希望杯第4-10届小学六年级全国数学竞赛题及解答
- 格式:doc
- 大小:11.61 MB
- 文档页数:68
第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.•2×1.•2•4+ 1927=________.4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是________。
9.将一个数A 的小数点向右移动两位,得到数B 。
那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。
则三个面涂漆的小正方体有________块。
13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。
六年级希望杯试题及答案一、选择题(每题3分,共30分)1. 一个数的5倍是30,这个数是多少?A. 6B. 5C. 3D. 10答案:B2. 一个长方形的长是10厘米,宽是5厘米,它的面积是多少平方厘米?A. 50B. 60C. 40D. 55答案:A3. 一个数除以3余2,除以5余3,这个数最小是多少?A. 13B. 18C. 23D. 28答案:A4. 一个数的3倍加上4等于这个数的5倍减去6,这个数是多少?A. 3B. 4C. 5D. 6答案:C5. 一个数的7倍是49,这个数是多少?A. 7B. 6C. 5D. 8答案:A6. 一个数的4倍减去8等于这个数的3倍加上12,这个数是多少?A. 10B. 12C. 14D. 16答案:B7. 一个数的5倍是25,这个数是多少?A. 5C. 3D. 2答案:A8. 一个数除以4余3,除以5余4,这个数最小是多少?A. 19B. 24C. 29D. 34答案:A9. 一个数的6倍加上8等于这个数的8倍减去4,这个数是多少?A. 4B. 6C. 8答案:A10. 一个数的8倍是64,这个数是多少?A. 8B. 7C. 6D. 5答案:A二、填空题(每题3分,共30分)11. 一个数的2倍加上3等于这个数的3倍减去1,这个数是________。
答案:5________。
答案:1013. 一个数的5倍是45,这个数是________。
答案:914. 一个数除以6余5,除以7余6,这个数最小是________。
答案:4115. 一个数的3倍加上7等于这个数的5倍减去3,这个数是________。
答案:5________。
答案:817. 一个数的7倍是63,这个数是________。
答案:918. 一个数除以5余4,除以6余5,这个数最小是________。
答案:2919. 一个数的8倍加上16等于这个数的10倍减去4,这个数是________。
答案:620. 一个数的9倍是81,这个数是________。
-1-/7“希望杯”全国数学大赛决赛题(小六)附答案题号-一--二二 其中:总分13141516得分(时间:90分钟满分:120分)3 3 3 3 3 34 + 16 + 64 + 256 + 1024 + 409613.若 10.5 x — 10 = 36 — 3y = 14 + 4 -x 则 x =4.有一类自然数,从第四个数字开始每个数字都恰好等于它前面三个数字的和,直到不能再写为止,如 2169, 21146等等。
那么这类数中最大的 一个数是 _____________________ 。
5.卜面是一串字母的若干 F 次变换。
A B C D E F G H IJ 第一次变换后为 B C D A F G H I J E 第二次变换后为C D A B G H IJ E F得分评卷人(每题6分,共72分。
)1 •计算:14.5 — 3 X 8.13.62•计算: _______ , y= _________第三次变换后为D A B C H I J E F G 第四次变换后为A B C D I J E F G H至少经过 ________________ 次变换后才会再次出现“ A 、B 、C 、D 、E 、F 、G 、H 、I 、J ”。
6.把一个棱长为 2厘米的正方体在同一平面上的四条棱 的中点用线段连接起来(如右图所示),然后再把正方体所有顶点上的三角锥锯掉。
那么最后所得的立方体 的体积是 _________________________ 立方厘米。
7.有一列数,第一个数是 5,第二个数是2,从第三个数起每个数都等于它前面两个数中较大数减去较小数的差。
则这列数中前100个数之和等8在钟面上,当指针指示为6 : 20时,时针与分针所组成的较小的夹角为________________ 度。
9. 小明把五颗完全相同的骰子拼摆成一排(如右图所示),那么 这五颗骰子底面上的点数之和少于14人,那么这四个房间里的总人数至少有 __________________________ 人。
希望杯数学竞赛题小学试卷一、选择题(每题2分,共10分)1. 如果一个数的平方等于它本身,那么这个数可能是:A. 0B. 1C. -1D. 0或12. 下列哪个数是质数?A. 2B. 4C. 6D. 83. 一个班级有40名学生,如果每5名学生组成一个小组,那么可以组成多少个小组?A. 8B. 7C. 6D. 54. 如果一个等腰三角形的两个底角相等,那么这个三角形的三个内角之和是多少度?A. 90度B. 180度C. 360度D. 270度5. 一个长方形的长是10厘米,宽是5厘米,它的周长是多少厘米?A. 30厘米B. 20厘米C. 15厘米D. 25厘米二、填空题(每题2分,共20分)6. 一个数的立方等于它自身,这个数是________。
