清华大学微积分B(1)第1次习题课答案(确界、极限、子列)
- 格式:pdf
- 大小:237.15 KB
- 文档页数:14
清华微积分答案a=? f是向量值函数,可以观察,e与a平行时,f的方向导数最大,且大小a.e=||a||,称a是f的梯度场向量值函数的切平面、微分、偏导f(x)=(f1(x),f2(x),…,fm(x)),若所有fi在x0处可微,则称f在x0处可微,即f(x)=f(x0)+a(x-x0)+o(||x-x0||),其中a=(aij)m*n=?f/?x=?(f1,f2,…,fm)/?(x1,x2,…,xn)=j(f(x0)))称为f在x0处的jacobian (f的jacobian的第i行是f的fi分量的梯度,aij := ?fi/?xj)f的全微分df=adx当m=n时,f有散度div(f)和旋度curl(f)div(f) = ?.f=?f1/?x1 +…+?fm/?xm复合函数求导一阶偏导:若g=g(x)在x0可微,f=f(u) (u=g(x))在g(x0)可微,则f○g在x0处可微,j(f○g) = j(f(u)) j(g(x))具体地,对于多元函数f(u)=f(u1,…,um),其中u=g(x)即ui=g(x1,…,xn)?f/?xj= ?f/?u * ?u/?xj= sum[?f/?ui * ?ui/?xj]{for each ui in u}高阶偏导:不要忘记偏导数还是复合函数例:f(u):=f(u1,u2), u(x):=(u1(x1,x2),u2(x1,x2))?2f/(?x1)2 = 数学分析教程p151隐函数、隐向量值函数由f(x,y)=0确定的函数y=f(x)称为隐函数隐函数:1. 存在定理:若n+1元函数f(x,y)在零点(x0,y0)处导数连续,且?(f)/?(y)(x0,y0)0,则存在(x0,y0)附近的超圆柱体b=b(x0)*b(y0),使得b(x0)上的任意一点x可以确定一个y使得f(x,y)=0,即函数f 在b内确定了一个隐函数y=f(x),而且这个隐函数的一阶偏导数也连续注:如果?(f)/?(y)=0,那么在x=x0超平面上,y在x0处取得了极值,那么沿曲面被x=x0截的曲线从x0处向任意方向走,y都会减小,所以y是双值函数,不是函数,??)处,2.偏导公式:在b内的(??????????/??????=???或者说????????/????=?????不正式的证明:f(x,y)≡0, 所以?f/?xi=0,即sum[?f/?xj* ?xj/?xi]=0 (把y记做xn+1)由于x的各分量都是自变量,?xj/?xi=0 (ij)所以?f/?xi + ?f/?y * ?y/?xi=0于是立即可得上述公式隐向量值函数:1.存在定理:若x∈rn,y∈rm,m维n+m元向量值函数f(x,y)=0,在p0=(x0,y0)点的某个邻域b(p0,r)内是c(1)类函数,f(p0)=0,且?f/?y可逆,则存在p0的邻域b(x0)*b(y0),使得对于在b(x0)内的任意x,存在唯一y∈b(y0)满足f(x,y)=0,即f在b内确定了一个连续可微隐函数y=f(x)2.偏导公式:j(f) :=?(y1,…,ym)/?(x1,…,xn) :=?y/?x= -[?f/?y]-1*?f/?x注:1.求逆矩阵用伴随矩阵的方法,a-1=a*/|a|,a*是a的余子矩阵的转置2.如果只求j(f)中的一列,?(y)/?(xi)=-[?(f)/?(y)]-1* [?(f)/?(xi)]3.如果只求j(f)中的一行或者一个元素,问题退化成隐函数偏导的问题4.计算?f/?x时,忽略y是x的函数,将y当作自变量计算(从证明中可以看出原因,因为?y/?x的成分被移到了等式左侧j(f)里面),而不用偏导公式,采取对f(x,y)=0左右同时对xi求偏导的方法时,y要看做xi的函数)3.隐向量值函数的反函数:函数y=f(x)将rn映射至rm,如果j(f)= ?f/?x可逆,那么存在f的反函数x=f-1(y),且j(f-1)=[j(f)]-1注:1.求逆矩阵用伴随矩阵的方法,a-1=a*/|a|,a*是a的余子矩阵的转置2.|j(f-1)|=|j(f)|-1用参数形式给出的隐函数若有x=x(u,v),y=y(u,v),z=z(u,v),则需要列方程求曲面和曲线的切平面、法线、法向量三维空间下,函数f(x,y,z)=0确定了一个曲面。
第1章 习题参考解答习题1-11.确定下列函数的定义域: (1)912-=x y ;解:要使函数有意义,则:092>-x 即 3>x 或3-<x 所以定义域:),3()3,(+∞⋃--∞. (2)x y a arcsin log =;解:要使函数有意义,则0arcsin >x ,即10≤<x .所以函数定义域:(0,1].(3)2111x x y --+=; 解:要使函数有意义 则:21010x x -≥+≠且 即111-≠≤≤-x x 且. 所以定义域:(-1,1]. (4))32(log 213-+-=x x y a ; 解:要使函数有意义 则:03202>-≠-x x 且即232>≠x x 且所以定义域:),2()2,23(+∞⋃.(5))4(log 21arccos 2x x y a -+-=; 解:要使函数有意义,则:0412112>-≤-≤-x x 且, 即2231<<-≤≤-x x 且 所以定义域:)2,1[-(6)xy πsin 1=. 解:要使函数有意义,则:0sin ≠x π即Z k k x ∈≠,.(其中是Z 整数集) 所以定义域:_Z 或}{Z k k x x ∈≠,.2.求函数⎪⎩⎪⎨⎧=≠=000,1sin x x x y 的定义域和值域,并求2()f π和)0(f .解:定义域:),(+∞-∞. 当0≠x 时,01≠x ,故11sin 1≤≤-x. 所以值域:[-1,1]. 12sin )2(==ππf ,0)0(=f . 3.下列各题中,函数)(x f 和)(x g 是否相同,为什么?(1) 2)(,)(x x g x x f ==; 解: 不同因为||)(2x x x g ==,即)(x g 的值域是全体非负实数,而)(x f 的值域是全体实数. (2) 2sin 21)(,cos )(2x x g x x f -==; 解: 相同因为)(x f 和)(x g 的定义域均为实数R , 值域为[-1,1], 且)(cos 2sin 21)(2x f x xx g ==-= (3)1)(,11)(2-=+-=x x g x x x f ; 解: 不同因为)1(111)(2≠-=+-=x x x x x f .两函数的定义域不同.(4)0)(,)(x x g xxx f ==.解: 相同因为0()1(0),()1(0)xf x xg x x x x ==≠==≠定义域均为非零实数,在定义域内函数值恒等于1.4.