钟的指针分别指向3和9时,两个指针之间的夹角是多少度?这个夹角与当时钟的指针指向12时,两个指针之间的夹角有何关系?2. 余角和补角的定义3. 余角和补角的性质引导学生通过观察、思考和讨论,发现余角和补角的性质:(1)互余的两个角的和为90度;(2)互补的两个角的和为180度;(3)互余或互补的两个角的乘积相等;(4)一个角的余角和补角的和等于这个角的2倍。
4. 例题讲解(1)已知一个角的度数,求它的余角和补角;(2)已知一个角的余角或补角,求这个角的度数;(3)已知两个互余或互补的角,求其中一个角的度数。
5. 随堂练习(2)已知一个角的余角为40度,求这个角的度数;(3)已知两个角的和为180度,求这两个角的补角。
六、板书设计1. 定义:余角:两个角的和为90度时,这两个角互为余角;补角:两个角的和为180度时,这两个角互为补角。
2. 性质:(1)互余角的和为90度;(2)互补角的和为180度;(3)互余或互补角的乘积相等;(4)一个角的余角和补角的和等于这个角的2倍。
3. 例题解答步骤及答案。
七、作业设计1. 作业题目:(2)已知一个角的补角为100度,求这个角的度数;(3)已知两个角的和为90度,求这两个角的余角。
《余角和补角》教学设计
知识目标:了解余角、补角的概念,掌握余角和补角的性质。
教学重难点:余角与补角的概念及性质
教学流程:
1、概念:
①如果两个角的和等于(),就说这两个角互为余角。
符号语言:如果∠α+∠β=,那么∠α和∠β互为。
反之:如果∠α与∠β互为余角,那么∠α+∠β=。
②如果两个角的和等于(),就说这两个角互为补角。
符号语言:如果∠α+∠β=,那么∠α和∠β互为。
反之:如果∠α与∠β互为补角,那么∠α+∠β=。
设计意图:让学生知道互为余角和互为补角的概念,并会用文字语言和符号语言表示。
温馨提示:互为余角、互为补角的两个角只与有关,与无关。
2、试一试:
(1)判断:
①∠1+∠2=90°,则∠1是余角()
②∠1+∠2+∠3=90°,则∠1、∠2、∠3互为余角。
()
③如果一个角有补角,那么这个角一定是钝角。
()
④钝角没有余角,但一定有补角。
()
(2)找朋友:图中给出的各角,哪些互为余角?哪些互为补角?
10°30°50°| 10°30°60°80°
60°40°80°| 100°120°150°170°
(3)已知∠α的余角是∠α的两倍,则∠α的度数是度。
设计意图:目的是让学生对余角和补角的概念有更加深化的了解和应用,并且使学生学会用方程思想来解决问题。
3、性质①等角的补角;②等角的余角。
思考题:
如果∠1与∠2互余,∠3与∠4互余,且∠1=∠3。
那么∠2与∠4相等吗?为什么?
设计意图:这道题引导学生通过独立思考、解答来证明互为余角的性质。
着重引导学生用数学语言表达思考过程,并归纳性质,培养学生由具体问题抽象出几何命题的能力和语言表达能力。
课堂小结:
这节课,使我感受最深的是……
我感到最困难的是……
我学会了什么
达标检测:
1、如果∠1+∠2=90°,∠2+∠3=90°,那么∠1=∠3的理由是;
2、已知:∠A=72°,那么∠A的余角=;∠A的补角=;
附加题:已知一个角的补角是这个角的余角的3倍,则这个角等于度。
设计意图:使教师得到反馈信息,及时了解学生的学习效果,能按时做对达标检测就达到学习目标,做到了“堂堂清”,并且将所学知识通过训练,内化为解题能力。
课后反思,设计意图:最后学案中安排学生写课后反思,这样可以使学生对照学习目标,知道自己哪些方面没有学透,以便课下及时补救。