7. 一个数加上它的相反数等于________。
8. 如果一个数的绝对值是5,那么这个数可能是________或________。
9. 一个圆的半径是3厘米,那么它的直径是________厘米。
10. 一个数除以它自己等于________。
三、计算题(每题5分,共15分)11. 计算下列各题:(1) 36 × 25(2) 48 ÷ 6 + 24 × 212. 一个数的5倍加上12等于42,求这个数。
13. 一个长方形的长是宽的2倍,如果它的面积是48平方厘米,求长和宽各是多少厘米。
四、解答题(每题10分,共30分)14. 一个班级有45名学生,如果每3名学生组成一个小组,那么可以组成多少个小组?如果有2名学生生病了,那么现在可以组成多少个小组?15. 一个数的平方加上这个数的两倍等于19,求这个数。
16. 一个直角三角形的两条直角边分别是3厘米和4厘米,求这个三角形的斜边长度。
五、应用题(每题15分,共30分)17. 一个水果店有苹果和橙子两种水果,苹果的价格是每千克5元,橙子的价格是每千克8元。
如果小明买了3千克苹果和2千克橙子,他需要支付多少钱?18. 一个工厂生产了一种零件,每个零件的成本是15元,如果工厂希望获得20%的利润,那么每个零件的售价应该是多少?19. 一个班级有50名学生,如果每名学生需要准备10张纸,那么班级总共需要准备多少张纸?如果每张纸的价格是0.1元,那么班级总共需要支付多少钱?六、附加题(每题5分,共5分)20. 一个数列的前5项是1, 1, 2, 3, 5,这个数列的下一个数是多少?请注意,以上题目仅供练习使用,实际竞赛题目可能会有所不同。
小学六年级“希望杯”全国数学大赛2019-2020年六年级“希望杯”全国数学大赛决赛题(含详细答案)1.计算: 4.5-13×8.13.6= 。
2.计算:34 +316 +364 +3256 +31024 +34096= 。
3.若10.5x -10=36-3y =14+ ,则x = ,y = 。
4.有一类自然数,从第四个数字开始每个数字都恰好等于它前面三个数字的和,直到不能再写为止,如2169,21146等等。
那么这类数中最大的一个数是____________。
5.下面是一串字母的若干次变换。
A B C D E F G H I J第一次变换后为 B C D A F G H I J E 第二次变换后为 C D A B G H I J E F 第三次变换后为 D A B C H I J E F G 第四次变换后为 A B C D I J E F G H……………………………………………………至少经过 次变换后才会再次出现“A 、B 、C 、D 、E 、F 、G 、H 、I 、J ”。
6.把一个棱长为2厘米的正方体在同一平面上的四条棱 的中点用线段连接起来(如右图所示),然后再把正方题 号 一 二 其中: 总 分 13 14 15 16 得 分得分 评卷人x 214体所有顶点上的三角锥锯掉。
那么最后所得的立方体的体积是立方厘米。
7.有一列数,第一个数是5,第二个数是2,从第三个数起每个数都等于它前面两个数中较大数减去较小数的差。
则这列数中前100个数之和等于。
8.在钟面上,当指针指示为6︰20时,时针与分针所组成的较小的夹角为度。
9.小明把五颗完全相同的骰子拼摆成一排(如右图所示),那么这五颗骰子底面上的点数之和是。
10. 有四个房间,每个房间里不少于4人。
如果任意三个房间里的总人数不少于14人,那么这四个房间里的总人数至少有人。
11.如果用符号“[a]”表示数字a的整数部分,例如[5.1]=5,[ 53]=1,那么[112000+12001+……+12019]=。
2020年第十届希望杯六年级复赛试题(全国卷)3. 王涛将连续的自然数1,2,3……逐个相加,一直到某个自然数为止,因为计算时漏加了一个自然数而得到错误的结果,那么,他漏加的自然数是。
4. 在数0.20200415中的小数点后面的数字上方加上循环小树,而这些循环小数中的是,最小的是。
6. 对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB 的三等分点,C、D、E 三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是,经过几回“生长”,得到的图形的周长是。
7. 如图3所示的“鱼形图案中共有()三角形。
8. 已知自然数N的个位数字是0,且有8个约数,则N最小是()。
9. 李华在买某种商品的时候,将单价中的某一数字“1”错看成了“7”,准备付款189元,实际付147元。
已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了()件。
10. 如图4,已知AB=40cm,图中的曲线是由半径不同的半圆弧平滑连接而成,那么阴影部分的面积是 cm2 (π取3.14)13. 将1到9这9个自然数中的5个数填入图5所示的圆圈内,使任意有线段相连的两个圆圈内的两数之差恰好等于连接着两个圆圈的线段的条数,图6给出了一种填法,请你再给出两种不同的填法。
14. 甲、乙两人分别从A、B两地同时出发相向而行,于C地相遇后,甲继续向B地行走,乙则休息14分钟后再继续向A地行走,甲和乙各自到达B地和A地后,立即折返,又在C地相遇,已知甲每分钟走60米,乙每分钟走80米,则A、B两地相距多少米?15. 将100个棱长为1的立方体堆放成一个长方体,将可能堆成的多面体的表面积按从小到大排列,求开始的6个。