设x x f sin )(=, 证明:)2cos(2sin 2)()(xx x x f x x f ∆+∆=-∆+.证明: 由三角函数的和差化积公式知:()()sin()sin f x x f x x x x +∆-=+∆-2sincos()22x x x ∆∆=+ 5.设5)(2++=bx ax x f 且38)()1(+=-+x x f x f ,试确定a , b 的值.解: 因为 5)(2++=bx ax x f 故2(1)(1)(1)5f x a x b x +=++++2(2)(5)ax a b x a b =+++++由题设3852)()1(+=++=-+x a ax x f x f所以有:82=a 且3=+b a 得:4,1a b ==-.6.下列函数哪些是偶函数? 哪些是奇函数?哪些既非奇函数又非偶函数? (1) )1(22x x y -=;解: 定义域:),(+∞-∞)()1(])(1[)()(2222x f x x x x x f =-=---=-所以函数)1(22x x y -=是偶函数. (2)323x x y -=; 解: 定义域:),(+∞-∞32323)()(3)(x x x x x f +=---=-)()(x f x f ≠-且)()(x f x f -≠-.所以函数323x x y -=是非奇非偶函数.(3)2211xx y +-=; 解: 定义域:),(+∞-∞)(11)(1)(1)(2222x f x x x x x f =+-=-+--=-所以函数2211x x y +-=是偶函数.(4))1)(1(+-=x x x y 解: 定义域:),(+∞-∞x x x x x x f -=+-=3)1)(1()()()()()(33x f x x x x x f -=+-=---=-. 所以函数)1)(1(+-=x x x y 是奇函数. (5)1cos sin +-=x x y ; 解: 定义域:),(+∞-∞()sin()cos()1f x x x -=---+sin cos 1x x =--+则)()(x f x f ≠-且)()(x f x f -≠-所以函数1cos sin +-=x x y 是非奇非偶函数.(6)2xx a a y -+=.解: 定义域:),(+∞-∞)(2)(x f a a x f xx =+=--所以函数2xx a a y -+=是偶函数.7.设)(x f 为定义在),(+∞-∞上的任意函数,证明:(1))()()(1x f x f x F -+=为偶函数;(2) )()()(2x f x f x F --=为奇函数. 证明:由题设)(x f 为定义在),(+∞-∞的函数, 则)(),(21x F x F 的定义域也为),(+∞-∞ (1) 1()()()F x f x f x =+-11()()()()F x f x f x F x ⇒-=-+= 故)(1x F 是偶函数. (2) 2()()()F x f x f x =--22()()()()F x f x f x F x ⇒-=--=- 故)(2x F 为奇函数.8. 证明: 定义在),(+∞-∞上的任意函数可以表示为一个奇函数与一个偶函数和. 证明: 设)(x f 是定义在),(+∞-∞上的任意函数,由7题知)()()(1x f x f x F -+=为偶函数, )()()(2x f x f x F --=为奇函数.且)(21)(21)(21x F x F x f +=. 故命题成立.9.设)(x f 为定义在),(L L -上的奇函数,若)(x f 在),0(L 上单增, 证明: )(x f 在)0,(L -上也单增.证明:由题设知对于(,)x L L ∀∈-,有:)()(x f x f -=-不妨设12,x x ∀满足021<<<-x x L , 则012>-<->x x L)(x f 在),0(L 上单增, 则)()(21x f x f ->-)(x f 奇函数)()(),()(2211x f x f x f x f -=--=-∴ 即 )()(21x f x f ->-)()(21x f x f <所以)(x f 在)0,(L -上也单增.10. 下列各函数中哪些是周期函数? 对于周期函数,指出其周期: (1) )2cos(-=x y解:cos(22)cos(2)x x π-+=- , 函数是周期函数且周期π2=T . (2) x y 4cos =;解: x x x 4cos )24cos()2(4cos =+=+ππ函数x y 4cos =是周期函数且周期2π=T .(3) x y πsin 1+=; 解:1sin 1sin(2)1sin (2)x x x ππππ+=++=++函数x y πsin 1+=是周期函数且周期2=T . (4) x x y cos =; 解: 非周期函数 (5) x y 2sin =; 解: 21sin (1cos 2)2x x =- 11[1cos(22)][1cos 2()]22x x ππ=-+=-+ 函数x y 2sin =是周期函数且周期π=T . (6) x x y tan 3sin +=解: )32(3sin )23sin(3sin ππ+=+=x x x ,)tan(tan π+=x x故原函数的周期为两函数sin 3,tan x x 周期π32和π的最小公倍数,即π2=T . 11.下列各组函数中哪些不构成复合函数? 把能构成复合函数的写,成复合函数,并指出定义域.(1) 3x y =,t x sin =; 解: 构成复合函数t y 3sin = 定义域: ),(+∞-∞. (2) u a y =,2x u =; 解: 构成复合函数2x a y =定义域: ),(+∞-∞. (3) u y a log =,232+=x u ; 解: 构成复合函数)22(log 2+=x y a 定义域: ),(+∞-∞. (4) u y =,2sin -=x u ;解: 不构成复合函数u y =要求0≥u 但是2sin -=x u 的值域:]1,3[--. (5) u y =,3x u =; 解: 构成复合函数3x y = 定义域: ),0[+∞.(6) u y a log =, 22-=x u . 解: 构成复合函数)2(log 2-=x y a 定义域: (,)-∞+∞ .12.下列函数是由哪些简单函数复合而成的? (1) 321)1(++=x y ;解: 321)1(++=x y 是由3u y =,21u v =+,1u x =+复合而成的(2) 2)1(ln 3+=x y ;解: 2)1(ln 3+=x y 是由u y 3=, 2v u =,1ln +=x v 复合而成的(3) )13(sin 3+=x y ;解: )13(sin 3+=x y 是由3u y =, v u sin =,13+=x v .