2019-2020年六年级下册数学竞赛试卷
- 格式:doc
- 大小:77.50 KB
- 文档页数:7
2019-2020六年级下册数学试卷摘要:一、试卷简介1.2019-2020 六年级下册数学试卷2.适用于六年级下学期的数学教学检测3.帮助学生巩固所学知识,提高解题能力二、试卷结构与题型1.选择题2.填空题3.判断题4.计算题5.应用题6.综合题三、试卷难度与考察知识点1.试卷难度适中2.考察知识点全面,包括:四则运算、分数、小数、百分数、圆、面积和体积等3.注重基础知识与基本技能的考查四、答题技巧与策略1.仔细审题,理解题目要求2.注意时间分配,先易后难3.注重计算准确性,避免粗心大意4.检查答案,确保填写正确五、试卷使用建议1.教师可以根据试卷分析学生的学习情况2.学生可以通过自我检测,找出自己的薄弱环节3.家长可以关注孩子的学习状况,协助提高学习成绩正文:2019-2020 六年级下册数学试卷是一份针对六年级下学期数学教学的检测试卷。
这份试卷结构合理,题型丰富,包括选择题、填空题、判断题、计算题、应用题和综合题,能够全面考查学生在这个阶段所学的知识。
试卷的难度适中,既注重对学生基础知识的考查,也考查了学生的基本技能,有助于学生巩固所学知识,提高解题能力。
试卷涵盖了四则运算、分数、小数、百分数、圆、面积和体积等知识点,让学生在答题过程中能够回顾整个学期的学习内容。
在答题过程中,学生应注意仔细审题,理解题目要求,注意时间分配,先易后难。
同时,要注重计算准确性,避免因粗心大意而失分。
在完成试卷后,学生应检查答案,确保填写正确。
教师可以根据这份试卷分析学生的学习情况,找出需要加强的知识点和教学方法。
学生可以通过自我检测,找出自己的薄弱环节,针对性地进行复习。
家长也可以通过关注孩子的试卷表现,了解孩子的学习状况,协助提高学习成绩。
小学六年级数学竞赛试卷(附答案)图文百度文库一、拓展提优试题1.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.2.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.3.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).4.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.5.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.6.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.7.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.8.已知自然数N的个位数字是0,且有8个约数,则N最小是.9.若质数a,b满足5a+b=2027,则a+b=.10.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.11.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.12.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.13.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.14.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.15.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?【参考答案】一、拓展提优试题1.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.2.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.3.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.4.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.5.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.6.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.7.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.8.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.11.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.12.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:30013.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.14.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.15.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.。