16.在m行n列的网格中规定:由上而下的横行依次为第1行,第2行……..,由左向右的竖列依次为第1列,第2列,…….,点(a,b)表示位于第a 行,第b列的格点,图7是4行5列的网格,从点A (2,3)出发,按象棋中的马走“日”字格的走法,可到达网格中格点B(1,1),C(3,1),D(4,2),E(4,4),F(3,5),G(1,5),如果在9行9列的网格中(图8),从点(1,1)出发,按象棋中的马走“日”字格的走法,(1)能否到达网格中的每一个格点?答:(填“能”或“不能”)(2)如果能,那么沿最短的路线到达某个格点,最多的需要几步?这样的格点有几个?写出它们的位置,如果不能,请说明理由。
第十届小学“希望杯”全国数学邀请赛六年级 第2试2012年4月8日 上午9:00至11:00 得分一、填空题(每小题5分,共60分。
)1. 计算:=⨯⨯⨯⨯+⨯⨯⨯52322153432351413121 2. 计算: =+++++++15535256311992135323. 王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012。
那么,他漏加的自然数是 。
4. 在数0.20120415中的小数后面的数字上方加上循环点,得到循环小数,这些循环小数中,最大的是 ,最小的是 。
5. 对任意两个数x ,y 规定运算“*”的含义是:yx m yx y x ⨯+⨯⨯⨯=*34(其中m是一个确定的数),如果1*2 = 1,那么m = ,3*12 = 。
6.对于一个多边形,定义一种“生长”操作:如图1,将其一边变成向外凸的折线,其中C 和E 是的三等分点,C ,D ,E 三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是 ;经过四次“生长”操作,得到的图形的周长是 。
图 1(3)(2)(1)图 27. 如图3所示的“鱼”形图案中共有 个三角形。
8. 已知自然数N 的个位数字是0,且有8个约数,则N 最小是 。
9. 李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款489元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是 元,李华共买了 件。
10. 如图4,已知 = 40,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是 2。
(π取3.14)11. 快车和慢车同时从甲、乙两地相对开出,快车每小时行33千米,相遇行了全程的74,已知慢车行完全程需要8小时,则甲、乙两地相距 千米。
12. 甲、乙、丙三人去郊游,甲买了9根火腿,乙买了6个面包,丙买了3瓶矿泉水,乙花的钱是甲的1312,丙花的钱是乙的32,丙根据每人所花钱的多少拿出9元钱分给甲和乙,其中,分给甲 元,分给乙 元。
小学“希望杯”培训100题(六年级)一、解答题(共100小题)1.计算:=.2.计算:2012×2014×().3..4.计算:(0.+0.3)×0.×0.7×=.5.计算:=.6.计算:=7.兄弟俩都有点傻,一位只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是岁,岁.8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有粒.9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=.(π取3)10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长米,井深米.15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到个梨.16.31500的约数中与6互质的共有个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=.18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要分钟.20.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点km.22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了元.24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是,最大是.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.29.甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是________米/秒.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是.36.在1到2013这2013个数中,共有个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是.38.若整数x满足不等式,则x=.39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是.40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(,).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是 .42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有 天.43.