复合而成的(4) 32cos log x y a =.解: 32cos log x y a =是由3u y =,v u a log =, 2w v =, x w cos =复合而成的 13.求下列函数的反函数:(1) x y sin 2=;]2,2[ππ-∈x解: 原函数的定义域:[,]22ππ-, 值域:]2,2[-.反解: 2arcsin y x =,得反函数:2arcsin xy =.反函数的定义域:]2,2[-,值域: [,]22ππ-(2) )2(log 1++=x y a ; 解: 原函数的定义域:),2(+∞- 值域:),(+∞-∞. 反解: 21-=-y a x . 得反函数: 21-=-x a y反函数的定义域:),(+∞-∞值域:),2(+∞-(3) 122+=x xy .解: 221111212121x x x x x y +-===-+++由于112>+x , 则11210<+<x . 原函数的定义域: ),(+∞-∞, 值域:.)1,0( 反解: yy x -=12, y y x -=1log 2.得反函数: xx y -=1log 2反函数的定义域:(0, 1), 值域:),(+∞-∞. 14.某批发商店按照下列价格表整盒在批发销售某种盒装饮料:当购货量小于或等于20盒时,每盒2.50元; 当购货量小于或等于50盒时,其超过20盒的饮料每盒2.30元;当购货量小于或等于100盒时,其超过50盒的饮料每盒2.00元;当购货量大于100时,其超过100盒的饮料每盒1.80元;设x 是销售量, y 是总价, 试建立总价y 和销售量x 之间的函数关系式,并作出它的图形.解: 由题知: 当200≤≤x 时, x y 5.2=; 当5020≤<x 时,43.2)20(3.2205.2+=-+⨯=x x y ;当10050≤<x 时,2.520 2.3(5020)2(50)y x =⨯+⨯-+- 219x =+ 当100>x 时,398.1)100(8.1219+=-+=x x y⎪⎪⎩⎪⎪⎨⎧>+≤<+≤<+≤≤=100398.110050192502043.22005.2x x x x x x x xy 图形(略)15.设某商品的市场供应函数p p S Q 480)(+-==, 其中Q 为供应量, p为市场价格. 商品的单位生产成本是1.5元, 试建立总利润L 与市场价格p 的函数关系式.解: 供应函数p p S Q 480)(+-== 总利润( 1.5)L p Q =-( 1.5)(804)p p =--+2486120p p =-+ 16.用p 代表单价, 某商品的需求函数为p p D Q 500007)(-==, 当Q 超过1 000时成本函数为Q C 2500020+=, 试确定能达到损益平衡的价格 (提示: 当总收入=总成本时,便达到损益平衡). 解: 当1000>Q 时1000500007)(>-==p p D Q则价格120<p .达到损益平衡, 则C pQ = 即:(700050)2000025p p Q -=+2000025(700050)p =+-039001652=+-p p 得282.107165±=p 又因为价格120<p , 故59.28=p答: 当需求量超过1000时,达到损益平衡的价格是28.59.17.在半径为r 的球内嵌入一个内接圆柱, 试将圆柱的体积V 表示为圆柱的高h 的函数, 并求此函数的定义域.解: 设圆柱的半径为R, 则满足4)2(22222h r h r R -=-=圆柱的体积:3222241)4(h h r h h r h R V ππππ-=-==.定义域: )2,0(r18.已知华氏温度F 与摄氏温度℃的线性关系, 在101325帕(一个标准大气压)下, 水的冰点温度不32F 或0℃, 水的沸点温度为212F 或100℃.(1)写出华氏温度F 与摄氏温度℃的函数关系;(2)画出该函数的图形;(3)摄氏20℃相当于华氏几度? 解:(1)由华氏温度F 与摄氏温度℃的线性关系,设当摄氏温度为x ℃时, 华氏温度为y F 则有关系式 b ax y += 其中a , b 为常数由题知:⎩⎨⎧==⇒⎩⎨⎧+=+⋅=328.1100212032b a b a b a 函数关系:328.1+=x y(其中x 的度量单位是℃,y 的度量单位是F)(2)函数图形(略)(3)摄氏20℃时 y =1.8⨯20℃+32=68(F)习题1-2 1.(1)0;(2)1;(3)-1;(4)发散 2.根据极限定义证明(1)1)11(lim =+∞→n n证明:0>∀ε,要使1111n nε+-=< 即ε1>n ,只须取1[]10N ε=+> 则当N n >时,有111n ε+-<因此 1)11(lim =+∞→nn 。
微积分上册 一元函数微积分与无穷级数第2章 极限与连续2.1 数列的极限1.对于数列n x ,若a x k →2(∞→k ),a x k →+12(∞→k ),证明:a x n → (∞→n ). 证. 0>∀ε, a x k →2 (∞→k ), Z K ∈∃∴1, 只要122K k >, 就有ε<-a x k 2; 又因a x k →+12(∞→k ), Z K ∈∃∴2, 只要12122+>+K k , 就有ε<-+a x k 12. 取{}12,2m ax 21+=K K N , 只要N n >, 就有ε<-a x n , 因此有a x n → (∞→n ). 2.若a x n n =∞→lim ,证明||||lim a x n n =∞→,并举反例说明反之不一定成立.证明: a x n n =∞→lim ,由定义有:N ∃>∀,0ε,当N n >时恒有ε<-||a x n又 ε<-≤-||||||a x a x n n对上述同样的ε和N ,当N n >时,都有ε<-||||a x n 成立 ∴ ||||lim a x n n =∞→反之,不一定成立.如取 ,2,1,)1(=-=n x nn显然 1||lim =∞→n n x ,但n n x ∞→lim 不存在.2.2 函数的极限1. 用极限定义证明:函数()x f 当0x x →时极限存在的充要条件是左、右极限各自存在且相等.证: 必要性. 若()A x f x x =→0lim , 0>∀ε, 0>∃δ, 当δ<-<00x x 时, 就有()ε<-A x f . 因而, 当δ<-<00x x 时, 有()ε<-A x f , 所以()A x f x x =+→0lim ; 同时当δ<-<x x 00时, 有()ε<-A x f , 所以()A x f x x =-→0lim .充分性. 若()A x f x x =+→0lim ,()A x f x x =-→0lim . 