2019小学数学六年级(全国通用)-数学竞赛部分-二进制数与十进制数的互相转化(含答案)一、填空题1.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1).它们两者可以相互换算,如将二进制数(101)2改成十进制数:(101)2=1×22+0×21+1×20=4+0+1=5.(1)将二进制数(10101)2换成十进制数是________ .(2)将十进制数13换成二进制数是________ .2.将下列十进制数改写成二进制数(1)(106)10=________ 2(2)(19)10=________ 2(3)(987)10=________ 2(4)(1993)10=________ 2.3.把下列十进制数化成二进制数:(1)139(10)=________ .(2)312(10)=________ .(3)477(10)=________ .4.将6个灯泡排成一行,用○和●表示灯亮和灯不亮,如图是这一行灯的五种情况,分别表示五个数字:1,2,3,4,5.那么○●●○●○表示的数是________ .5.(1010101.1011)2=________ 10.6.日常生活中经常使用十进制来表示数,要用10 个数码:0、1、2、3、4、5、6、7、8、9.在电子计算机中用二进制,只要用两个数码0和1.正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到以下自然数的十进制与二进制表示对照表:十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1+1=10,十进制的3在二进制中变成了10+1=11,…那么,二进制中的“111100”用十进制表示是________ .7.229的十进制表示共有9位数字,且两两不同,问:数字________ 没有出现过.8.把二进制数(10111)2化为十进制数是________ 10;把十进制数(37)10化成二进制数是________ 2.9.二进制数10111.0011表示成十进制数为________ .10.把(11011)2改写成十进制数等于________ .12.将下列二进制数,改写成十进制数(1)(10101)2=________ 10(2)(1001100)2=________ 10(3)(11101101)2=________ 10(4)(101110111)2=________ 10.二、计算题13.(1)把二进制数101011100写成十进制数是什么?(2)把十进制数234写成二进制数是什么?14.将下面的数转化为十进制的数:(1111)2,(1010010)2,(4301)5,(B08).1615.把二进制数11011化为十进制数.16.将下列二进制数化为十进制数:(1)110111(2);(2)110000(2);(3)1000001(2).17.将十进制数107.625转换成二进制数.18.二进制是计算技术中广泛采用的一种计数方法,二进制数是用0和1两个数字来表示的.其加、减法的意义我我们平时学习的十进制类似.(1)二进制加法.在二进制加法中,同一数位上的数相加只有四种情况:0+0=0,0+1=1,1+0=1,1+1=10.二进制加法算式和十进制写法一样,算法也一样,也要求数位对齐,从低位到遍位依次运算,但“满二进一”.例:(2)二进制减法.二进制减法算式和十进制写法一样,算法也一样,也要数位对齐,从低位到高位依次运算,相同数位上的数不够减时,向高一位借,但“借一当二”.例:阅读以上关于二进制的介绍,请你完成以下二进制计算.(要求列竖式计算)(1)101﹣11 (2)10110+1101.19.一个十进制的三位数,其中a、b、c均代表某一个数码,它的二进制表达式是一个七位数,试求这个数.20.把十进制数11.25化为二进制数.三、解答题21.二进制是计算技术中广泛采用的一种技术方法,二进制数是用0和1两个数字来表示的。
六年级奥数竞赛数学竞赛试卷及答案一、拓展提优试题1.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.2.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.3.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.4.如图所示的“鱼”形图案中共有个三角形.5.若质数a,b满足5a+b=2027,则a+b=.6.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.7.若一个十位数是99的倍数,则a+b=.8.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.9.