计算:.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).45.如图,在△ABC 中,,E ,G 分别是AD ,ED 的中点,若△EFG 的面积为1,则△ABC 的面积是 .46.如图 (1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是 .47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了 厘米.48.建筑公司计划修一条隧道.当完成任务的时,公司引进新设备,修建速度提高了20%,每天的工作时间缩短为原来的80%,实际185天完成了任务.若按原计划,则 天可完成任务.49.如果一个自然数能表示成两个非零自然数的平方差,则称这个数为”吉祥数”,如:9=52﹣42,9是”吉祥数”.那么从1开始的自然数中,第2013个”吉祥数”是 .50.有3个整数,如果第2个数的5倍是第1个数与1的差的4倍,第3个整数的5倍是第2个数与1的差的4倍,那么第1个数的最小值是.51.春蕊班的每位同学都参加了课外体操班或围棋班,有的同学还同时参加了两个班.如果同时参加两个班的人数是参加围棋班的,是参加体操班人数的.那么这个班只参加体操与只参加围棋班的人数之比是.52.甲乙两个硬盘的成本共1600元,甲按30%的利润定价,乙按40%的利润定价,甲按定价的90%出售,乙按定价的85%出售,供货的利润290元.那么甲的成本是元.53.已知,其中a,b,c,d,e都是整数,则其中最大的数的值是.54.咖啡店新推出一款杯子,定价是88元/个,实际销售时降了价,结果销量比预计的增加了,收入增加了,则每个杯子被降价元.55.若三个连续自然数的平方的和等于245,则这三个连续自然数的和是.56.已知长方体表面积是148cm2,底面面积是30cm2,底面的周长是22cm,则这个长方体的体积是cm3.57.用棱长为2厘米的小正方体,如图所示层层重叠放置.则当重叠了5层时,这个立方体的表面积是平方厘米.58.由长度分别为2,3,4,5,6的五条线段为边,可以组成个不同的三角形.59.若字母a,b,c分别表示不同的非零数字,则由a,b,c组成的各个数位上数字不同的三位数共有个,若除三位数外,其余几个的和为2874,则=.60.如图,边长为2a的正方形ABCD内有一个最大的圆圆O,圆O内有一个最大的正方形EFGH.用S1,S2,S3依次表示△EOF的面积,弓形EmF的面积,带弧边EmF的△EBF的面积,则S1*S2*S3=.(圆周率π取3)61.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.62.已知一列数:1,1,2,3,5,8,13,21,34,55,89,144,233,…,若第n个数比第n+2个数小233,则n=.63.一只蚂蚁沿边长为240cm的等边三角形ABC的三条边由A点顺时针爬行一周.它在三条边上的速度分别是每秒3cm,4cm,5cm(如图).且当它到达拐点(A,B,C)时会休息26秒,当它爬完一周回到点A时,行程结束.这期间,蚂蚁的平均速度是cm/s.64.至多含有一个奇数数字且能被25整除的四位数共有个.65.观察下面的数表:(横排为行,竖排为列)表中第1列都是单位分数,分母依次为1,2,3…,每行自第2个分数起,每个分数的分子等于左边分数的分子加1,分母等于左边分数的分母减1,直到分数的分母等于1.则位于第行,第列.66.从最小的质数算起,若连续n(n是大于1的自然数)个质数的和是完全平方数,则n 最小是.67.现有3个互不相等的数,甲说是2,a+1,b+2;乙说是2b﹣1,3,a.若两人都说对了,则这三个数的乘积是.68.若×=6657,其中x,y,z都代表非零数字,则=.69.两个直角三角板如图放置,则∠BFE的度数是∠CAF的倍.70.一个长方体相邻的两个面的面积之和是130,它的长,宽,高都是不超过13的整数,且均为互不相等的质数,则这个长方体的体积是.71.如图,一个物体由2个圆柱组成,它们的半径分别是3厘米和6厘米,而高分别是5厘米和10厘米,则这个物体的表面积是平方厘米.72.植树节,5名小朋友给5棵树浇水,每个小朋友至少浇一棵树,但一个小朋友不能重复给同一棵树浇水,一桶水也只能浇一棵树.活动结束后,5个小朋友分别浇了2,2,3,5,x桶水,5棵树分别被浇了1,1,2,4,y 桶水,那么x=,y=.73.小明出去散步前看了一下手表,回来时又看了一下手表,发现此时手表的时针,分针的位置正好与出去时的分针,时针位置相同.若他在外逗留的时间不足一小时,则他在外待了分钟.74.如图所示,共有个三角形.75.一个长为4,宽为3的长方形如图竖直放置,在其右上角有一个红点A,长方形绕右下角旋转90°,成为一个横放的长方形,再绕右下角旋转90°,成为一个竖放的长方形,…,当小红点A第一次回到右上角时所走过的路程是.76.书架第一层有依次排列的10本不同的故事书,现将2本不同的漫画书也放入第一层,则不同的放法共有种.77.分母是385的所有最简真分数的和等于.78.有价值总和为174万元的三批货物,这三批货物的质量比是3:4:5,单位质量的价格比是6:5:4.这三批货物各价值万元.79.将分数化成小数后,如果小数点后第一位起连续N个数位上数字之和等于2013,那么N=.80.如图所示是一个边长为120m的等边三角形,甲乙同时分别从A点,B点按顺时针方向出发,甲每分钟走120m,乙每分钟走180m,但经过每个顶点时,因转弯都要耽误5s,则乙出发s后第一次追上甲.81.原来,单独打开进水管3小时能将水池注满,单独打开出水管4小时可排完一池水.