0>∀ε, 01>∃δ, 当100δ<-<x x 时, 就有()ε<-A x f , 也02>∃δ, 当200δ<-<x x 时, 有()ε<-A x f . 取{}21,m in δδδ=,则当δ<-<00x x 时, 就有()ε<-A x f . 所以()A x f x x =→0lim .2.写出下列极限的精确定义:(1)A x f x x =+→)(lim 0,(2)A x f x =-∞→)(lim ,(3)+∞=+→)(lim 0x f x x ,(4)-∞=+∞→)(lim x f x ,(5)A x f x =+∞→)(lim .解:(1)设R x U f →)(:0是一个函数,如果存在一个常数R A ∈,满足关系:0,0>∃>∀δε,使得当δ<-<00x x 时,恒有ε<-|)(|A x f ,则称A 是)(x f 当+→0x x 时的极限,记作A x f x x =+→)(lim 0或 )()(0+→=x x A x f . (2)设R f D f →)(:是一函数,其中0,),,()(>>--∞⊃αααR f D .若存在常数R A ∈,满足关系:0)(,0>∈∃>∀R X ε,使得当X x -<时,恒有ε<-|)(|A x f 成立,则称A 是)(x f 当-∞→x 时的极限,记作:A x f x =-∞→)(lim 或 A x f =)()(-∞→x .(3)设R x U f →)(:0是任一函数,若0>∀M ,0>∃δ,使得当δ<-<00x x 时,恒有M x f >)(,则称当+→0x x 时)(x f 的极限为正无穷大,记作+∞=+→)(lim 0x f x x 或 +∞=)(x f )(0+→x x . (4)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0>∀M ,0)(>∈∃R X ,使得当X x >时,恒有M x f -<)(则称当+∞→x 时)(x f 的极限为负无穷大,记作:-∞=+∞→)(lim x f x 或 -∞=)(x f )(+∞→x .(5)设R f D f →)(:是一函数,其中R f D ∈>+∞⊃ααα,0),,()(,若存在常数R A ∈,满足关系:0,0>∃>∀X ε,使得当X x >时,恒有ε<-|)(|A x f 成立,则称A是)(x f 当+∞→x 时的极限,记作:A x f x =+∞→)(lim 或 A x f =)()(+∞→x .2.3 极限的运算法则1.求∑=∞→+⋯++Nn N n 1211lim. 解. ()()⎪⎭⎫ ⎝⎛+-=+=+=+⋯++111212211211n n n n n n n⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+⋯++∑=1112111312121122111N N N n Nn 21112lim 211lim1=⎪⎭⎫ ⎝⎛+-=+⋯++∴∞→=∞→∑N nN Nn N 2.求xe e xxx 1arctan11lim110-+→. 解. +∞=+→x x e 10lim , 0lim 10=-→xx e,,21arctan lim 11lim 1arctan11lim 0110110π=-+=-++++→--→→x ee x e e x xxx xxx ,21arctan lim 11lim 1arctan11lim 0110110π=-+=-+---→→→x e e x e e x x xx x x x 21arctan 11lim 110π=-+∴→x e e x xx3.设)(lim 1x f x →存在,)(lim 2)(12x f x x x f x →+=,求)(x f . 解:设 )(lim 1x f x →=A ,则A x x x f ⋅+=2)(2再求极限:A A A x x x f x x =+=⋅+=→→21)2(lim )(lim 211⇒ 1-=A∴ x x xA x x f 22)(22-=+=.4.确定a ,b ,c ,使 0)1(3)1()1(lim 2221=-+-+-+-→x x c x b x a x 成立.解:依题意,所给函数极限存在且 0)1(lim 21=-→x x∴ 0]3)1()1([lim 221=+-+-+-→x c x b x a x ⇒ 2=c∴ 上式左边=])32)(1(11[lim ))1(321(lim 21221++-+--+=-+-+-+→→x x x x b a x x x b a x x])32)(1(1)32([lim 221++---+++=→x x x x b a x同理有 0]1)32([lim 21=--++→x x b x ⇒ 21=b ∴ 163)23)(1(8)1(3lim )32)(1(1)32(21lim221221=++---=++---++-=→→x x x x x x xx a x x 故 2,21,163===c b a 为所求.2.4 极限存在准则1. 设1x =10,n n x x +=+61,( ,2,1=n ).试证数列{n x }的极限存在,并求此极限. 证: 由101=x , 4612=+=x x , 知21x x >. 假设1+>k k x x , 则有21166+++=+>+=k k k k x x x x . 由数学归纳法知, 对一切正整数n , 有1+>n n x x ,即数列{n x }单调减少. 又显然, () ,2,10=>n x n , 即{n x }有界. 故n n x ∞→lim 存在.令a x n n =∞→lim , 对n n x x +=+61两边取极限得a a +=6, 从而有062=--a a ,,3=∴a 或2-=a , 但0,0≥∴>a x n , 故3lim =∞→n n x2.证明数列 nn n x x x x ++=<<+3)1(3,3011收敛,并求其极限.证明:利用准则II ,单调有界必有极限来证明.∴301<<x ,由递推公式33312131213213)1(30111112=++<++=++=++=<x x x x x x∴ 302<<x 同理可证:30<<n x 有界又 03)3)(3(333)1(311112111112>++-=+-=-++=-x x x x x x x x x x∴ 12x x > 同理 23x x > ,… ,1->n n x x ∴数列 }{n x 单调递增,由准则II n n x ∞→lim 存在,设为A ,由递推公式有:AA A ++=3)1(3 ⇒ 3±=A (舍去负数)∴ 3lim =∞→n n x .3.设}{n x 为一单调增加的数列,若它有一个子列收敛于a ,证明a x n n =∞→lim .