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).10.被11除余7,被7除余5,并且不大于200的所有自然数的和是.11.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)12.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.13.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.14.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.15.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.【参考答案】一、拓展提优试题1.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.2.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.3.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.4.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.5.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.6.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.7.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.8.解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.9.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.10.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.11.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.12.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.13.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.14.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.15.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.。
新星学校2019年秋六年级数学解决问题能力竞赛试题姓名班级分数新星学校2019年秋六年级数学解决问题能力竞赛试题○2、针织厂检验产品,抽查了一些羊毛衫,合格的有1491件,不合格的有9件,这批羊毛衫的合格率是多少?○3、新星学校买来一批新图书共800本,分给六年级27%,分给五年级22%,还剩下多少本?○4、芍药的花期是32天,玫瑰的花期是芍药的,水仙的花期是玫瑰的。
水仙的花期是多少天?○5、鸡的孵化期是21天,鸭的孵化期比鸡长。
鸭的孵化期是多少天?○6、小明爸爸的体重是75千克,小明的体重比爸爸的体重轻,小明的体重是多少千克?○7、小明的体重是35千克,他的体重比爸爸的体重轻,小明爸爸的体重是多少千克?○8、一批大米运往灾区,运了4车才运走,剩下的大米还要几车才能运完?○9、种杨树的棵数是柳树的,种柳树比杨树多20棵,问杨树柳树各多少棵?○10、修一条公路,第一天修了全长的,第二天修了150米,第三天修了全长的,三天正好完成任务。
这段公路全长多少米?新星学校2019年秋六年级数学解决问题能力竞赛试题○12、小明和爷爷一起去操场散步。
小明走一圈需要8分钟,爷爷走一圈需要10分钟。
如果两人同时同地出发,同方向而行,多少分钟后小明超出爷爷一整圈?○13、第一天看了全书的,第二天看了42页,这时已看的与未看的页数之比是2:3。
这本书共有多少页?○14、学校合唱队有48人,比舞蹈队的少8人。
学校舞蹈队有多少人?(用方程解)○15、右图中正方形的边长是10分米,求阴影部分的面积。
○16、用120厘米的铁丝做一个长方体的框架。
长、宽、高的比是3:2:1.这个长方体的长、宽、高分别是多少?○17、一只挂钟的分针长20厘米,经过45分钟后,分针的尖端所走的路程是多少厘米?○18、杂技演员表演独轮车走钢丝,车轮的直径为40厘米,要骑过50.24米长的钢丝,车轮大约要转动多少周?○19、一个羊圈依墙而建,呈半圆形,半径是5米。
小学六年级数学竞赛计算专题试卷(含答案)1 学校:___________姓名:___________班级:___________考号:___________一、选择题1.平均每小时有36至45人乘坐游览车,那么3小时中有人乘坐游览车。