后来,这个水池漏水了,同时打开进水管与出水管14小时才能将水池注满,则只打开进水管需要小时可以注满这个漏的水池.82.图书馆,游泳馆,少年宫三个站在一条笔直的公路上,且游泳馆到图书馆,少年宫两站的距离相等.小明和小华分别从图书馆,少年宫两站同时出发相向而行.小明超过游泳馆站100米后与小华相遇.然后二人继续前进.小明到达少年宫站后立即沿原路返回,经过游泳馆站后300米追上小华.则图书馆,少年宫两站相距米.83.马和狗约好去牛哥家做客,牛哥说他忘了去超市买面包,狗说他去,一会儿,马到了牛哥家,听说狗去买东西了,他急了,他说,狗跑5步的时间我能跑6步,我跑4步的距离相当于狗跑7步.而且我比他力气大,买东西的活儿我去,于是马也奔超市去了,此时狗已跑出550米了.超市离牛哥家有2000米,则马要跑米才能追上狗,此时离超市还有米.84.12和60是很有趣的两个数,这两个数的积恰好是这两个数的和的10倍:12×60=720=10×(12+60).满足这两个条件的非零自然数对还有:.85.明明,亮亮,军军三人都参加了数学竞赛,他们共解出了100道题,每人都解出了其中的60道题目,若三个人都解出来的题称为基础题;只有两个人解出来的题称为中等题;只有一个人解出来的题称为难题,则在他们解出的100道题中,难题的数量比基础题的数量(填:多或少)道.86.一块木片沿河漂流,从河边的A地到B地,用了24小时.一只快艇在静水中的速度是18千米/小时,它从A驶到B所用的时间是从B驶到A所用时间的.则AB间的距离是千米.87.如图,AB∥CE,AC∥DE,且CE=DE=2AB=2AC,则=.88.小明和小林是两个集邮爱好者,他们共有邮票400多张,如果小明给小林a张邮票,小明就比小林少;如果小林给小明a张邮票,则小林就比小明少.那么小明原有张邮票,小林原有张邮票.89.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.90.为确保信息安全,信息需加密传输,发送方将明文加密成密文,接收方收到密文后解密可得明文.已知有一种加密方式是将英文26个小写字母a,b,c,…,依次对应0,1,2,…,25这26个整数(见下表),当明文中的字母对应的序号为a时,将a+10除以26后所得的余数作为密文中的字母对应的序号,例如明文”a”对应密文”k”.””91.如图,在正方形场地ABCD的四周有32个洞(每边9个洞),一个工人扛着32面旗子,从A洞开始插旗,按顺时针方向,每隔5个洞就插一面旗,当他绕着正方形走完5圈时,发现有n个洞不能插旗,求n.92.某校有960套桌凳需要维修.现有甲乙两个木工,甲单独修理这批桌凳比乙多用20天;乙每天比甲多修8套;甲乙每天的修理费分别是80元,120元.在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案共选择:①由甲单独修理;②由乙单独修理;③由甲乙共同合作修理.你认为哪种方案即省时又省钱?试比较说明.93.甲乙丙三辆汽车分别从A地开往千里之外的B地.乙比甲晚出发40分钟,出发后160分钟后能追上甲;丙比乙晚出发20分钟,出发后5小时追上乙.那么如果甲比乙先出发10分钟,乙比丙先出发10分钟,那么乙追上甲之后过多久丙能追上甲?94.已知甲乙丙三位同学在北京,广州,上海的大学学习软件设计,服装设计,城市规划.有下列判断:①甲不在北京学习;②乙不在广州学习;③在北京学习的同学不学城市规划;④在广州学习的同学是学软件设计的;⑤乙不学服装设计.三位同学各在什么城市学习什么专业?95.如图,长方形ABCD,ABEF,AGHF的长与宽的比相同,且,长方形BEHG的周长是22,求长方形ECDF的面积.96.在小于30的所有质数中,是否存在差与平方和都是质数的两个质数?若存在,有几组?若不存在,请说明理由.97.甲容器内有物质A和物质B,其质量比是2:3,乙容器内有物质B和物质C,其质量比是1:2,丙容器内有物质A和物质C.现将甲乙丙三容器中的物质以1:2:3的比例取出,混合,则所得新的混合物中,A,B,C三种物质的质量比是183:152:385.求丙容器内物质A和物质C的质量比.98.程序员设计了一款新游戏,共20级.小刚一次晋级2级游戏,或一次晋级3级游戏,那么他从入门(0级)晋级到第20级共有多少种不同的方法?10月份,小强的家里用了23m的居民用水,他开的餐厅,用了102m的餐饮用水,则这个月他应该交多少元水费?100.0.买一盒牙膏,一瓶沐浴露和一瓶洗发露共付款100元.若1瓶沐浴露比2盒牙膏贵,2瓶洗发露比7瓶沐浴露贵,8盒牙膏比1瓶洗发露贵,且每个产品的单价都是整数元,分别求一盒牙膏,一瓶沐浴露,一瓶洗发露的价格.小学“希望杯”培训100题(六年级)参考答案与试题解析一、解答题(共100小题,满分0分)1.计算:=.2.计算:2012×2014×()=2.3.(2010•成都校级自主招生).解:++…+,=×(﹣+﹣+…+﹣),=×(﹣)=×()=×=.4.计算:(0.+0.3)×0.×0.7×=.+0.3)×0.7×,(+×××,×××(×××,=××=×=5.=102.解:,=(1+3+5+..+19)+3×=102+3×(1﹣)=100+=102.6.=.解:设n=++,m=,则:(1+++)×(+++)﹣(1++++)×(++),=(1+n)×m﹣(1+m)×n=m+mn﹣n﹣mn=m﹣n,=()﹣(++)=.7.兄弟俩都有点傻,以为只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是6岁,9岁.