证明:设}{k n x 为}{n x 的一子列,则}{k n x 也为一单调增加的数列,且a x k k n n =∞→lim对于1=ε,N ∃,当N n >时有1||<-a x k n 从而||1||||||||a a a x a a x x k k k n n n +<+-≤+-=取|}|1|,|,|,max {|1a x x M N n n += ,对一切k n 都有 M x k n ≤|| 有界.由子列有界,且原数列}{n x 又为一单调增加的数列,所以,对一切n 有M x n ≤||有界,由准则II ,数列}{n x 极限存在且a x n n =∞→lim .2.5 两个重要极限1. 求]cos 1[cos lim n n n -++∞→.解: 原式 =21sin 21sin2lim nn n n n -+++-+∞→⎪⎪⎭⎫⎝⎛++=-+=-+-+-+++-=+∞→n n n n n n nn nn nn n 1110212121sin21sin2lim 2. 求)1sin(lim 2++∞→n n π.解. 原式=()()n nn n n nn n -+-=-+++∞→+∞→1sin 1lim )1sin(lim 22ππππ()()()()0111sin 1lim 222=-+⋅-+-+-=+∞→n nn n nnnn πππ3. 求x x xx )1cos 1(sinlim +∞→. 解. 原式=()[]()e t t t tttt tt xt =⎥⎦⎤⎢⎣⎡+=+=→→=22sin 2sin 10212012sin 1lim cos sin lim 令4. 设 ⎩⎨⎧+-=32)cos 1(2)(x x x x f 00≥<x x 求 20)(lim x x f x →. 解: 1lim )(lim 232020=+=++→→x x x x x f x x ,1)cos 1(2lim )(lim 2020=-=--→→x x x x f x x ∴ 1)(lim2=→xx f x .2.6 函数的连续性1. 研究函数()[]x x x g -=的连续性,并指出间断点类型. 解. n x =,Z n ∈ (整数集)为第一类 (跳跃) 间断点.2. 证明方程)0(03>=++p q px x 有且只有一个实根.证. 令()()()0,0,3>∞+<∞-++=f f q px x x f , 由零点定理, 至少存在一点ξ使得()0=ξf , 其唯一性, 易由()x f 的严格单调性可得.3.设⎪⎩⎪⎨⎧≤<-+>=-01),1ln(0 ,)(11x x x e x f x ,求)(x f 的间断点,并说明间断点的所属类型. 解. )(x f 在()()()+∞-,1,1,0,0,1内连续, ∞=-→+111lim x x e,0lim 111=-→-x x e, ()00=f , 因此,1=x 是)(x f 的第二类无穷间断点; (),lim lim 1110--→→==++e ex f x x x()()01ln lim lim 00=+=--→→x x f x x , 因此0=x 是)(x f 的第一类跳跃间断点.4.讨论nx nxn e e x x x f ++=∞→1lim )(2的连续性.解. ⎪⎩⎪⎨⎧<=>=++=∞→0,0,00,1lim)(22x x x x x e e x x x f nxnxn , 因此)(x f 在()()+∞∞-,0,0,内连续, 又()()00lim 0==→f x f x , ()x f ∴在()+∞∞-,上连续.5.设函数),()(+∞-∞在x f 内连续,且0)(lim=∞→xx f x ,证明至少存在一点ξ,使得0)(=+ξξf .证:令x x f x F +=)()(,则01]1)([lim )(lim>=+=∞→∞→x x f x x F x x ,从而0)(>xx F .由极限保号性定理可得,存在01>x 使0)(1>x F ;存在02<x 使0)(2<x F .)(x F 在],[12x x 上满足零点定理的条件,所以至少存在一点ξ使得0)(=ξF ,即0)(=+ξξf .6.讨论函数nnx x x x f 2211lim )(+-=∞→的连续性,若有间断点,判别其类型.解: ⎪⎩⎪⎨⎧-=101)(x f 1||1||1||>=<x x x ,显然 1±=x 是第一类跳跃间断点,除此之外均为连续区间.7.证明:方程)0,0(sin >>+=b a b x a x 至少有一个正根,且不超过b a +. 证明:设b x a x x f --=sin )(,考虑区间],0[b a +0)0(<-=b f ,0))sin(1()(≥+-=+b a a b a f ,当0))sin(1()(=+-=+b a a b a f 时,b a x +=是方程的根;当0))sin(1()(>+-=+b a a b a f 时,由零点定理,至少),0(b a +∈∃ξ使0)(=ξf ,即 0sin =--b a ξξ成立,故原方程至少有一个正根且不超过b a +.2.7 无穷小与无穷大、无穷小的比较1. 当0→x 时,下面等式成立吗?(1))()(32x o x o x =⋅;(2))()(2x o xx o =;(3) )()(2x o x o =. 解. (1)()()()002232→→=⋅x xx o x x o x , ()()()032→=⋅∴x x o x o x (2) ()()()0)(,00)()(2222→=∴→→=x x o x x o x x x o xxx o(3) ()2xx o不一定趋于零, )()(2x o x o =∴不一定成立(当0→x 时) 2. 当∞→x 时,若)11(12+=++x o c bx ax ,则求常数c b a ,,.解. 因为当∞→x 时,若)11(12+=++x o c bx ax , 所以01lim 111lim 22=+++=++++∞→+∞→c bx ax x x c bx ax x x , 故c b a ,,0≠任意.3.写出0→x 时,无穷小量3x x +的等价无穷小量.解: 11lim 1lim lim303630=+=+=+→→→x xx xxx x x x∴ 当0→x ,3x x +~6x第3章 导数与微分3.1 导数概念1. 设函数)(x f 在0x 处可导,求下列极限值. (1)hh x f h x f h )3()2(lim000--+→;(2)000)()(lim 0x x x xf x f x x x --→.解.(1) 原式()()()000000533)3(22)2(lim x f h x f h x f h x f h x f h '=⎥⎦⎤⎢⎣⎡⋅---+⋅-+=→(2) 原式()[]()()()()00000000)(limx f x f x x x x x x f x f x f x x x -'=----=→2.