A.少于100 B.100与150之间C.150与200之间D.200与250之间2.小马虎做一道减法题,把减数75看成了57,结果算出的差比正确的差()。
A.多18 B.少18 C.无法比较3.4784×5589=()A.56786 B.26737776 C.256476674.小明在做连续自然数1、2、3、4、5、…求和时,把其中一个数多加了一次,结果和为149,那么多加的这个数是()A.13 B.14 C.15 D.165.已知a※b=a×6+b×2,那么6※5=( )。
A.46 B.42 C.306.用循环小数表示7.1÷11的商是()。
A.B.C.D.7.下面各数中,()是最大的。
A.9.171 B.9.171 (171是循环节)C.9.171 (71是循环节)8.11a0.5b c25%d35+=+=+=+,a、b、c、d中最大的是( )A.a B.b C.c D.d 9.下面哪一行和其他三行不一样?()A.3,5,6,7B.3,4,6,7C.0,2,4,6D.7,5,3,4二、填空题10.已知10101010123 (11)100101102110A=++++,则A的整数部分是____。
11.小东在计算除法时,把除数87写成78,结果得到的商是54,余数是8.正确的商是_____,余数是_____.12.小马虎在计算4.26加上一个一位小数的时候,由于错误地把加数的末尾对齐,结果得到4.78,这个一位小数是_____,这道题的正确的结果是_____.13.一本故事书共29页,那么最中间的一页是第________ 页.14.定义一种新运算:3△2=3+33=36,5△4=5+55+555+5555=6170,那么7△6的结果是(_______)。
小学数学竞赛试题及参考答案(六年级)一、填空(第1~2题每题6分,第3~11题每题7分,共计75分)1. 计算:201.8×20.17-20.16×201.7 =( )。
2. 计算:[(1-12)×(1-13)×(1-14)×……×(1-12017)]×[(1+12)×(1+13)×(1+14)×……×(1+12017)] =( )。
3. 在□里填上适当的数字,使得七位数□7358□□是8、9、25的公倍数,那么这个七位数是( )。
4. 甲、乙、丙三个柜台的总营业额为5.7万元。
其中甲、乙柜台的营业额之比是2:3,乙、丙柜台营业额之比也是2:3。
甲柜台的营业额是( )万元。
5. 单独完成某项工作,师父需6小时,徒弟需9小时。
如果按照师、徒、师、徒……的顺序轮流工作,每次1小时,那么完成这项工作需要( )小时。
6. 有五颗同样的骰子放成一排(如右图),五颗骰子底面的点数之和是( )。
7. “20172017”表示2017个2017相乘,那么这个积的个位数字是( )。
8. 5397除以一个质数,所得余数是15。
这个质数是( )。
9. 右图圆环面积为141.3cm²,则阴影部分面积是( )cm ²。
10.在一条公路上,每隔10千米有一座仓库(如下图),共有五座。
图中数字表示各个仓库里的货物的重量。
现在要把所有的货物集中到一个仓库,如果每吨货物运输1千米的运费为0.9元,那么运费至少是( )元。
11.黑板上从1开始写了若干个连续自然数:1,2,3,4,……然后擦去三个数(其中有两个质数),如果剩下的数平均数是1989,那么擦去的两个质数之和最大是( )。
二、解答题(要求写出必要的解题过程,每题9分,共计45分)12.果园里苹果大丰收。
摘下全部苹果的38时,装满3筐后还多24千克。
2020年第五届鹏程杯百科知识竞赛六年级组试题卷温馨提示:1.你拿到的试卷满分为100分,竞赛时间为90分钟。
2.试卷包括“试题卷”和“答题卷”两部分。
请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
3.答题时,请用蓝黑墨水的钢笔、签字笔或圆珠笔,不要用铅笔。
4.答题前,请先填写“准考证号”“姓名”“考场号”和“座位号”。
5.考试结束后,请将“试题卷”和“答题卷”一并交回。
6.相信你自己,你是最棒的。
一、单选题(每小题只有一个选项符合题意。
每小题1分,共25题,25分)1.下列物体不具有放大镜功能的是()。
A.装上水的圆柱体烧杯B.透明的玻璃球C.金属球D.老花镜2.海平面再上升50厘米的话,全球多少人口得迁移()。
A.10%B.30%C.5%D.15%3.日食是一种天文现象,2019年()的这次日食,环食带从沙特阿拉伯开始,经过卡塔尔、阿拉伯联合酋长国、阿曼、阿拉伯海、印度、斯里兰卡、印度尼西亚、马来西亚、苏拉威西海,在太平洋西部结束。
在非洲东北部、亚洲(除北部)、印度洋北部、大洋洲西北部、太平洋西部可以看到偏食。
中国全境可见偏食。
A.12月26日B.11月26日C.12月1日D.11月1日4.下列有关现代生物进化理论的叙述,错误的是()。
A.生物进化以个体为基本单位B.可遗传的变异产生进化的原材料C.自然选择决定生物进化的方向D.隔离是新物种形成的必要条件5.最早的眼镜是()发明的。
A.格罗斯泰斯特B.培根C.列文虎克D.罗伯特·胡克6.地球上的人观看晴朗的天空呈现蓝色,这是因为:()。