解:弟弟:(3+3)÷(2﹣1)=6(岁);哥哥:6+3=9(岁).8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有180粒.解:取了:20÷(6﹣5)=20(次),共有:20×3×(1+2)=180(粒);9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=48cm2.(π取3)S1﹣S2=(S1+S阴)﹣(S2+S阴)=S圆﹣S正=3×(16÷2)2﹣122=192﹣144=48(平方厘米);10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是23×34×52×72×11×13.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有121块糖,丙最多有19块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.)×=3﹣×=3班的人数与总人数的比值是;故答案为:.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是84.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长42米,井深12米.对应的分率的差额是:﹣)()15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到15个梨.16.31500的约数中与6互质的共有8个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=4.S=S18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是153,154,155.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要27分钟.则苏老师与公车速度和为问题;苏老师与公车速度差为,因为这时是相遇问题;那么苏老师速度(+),所以苏老师与公车速度比:,,+),公车速度(﹣),苏老师与公车速度比:=520.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是3.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点136.96km.t=﹣,22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有12个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了120元.=,丙占总数的;;﹣﹣)÷,24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是24,最大是72.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现51个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以102次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=81.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有6组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是45:61.29.(2011•成都)甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是乙丙丁甲.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是米/秒.,那么上坡的时间就是,下坡的时间就是;用总路程+)÷,(米故答案为:.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是48.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是123.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的75%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有102座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是600.36.在1到2013这2013个数中,共有51个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是18.38.若整数x满足不等式,则x=3.因为不等式,<3,2,39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是1:3.厘米的圆面积的厘米的圆面积的,圆中,据此40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(4,60).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是18.42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有132天.43.计算:.2+))﹣,)2+)2+),.,2012+.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).的分子、分母同时扩大倍,变成的分子、分母同时扩大倍,变成===﹣=﹣﹣,==++++,==﹣﹣=+,45.如图,在△ABC中,,E,G分别是AD,ED的中点,若△EFG的面积为1,则△ABC的面积是18.中,,且,据此利用分数除法的意义即可解答问题.中,的面积的,÷=1846.如图(1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S1,S2,S3,则S1,S2,S3的大小关系是相等.47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了厘米.。