设函数R f →+∞),0(:在1=x 处可导,且),0(,+∞∈∀y x 有)()()(y xf x yf xy f += 试证:函数f 在),0(+∞内可导,且)1()()(f xx f x f '+='. 解:令1==y x ,由()()()y xf x yf xy f +=有()()121f f =得()01=f .()+∞∈∀,0x ,()()()()()()()()()()xx f f x x f xx f x x f x x f x f x x x x xf x x f x x x f x x f x x f x f x x x x +'=+∆-⎪⎭⎫⎝⎛∆+=∆-⎪⎭⎫ ⎝⎛∆++⎪⎭⎫ ⎝⎛∆+=∆-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∆+=∆-∆+='→∆→∆→∆→∆111lim 11lim 1lim lim 0000 故()x f 在()+∞,0内处处可导,且()()()xx f f x f +'='1. 3.设()f x 在(,)-∞+∞内有意义,且(0)0f =,(0)1f '=, 又121221()()()()()f x x f x x f x x ϕϕ+=+,其中22()cos xx x x e ϕ-=+, 求()f x '.解: ()()()()()()()()x x f x x f x x f x x f x x f x f x x ∆-∆+∆=∆-∆+='→∆→∆ϕϕ00lim lim()()()()()()()()()001lim 0lim 00ϕϕϕϕ'+'=∆-∆+∆-∆=→∆→∆x f x f xx x f x x f x f x x ()x e x x x 22cos -+==ϕ4.设函数0)(=x x f 在处可导,且21arctan lim )(0=-→x f x e x,求)0(f '.解:由已知,必有0]1[lim )(0=-→x f x e,从而0)(lim 0=→x f x ,而0)(=x x f 在连续,故0)0(=f .于是)0(1)0()(1lim )(lim 1arctan lim200)(0f xf x f x f x e x x x x f x '=-==-=→→→. 故21)0(='f .5.设)(x f 具有二阶导数,)(,sin )()2(lim )(2x dF t xx f t x f t x F t 求⎥⎦⎤⎢⎣⎡-+=∞→.解: 令t h 1=,则)(2 sin )()2(lim)(0x f x hhxh x f h x f x F t '=⋅-+=→.从而)(2)(2)(x f x x f x F ''+'=',dx x f x x f dx x F x dF )]()([2)()(''+'='=.6.设f 是对任意实数y x ,满足方程 22)()()(xy y x y f x f x f +++= 的函数,又假设1)(lim=→xx f x ,求:(1))0(f ;(2))0(f '; (3))(x f '. 解:(1)依题意 R y x ∈∀,,等式 22)()()(xy y x y f x f y x f +++=+ 成立令0==y x 有 )0(2)0(f f = ⇒ 0)0(=f(2)又 1)(lim=→x x f x ,即 )0(10)0()(lim 0f x f x f x '==--→,∴ 1)0(='f(3)xx f x x f x f x ∆-∆+='→∆)()(lim )(0x x f x x x x x f x f x ∆-∆⋅+∆⋅+∆+=→∆)()()()(lim 220 x x x x x x f x ∆∆⋅+∆⋅+∆=→∆220)()(lim ])([lim 20x x x xx f x ∆⋅++∆∆=→∆ ]1)0(22x x f +=+'=∴ 21)(x x f +='.7.设曲线)(x f y =在原点与x y sin =相切,试求极限 )2(lim 21nf nn ∞→. 解:依题意有 1)0()0(='='f y 且0)0(=f∴ 222)0()2(lim )2(lim 2121=⋅-⋅=⋅∞→∞→n nf n f n nf n n n .8.设函数)(x f 在0=x 处可导且0)0(,0)0(='≠f f ,证明1])0()1([lim =∞→nn f n f .证:n n n n f f n f f n f ])0()0()1(1[lim ])0()1([lim -+=∞→∞→.=10)0(11)0()01(lim )0()0()1(lim ===⋅-+-∞→∞→e ee f nf n f f f n f n n n .1.计算函数baxax xb ab y )()()(= (0,0>>b a )的导数.解. a xb bx a b a x xb a b a a x b a x a b x b x b a a x x b a b a b y )(1)()()()(ln )(121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+='-- ⎥⎦⎤⎢⎣⎡+-=x b x a a b a x x b a b b a x ln )()()( 2.引入中间变量,1)(2x x u +=计算1111ln 411arctan 21222-+++++=x x x y 的导数dx dy .解. 引入,1)(2x x u += 得11ln 41arctan 21-++=u u u y ,于是dxdudu dy dx dy ⋅=, 又 ()()4242422111111111141121x x x u u u u du dy +-=+-=-=⎪⎭⎫ ⎝⎛--+++=,21xx dx du +=, 则()22242121121xx x x x x x dx dy ++-=+⋅⎪⎭⎫⎝⎛+-= 3.设y y x +=2,232)(x x u +=,求dudy. 解. dudxdx dy du dy ⋅= , 又()()1223,12212++=+=x x x dx du y dy dx ,得121+=y dx dy , ()x x x du dx ++=21232, 则得()()xx x y du dy +++=2121232 4.已知 2arctan )(),2323(x x f x x f y ='+-=,求=x dx dy .解:22)23(12)2323arctan()2323()2323(+⋅+-='+-⋅+-'='x x x x x x x f y π43)23(12)2323arctan(02200=+⋅+-='=∴===x x x x x x y dxdy .1. 