A.大陆上的海水把天空映成蓝色B.太阳光中的蓝色被物体反射成蓝色C.太阳光中的蓝色光被天空中的微粒散射成蓝色D.宇宙空间本身是蓝色7.对生活中的一些垃圾,带有()标志的是可以被回收并重新加工利用的。
A. B. C. D.8.两枚完全相同的一元硬币,其中一枚固定不动,另一枚绕着它的边缘转动一周,则它自身转动()周。
2019年数学竞赛六年级初赛试题及答案最新TAG:六年级初赛| 年| 希望杯试题|1.计算:=___________.2.计算:=__________.3.对于任意两个数x, y定义新运算,运算规则如下:x ♦ y=x × y – x ÷2,xy =x + y ÷ 2,按此规则计算,3.6 ♦ 2=_________,♦ (7.54.8) = __________.4.在方框里分别填入两个相邻的自然数,使下式成立。
5.在循环小数中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第位上的数字是6,则新的循环小数是__________.6.一条项链上共有99颗珠子,如图1,其中第1颗珠子是白色的,第2,3颗珠子是红色的,第四颗珠子是白色的,第5,6,7,8颗珠子是红色的,第9颗珠子是白色的,……则这条项链中共有红色的珠子_______颗。
7.自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是________。
8.根据图2计算,每块巧克力_______元(□内是一位数字)。
9.手工课上,小红用一张直径是20cm的圆形纸片剪出如图3所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是________cm²。
(π取3.14)10.用若干棱长为1cm的小正方体码放成如图4所示的立体,则这个立体的表面积(含下底面面积)等于_________cm²。
11.图5中一共有_________个长方形(不包含正方形).12.图6中,每个圆圈内的汉字代表1~9中的一个数字,汉字不同,数字也不同,每个小三角形三个顶点上的数字之和相等。
若7个数字之和等于12,则“杯”所代表的数字是________。
13.如图7,沿着圆周放置黑、白棋子各100枚,并且各自相邻排列。
若将圆周上任意两枚棋子换位一次称为一次对换,则至少经过_________次对换可使全部的黑棋子彼此不相邻。
2019小学数学六年级(全国通用)-数学竞赛部分-奇阶幻方问题(含答案)一、填空题1.把4~12这九个自然数填入九宫图内(如图),使每行、每列、每条对角线上三个数的和都等于24(每个数用一次).2.把11、12、13、14、15、16、17、18、19填在图合适的方格里,使每横行、竖行、斜行的三个数相加都得45.3.字1~9被填入到下面3×3的方格中,其中每个数字都恰好被用了一次.如果在方格的右边和下边所写的数字代表的是该行或该列中所填数的乘积,则在“*”格中所填的数字应该是________ .4.如图是九宫格,每个格子中有一个数(图中没有全部标出),已知它每行、每列、每条对角线上三个数的和都相等,则A格中的数是________ .5.用11﹣﹣﹣35填出下列五阶幻方:6.在九宫格中,填入的都是大于0的整数,且每行,每列,每条对角线上三数之积相等,则图中A表示的整数等于________ .7.请你在图中的空格里填上数,使横、竖的三个数的和都相等.8.将8、12、16、20、24、28、32、36、40这9个数,分别填入右图方格内,使每行每列及对角线上的三个数的和都相等.9.在如图中每个没有数字的格内各填一个数,使每行、每列及每条对角线的三个格中的数之和都等于108.那么,画有“?”的格内所填的数是________ .10.将不大于12且互不相同八个自然数填入图中八个方格中,使九宫格图中的每一行,每一列以及对角线上的三个数的和都等于21.11.九个小方格,每个小方格内都有一个数,每行、每列以及对角线上三个数的和都相等,这样的九个数所组成的方块叫做九宫图!如表一就是一个九宫图.在表二的空格中分别填入________ .表一表二.12.在右面的9个方格中分别填入﹣2,﹣1,0,1,2,3,4,5,6,使得每一行的三个数、每一列的三个数、斜对角的三个数之和都相等.13.在如图所示的3×3方格表中填入合适的数,使每行、每列以及每条对角线上的三个数的和相等.那么标有“★”的方格内应填入的数是________ .14.在图的九个方格里,每行、每列、每条对角线上的三个数的和都相等,则N=________ .15.所谓“三阶乘法幻方”是指在3×3的方格中填入9个不等于0的整数,使得每行、每列及每条对角线上的三个数之积都相等.请将如图的“乘法幻方”补充完整,则其中的“X”所代表的数是________ .二、解答题16.把2,3,4,…,10这九个数字填到图中的3X3方格内,使每行、每列及对角线上的三个数的和都相等.三、综合题17.智力填空(1)如图个正方形中各有一个数字,已知每一行、每一列及每条对角线上的三个数之和都相等那么右上角的数x=________ .(2)一个三位数与其数字之和之比可能取得的最大值是________ .