第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.∙2×1.∙2∙4+1927=________. 4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是________。
9.将一个数A 的小数点向右移动两位,得到数B 。
那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。
则三个面涂漆的小正方体有________块。
13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。
第四届小学“希望杯”全国数学邀请赛六年级第1试1.2006×2008×(12006×2007+12007×2008)=________.2.900000-9=________×99999.3. 1.•2×1.•2•4+ 1927=________.4.如果a =20052006,b =20062007,c =20072008,那么a ,b ,c 中最大的是________,最小的是________.5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相同,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对的题的数量等于小明与小刚答对题的数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字之和的五分之三是________。
9.将一个数A 的小数点向右移动两位,得到数B 。
那么B +A 是B -A 的_______倍.(结果写成分数形式) 10.用10根火柴棒首尾顺次连接接成一个三角形,能接成不同的三角形有________个。
11.希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为l 的小正方体。
则三个面涂漆的小正方体有________块。
13.如下图中,∠AOB 的顶点0在直线l 上,已知图中所有小于平角的角之和是400度,则∠AOB =____度。
14.如上图右,桌面上有A 、B 、C 三个正方形,边长分别为6,8,10。
B 的一个顶点在A 的中心处,C 的一个顶点在B 的中心处,这三个正方形最多能盖住的面积是________。
15.如下图左,从正方形ABCD 上截去长方形DEFG ,其中AB=1厘米,DE=12厘米,DG=13厘米。
将ABCGFE 以GC 边为轴旋转一周,所得几何体的表面积是________平方厘米,体积是_____立方厘米。
(结果用π表示)16.上图右是小华五次数学测验成绩的统计图。
小华五次测验的平均分是________分。
17.根据图a 和图b ,可以判断图c 中的天平________端将下沉。
(填“左”或“右”)。
18.甲乙两地相距12千米,上午l0:45一位乘客乘出租车从甲地出发前往乙地,途中,乘客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的13加上未走路程的2倍,恰好等于已走的路程,又知出租车的速度是30千米/小时,那么现在的时间是________。
19.明明每天早上7:00从家出发上学,7:30到校。
有一天,明明6:50就从家出发,他想:“我今天出门早,可以走慢点。
”于是他每分钟比平常少走lO 米,结果他到校时比往常迟到了5分钟。
明明家离学校________米。
20.某校入学考试,报考的学生中有13被录取,被录取者的平均分比录取分数线高6分,没被录取的学生的平均分比录取分数线低24分,所有考生的平均成绩是60分,那么录取分数线是________分。
21.北京时间比莫斯科时问早5个小时,如当北京时间是9:00时,莫斯科时间是当日的4:00。
有一天,小张乘飞机从北京飞往莫斯科,飞机于北京时间15:00起飞,共飞行了8个小时,则飞机到达目的地时,是莫斯科时间________。
(按24时计时法填几时几分)22.成语“愚公移山”比喻做事有毅力,不怕困难。
假设愚公家门口的大山有80万吨重,愚公有两个儿子,他的两个儿子又分别有两个儿子,依此类推。
愚公和他的子孙每人一生能搬运100吨石头。
如果愚公是第1代,那么到了第________代,这座大山可以搬完。
23.一位工人要将一批货物运上山,假定运了5次,每次的搬运量相同,运到的货物比这批货物的35多一些,比34少一些。
按这样的运法,他运完这批货物最少共要运________次,最多共要运________次。
24.一批工人到甲、乙两个工地工作,甲工地的工作量是乙工地工作量的112倍,上午在甲工地工作的人数是乙工地人数的3倍,下午这批工人中有512在乙工地工作。