计算下列各函数的n 阶导数. (1) 6512-+=x x y ; (2) x e y xcos =. 解 (1)⎪⎭⎫⎝⎛+--=611171x x y ,()()()()()()⎥⎦⎤⎢⎣⎡+---=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛-=∴++1161117!1611171n n nn n n x x n x x y (2) ()⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-=-='4cos 2sin 21cos 212sin cos πx e x x e x x e y x x x()⎪⎭⎫ ⎝⎛⋅+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=''42cos 24sin 4cos 22πππx ex x e y xx由此推得 ()()⎪⎭⎫ ⎝⎛⋅+=4cos 2πn x eyxnn2. 设x x y 2sin 2=, 求()50y .解 ()()()()()()()()()()"+'+=248250249150250502sin 2sin 2sin x x C x x C x x y⎪⎭⎫ ⎝⎛⋅+⋅⨯+⎪⎭⎫ ⎝⎛⋅+⋅+⎪⎭⎫ ⎝⎛⋅+=2482sin 2249502492sin 2502502sin 24950250πππx x x x xx x x x x 2sin 212252cos 2502sin 24950250⋅+⋅+-= ()[]x x x x 2cos 1002sin 212252249+-=3. 试从y dy dx '=1, 0≠'y , 其中y 三阶可导, 导出()322y y dy x d '''-=, ()()52333y y y y dy x d '''''-''= 解 y dy dx '=1 ,()()322211y y y y y dy dx y dx d dyx d '''-='⋅'-''=⋅⎪⎪⎭⎫ ⎝⎛'=∴ ()()()()()()52623333313y y y y y y y y y y y dy dx y y dx d dy x d '''''-''='⋅'''⋅'⋅''+''''-=⋅⎪⎪⎭⎫ ⎝⎛'''-=∴ 4. 设()x f 满足()()0 312≠=⎪⎭⎫⎝⎛+x xx f x f , 求()()()()x f x f x f n ,,'.解 以x 1代x ,原方程为()x x f x f 321==⎪⎭⎫ ⎝⎛,由()()⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+x x f x f x x f x f 321 312,消去⎪⎭⎫⎝⎛x f 1,求得()x x x f 12-=,且得()212xx f +=',()()()()2!111≥-=++n x n x f n n n . 5.设()arcsin f x x =,试证明()f x 满足 (1)2(1)()()0x f x xf x '''--= (2) ,1,0,0)()()12()()1()(2)1()2(2==-+--++n x f n x xf n x f x n n n(3)求()(0)n f解 (1)()211x x f -=',()()()22221112211xx xx x x x f --=-⋅--='', ()()()012='-''-∴x f x x f x ,(2)上式两边对x 求n 阶导数得()()[]()()[]()()()()()()()()()()()()()()()[]x f n x xf x f n n x f x n x f x x f x x f x n n n n n nn⋅⋅+-⋅-⋅---+-='-''-=+++1221211021222即 ()()()()()()()()01212122=-+--++x f nx xf n x f xn n n 。
. .专业知识分享. .各章同步练习参考答案第二章 极限与连续§2.1 答 案1.(1)πn sin ,0; (2)()nn 211--,0.2.(1)1; (2)i )⎪⎩⎪⎨⎧=≠--=+1,1,11q n q q q q x n n ,ii )当()1,1-∈q 时qq x n n -=∞→1lim ,当1,1-≠>q q 时∞=∞→n n x lim ,当1-=q 时n n x ∞→lim 不存在;(3)25; (4)2ln ; (5)41-;(6)5; (7)1; (8)23.3. 1lim =∞→n n x .4. 21lim =∞→n n x . 5. {}k a a ,,max 1 .§2.2 答 案1. 极限状态分别为0,∞+,不存在.2.2π,2π-,不存在.3. (1)21; (2)57-; (3)32-; (4)15854; (5)23;(6)21-; (7)9. 4. ()0lim 0=→x f x .5.极限不存在. 6. 23=a . 7.()x x x f 22-=()f x .§2.3 答 案. .专业知识分享. .1. 略. 2. 3. 3. 6. 4. 略.§2.4 答 案1.0.2.1)32; 2)1. 3.(1)43; (2)1-; (3)0.4.1=a ,1-=b .§2.5 答 案1.(1)2-e ; (2)21-e ; (3)e ; (4)2e .2.2=a ,2ln =b .3.()⎪⎩⎪⎨⎧>=<-=1,10,00,1x x x x f ,间断点0=x .§2.6 答 案1~5.略.第三章 导数与微分§3.1 答 案1.(1)2+-=x y ; (2)0=y .2.(1)当 1≠x 时,2)1(1+-='x y ;(2)x y 3cos 3='.3. 当c a 2=且2c b -=时,)(x f 在c 可导.. .专业知识分享. .4.(1))(30x f '; (2))(0x f '-; (3))(20x f '.5.(1)函数)(x f 在0=x 处连续且可导,并且0)0(='f ; (2) 函数)(x f 在0=x 处可导,并且0)0(='f ;(3)⎪⎩⎪⎨⎧=≠-='0,00,1cos 1sin 2)(x x xx x x f 在0=x 处不连续,在其他点处连续.§3.2 答 案1.(1)221--+='x xy ; (2)1))((-++='b a ex b a e y ;(3)233225x x y π--='; (4))(212321--+-='x x y ;(5)x x x x x x y ln cos sin ln sin ⋅++⋅='; (6)12211)()(-+--+++='b a b a x b a ab x xab y ;(7)x x x x x x y cot csc tan sec sec -+=';(8)2)cos (sin sec 3x x x y +='; (9)22)1(4--='x xy . 2.(1)2)(4x x e e y -+='; (2))11cot (2x x arc e y x+-='; (3))sin cos (cos x x x x x e y x --='-.§3.3 答 案1.(1)4234)1(34x x x x y -+-='; (2)2ln )(ln 1ln 22ln x x y xx -⋅='; (3)))2(cos 26sin()4sin(22x x y -='; (4)x x x e e e y 3332)cot()(csc 6-='; (5)()()x x x y ln ln ln 2=';(6)22a x y +='.. .专业知识分享. .2.(1) 34414341)1()6)(32(31)1)()6)(32(41)6(2(+-+-+-++--x x x x x x x ; (2)))ln(sin sin cos (cot )(sin cos x x x x x y x -⋅='; (3)xx x y x 2)2(ln +='.3.(1))](2)()[(22222x f x x f x xf dxdy'+=; (2)04==πx dxdy.4.(1)21; (2)yx yx dx dy -+=. 5.略.§3.4 答 案1.(1)dx xxdy 212--=; (2)dx x xe dy x )1(22+=; (3)dx x x e dy x )2sin (sin 2+=; (4)dx e e dy xx 21+=. 2.(1)dx y a xb dy 22=; (2)dx y y y dy 112122---=.3.008.21.83≈.4.)22)(12()12(π--+-=a x y .5.t ba dy dx t ab dx dy tan ,cot -=-=.§3.5 答 案1.(1)2222)1(62,12--=''-='x x y x x y ; (2)12124,2--=''='x x e y e y ;(3)32222)1(26,)1(2x x y x x y +-=''+-='; (4)3))cos(1()sin(,)cos(1)cos(y x y x y y x y x y +-+-=''+-+='.2.(1)π21)1,0(-='-y ; (2)2)1,0(41-π=''-y .. .专业知识分享. .3.)2)1(2sin(21)(π-+=-n x y n n .§3.6 答 案1.,2105,6162x MR x x MC -=+-=21499x x MC MR ML -+=-=.2.2,48400150-====x x ML ML . 3.(1)a E =; (2))9(2-=x xE .4.195)105(≈D 万(单位).第四章 中值定理与导数的应用§4.1 答 案1~4.略.§4.2 答 案1~2.略. 3.21. 4. 1.02020134e 0.02≈.§4.3 答 案1.(1)16; (2)12; (3)12; (4)2π; (5)1; (6)e ; (7)2ln 2; (8)2e ; (9)2e ; (10)13-; (11)16.§4.4 答 案1.(1)单增区间为(,1)(3,)-∞+∞ ,单减区间为(1,3);. .专业知识分享. .(2)单增区间为1(,)2+∞,单减区间为1(0,)2. 2. 略.3.(1)拐点为2x =,上凸区间为(,2)-∞,下凸区间为(2,)+∞; (2)拐点为2x =,上凸区间为(,1)(1,2)-∞-- ,下凸区间为(2,)+∞. 4. 略.§4.5 答 案1.(1)2)1(=f 为极小值,2)1(-=-f 为极大值; (2)0)5(=f 为极小值,108)3(=f 为极大值.2.61,32-=-=b a ;1x 是极小值点,2x 是极大值点. 3.(1)ee y 2)(2-=-为最小值,最大值不存在;(2)4)0(-=f 为最小值,2)3(=f 为最大值.4.36216)6(24222+-=-+=x x y x d ,)4,4(),(±=y x 时52min =d .§4.6 答 案1.(1)垂直渐近线为1-=x ;斜渐近线为1-=x y ; (2)垂直渐近线为1-=x 与1=x ;水平渐近线为0=y ; (3)水平渐近线为0=y .2.解:单调递增区间为)1,1(-,单调递减区间为)1,(--∞与),1(+∞;上凸区间为),2(+∞,下凸区间为)1,(--∞与)2,1(-.垂直渐近线为1-=x ,水平渐近线为0=y 。
高等数学(B )(1)作业答案高等数学(B )(1)作业1初等数学知识一、名词解释:邻域——设δ和a 是两个实数,且0>δ,满足不等式δ<-a x 的实数x 的全体,称为点a 的δ邻域。
绝对值——数轴上表示数a 的点到原点之间的距离称为数a 的绝对值。
记为a 。
区间——数轴上的一段实数。
分为开区间、闭区间、半开半闭区间、无穷区间。
数轴——规定了原点、正方向和长度单位的直线。
实数——有理数和无理数统称为实数。
二、填空题1.绝对值的性质有0≥a 、b a ab =、)0(≠=b ba b a 、a a a ≤≤-、b a b a +≤+、b a b a -≥-。
2.开区间的表示有),(b a 、。
3.闭区间的表示有][b a ,、。
4.无穷大的记号为∞。
5.)(∞+-∞,表示全体实数,或记为+∞<<∞-x 。
6.)(b ,-∞表示小于b 的实数,或记为b x <<∞-。
7.)(∞+,a 表示大于a 的实数,或记为+∞<<x a 。
8.去心邻域是指)()(εε+-a a a a ,, 的全体。
用数轴表示即为9.MANZU9.满足不等式112-<≤-x 的数x 用区间可表示为]211(--,。
三、回答题 1.答:(1)发展符号意识,实现从具体数学的运算到抽象符号运算的转变。
(2)培养严密的思维能力,实现从具体描述到严格证明的转变。
(3)培养抽象思维能力,实现从具体数学到概念化数学的转变。
(4)树立发展变化意识,实现从常量数学到变量数学的转变。
2.答:包括整数与分数。
3.答:不对,可能有无理数。
4.答:等价于]51(,。
5.答:)2321(,。
四、计算题1.解:12020102010)2)(1(<>⇒⎩⎨⎧<-<-⎩⎨⎧>->-⇒>--x x x x x x x x 或或。
),2()1,(+∞-∞∴ 解集为。