一天下来,甲工地的工作已完成,乙工地的工作还需4名工人再做一天。
这批工人有________人。
参考答案第四届“希望杯”全国数学邀请赛 六年级第2试一、填空题。
(每小题4分,共60分。
)1.8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3=________。
2.一个数的23 比3小37,则这个数是________。
3.若a =11111 ,b =1111111 ,c =111111111 ,则a ,b ,c 中最大的是________,最小的是________。
4.牧羊人赶一群羊过10条河,每过一条河时都有三分之一的羊掉入河中,每次他都捞上3只,最后清查还剩9只。
这群羊在过河前共有________只。
5.如下左图所示,圆圈中分别填人0到9这10个数,且每个正方形顶点上的四个数之和都是18,则中间两个数A 与B 的和是________。
6.磁悬浮列车的能耗低。
它的每个座位的平均能耗是汽车的70%,汽车每个座位的平均能耗是飞机的1021,飞机每个座位的平均能耗是磁悬浮列车每个座位平均能耗的______倍。
7.“△”是一种新运算,规定:a △b =a ×c +b ×d(其中c ,d 为常数),如5△7=5×c +7×d 。
如果1△2=5,2△3=8,那么6△1OOO 的计算结果是________。
8.一筐萝卜连筐共重20千克,卖了四分之一的萝卜后,连筐重15.6千克,则这个筐重________千克。
9.如果a ,b 均为质数,且3a +7b =41,则a +b =________。
10.如上右图,三个图形的周长相等,则a ∶b ∶c =________。
11.如下左图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体术块,木块浮出水面的高度是2厘米。
若将木块从容器中取出,水面将下降________厘米。
12.如上右图,正方形ABCD 和正方形ECGF 并排放置,BF 与EC 相交于点H ,已知AB =6厘米,则阴影部分的面积是________平方厘米。
13.圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是_____________立方厘米。
(结果用π表示)14.箱子里装有若干个相同数量的黑球和白球,现往箱子里再放入14个球(只有黑球和白球),这时黑球数量占球的总数的16,那么现在箱子里有________个白球。
15.体育课上,60名学生面向老师站成一行,按老师口令,从左到右报数:1,2,3,…,60,然后,老师让所报的数是4的倍数的同学向后转,接着又让所报的数是5的倍数的同学向后转,最后让所报的数是6的倍数的同学向后转,现在面向老师的学生有________人。
二、解答题。
(每小题l0分,共40分。
)要求:写出推算过程。
16.国际统一书号ISBN由10个数字组成,前面9个数字分成3组,分别用来表示区域、出版社和书名,最后一个数字则作为核检之用。
核检码可以根据前9个数字按照一定的顺序算得。
如:某书的书号是I S B N7-107-17543-2,它的核检码的计算顺序是:①7×10+1×9+0×8+7×7+1×6+7×5+5×4+4×3+3×2=207;②207÷11=18……9;③11-9=2。
这里的2就是该书号的核检码。
依照上面的顺序,求书号I S B N-7-303-07618-□的核检码。
17.甲乙两车分别从A、B两地相向而行,两车在距A点10千米处相遇后,各自继续以原速前进,到达对方出发点后又立即返回,从B地返回的甲车在驶过A、B中点3千米处再次与从A地返回的乙车相遇,若甲每小时行驶60千米,则乙每小时行驶多少千米?18.在如图所示的圆圈中各填入一个自然数,使每条线段两端的两个数的差都不能被3整除。
请问这样的填法存在吗?如存在,请给出一种填法;如不存在,请说明理由。
19.40名学生参加义务植树活动,任务是:挖树坑,运树苗。
这40名学生可分为甲、乙、丙三类,每类学生的劳动效率如下表所示。
如果他们的任务是:挖树坑30个,运树苗不限,那么应如何安排人员才能既完成挖树坑的任务,又使树苗运得最多?第四届“希望杯”全国数学邀请赛六年级第2试答案1. (8.1+1.9)×1.3+(11.9-8)÷1.3=13+3=162.计算、方程思想、还原问题的逆推法。
(3-3/7)÷(2/3)=27/73.比较大小:常用方法有所谓的“同差法”和“倒数法”。
a,b,c的大小关系为a<b<c,所以最大的是c,最小的是a4.还原问题的逆推法,量率对应。
第九次:(9-3)÷(2/3)=9,第八次:(9-3)÷(2/3)……第一次:(9-3)÷(2/3),原共有9只5.数阵图:常与整数、余数问题结合出题。
主动学习网总结的惯例方法:分析特征求总和,求分和,求特殊位置的和,应用整数或余数问题或其他知识求解答案。
A,B在求和时用了2次,比其他位置多用了一次,比较特殊。
(0+1+2+3+…+9)+A+B=45+A+B=18×3=54,A+B=9。
6.比例问题,设数法。
要注意“比”字后面的是比较的标准,也就是分数中分母的含义,或者说作为除数。
设飞机每个座位的平均能耗为1,则磁悬浮列车每个座位的平均能耗为1×10/21×70%=1/3,1÷1/3=3倍7.定义新运算:理解并掌握“对号入座”就可以了,有些定义新算还应注意计算先后顺序。
本题还考查了学生解二元一次方程组的能力。
1△2=1×c+2×d=5,2△3=2×c+3×d=8,解得:a=1,d=2.6△1OOO=6×1+1000×2=20068.还原思想、假设法、差异分析,量率对应。