(3)计算:(÷×÷×÷)×÷×÷×÷…,那么算到第130个数的结果是________ .四、应用题18.在如图中的空格内填入适当的数,使每行、每列、每条对角线上各数的和都等于27.19.你将﹣2,﹣1,0,1,2,3,4,5,6这9个数分别填入图中的9个空格内,使每行的3个数、每列的3个数、斜对角的3个数相加均为6.20.将1~9填在右面的方格中,使每一横行、竖行、斜行的数相加的和都相等21.把20个棋子放到图中的方格里,每个格子都要放,怎样放才能使每边的棋子加起来都是6个?22.在下面的空格里填上合适的数,使每一横行、竖行、斜行的三个数的和都相等.45.答案解析部分一、填空题1.【答案】【考点】奇阶幻方问题【解析】【解答】解:中间数是24÷3=8;剩下的两个数的和是16,16=4+12=5+11=6+10=7+9;这个幻方是:【分析】根据题意,要使三阶幻方的幻和为24,所以中心数必为24÷3=8,那么与20在一条直线上的各个组的其余两个数的和为16,调整和为16两个数的位置填入幻方即可.2.【答案】【考点】奇阶幻方问题【解析】【解答】解:中间数是:45÷3=15;经过推算其它各数位置如下:【分析】先求出中间数:45÷3=15;剩余的每两个数的和是30;由30=11+19=12+18=13+17=14+16;调整每一对数的位置填入表格即可.3.【答案】4【考点】奇阶幻方问题【解析】【解答】解:有分析可知因为20=1×4×5,1×9×8=72,8×3×6=144,9×7×2=126,1,×4×5=20,填表如下:故答案为:4.【分析】首先从最小的数20开始分析,20=1×4×5,所以下面一行的数字只能是1、4、5,而由于与1、4、5再乘得出72、105、48,5只能在中间位置,如果第一个数字是4,则得出第一行的第一个数字是2;105=5×21,只有3×7=21,正中间数是3,得不出9×3×()=126,是7,则有9×7×2=126,就与4×9×2矛盾,因此下面一行的数字顺序为1、4、5,得出*=4,进一步经过计算得出答案即可.4.【答案】9【考点】奇阶幻方问题【解析】【解答】解:由以上分析可得答案如下:因此A=9.故答案为:9.【分析】已知它每行、每列、每条对角线上三个数的和都相等,设中间的数为x,则幻和为3x,由图可知,B=2x﹣5,10+1+(2x﹣5)=3x,解得x=6;由此求得幻和为18,进一步推出C=3,A=9,B=7,D=11,E=2.5.【答案】【考点】奇阶幻方问题【解析】【解答】解:可以写出这个五阶幻方是:【分析】本题用爬楼梯的方法求解:最小的数(11)放在第一行正中;按以下规律排列剩下的24个数:(1)、每一个数放在前一个数的右上一格;(2)、如果这个数所要放的格已经超出了顶行那么就把它放在底行,仍然要放在右一列;(3)、如果这个数所要放的格已经超出了最右列那么就把它放在最左列,仍然要放在上一行;(4)、如果这个数所要放的格已经超出了顶行且超出了最右列,那么就把它放在前一个数的下一行同一列的格内;(5)、如果这个数所要放的格已经有数填入,处理方法同(4).6.【答案】9【考点】奇阶幻方问题【解析】【解答】解:如图,因为3×4×C=C×1×B,所以B=12;因为3×B×x=4×x×A,3所以A=9.故答案为:9.【分析】已知它每行、每列、每条对角线上三个数的积都相等,由图可知,3×4×C=C×1×B,得出B=12,再由3×B×x=4×x×A,得出A=9;由此求得答案解决问题.7.【答案】【考点】奇阶幻方问题【解析】【解答】解:幻和是6×3=18;第二行第三列的数是:18﹣10﹣6=2;第三行第三列的数是:18﹣7﹣2=9;第一行第一列的数是:18﹣6﹣9=3;第一行第二列的数是:18﹣3﹣7=8;第三行第一列的数是:18﹣3﹣10=5;第三行第三列的数是:18﹣8﹣6=4;这个幻方就是:【分析】中间数是6,那么幻和是6×3=18;由此进行逐步推算即可.8.【答案】【考点】奇阶幻方问题【解析】【解答】解:8+12+16+20+24+28+32+36+40=216;幻和:216÷3=72;中间数:72÷3=24;这个幻方是:【分析】先求出这个9个数的总和,总和除以3就是幻和,再用幻和除以3就是中间数,根据中间数依次找出剩下数两两之和相等,填入方格.9.【答案】46【考点】奇阶幻方问题【解析】【解答】解:中间的数:108÷3=36;右下角:108﹣(54+36),=108﹣90,=18;左下角:108﹣(64+18),=108﹣82,=26;右上角:108﹣(36+26),=108﹣62,=46;要求的数是46;这个格子是:故答案为:46.【分析】使每行、每列及每条对角线的三个格中的数之和都等于108.那么最中间的数就是108÷3=36;由此求出右下角的数;再根据右下角的数和64两个数推算出左下角的数;进而推算出要求的数.10.【答案】【考点】奇阶幻方问题【解析】【解答】解:21÷3=7,中间数是7;21﹣7=14=2+12=4+10=5+9=6+8调整各个数的位置可得:【分析】幻和是21,所以中间数是21÷3=7,由此可以先前推算出前面的4个数是6、5、4、2,后面的四个数就是8、9、10、12;21﹣7=14=2+12=4+10=5+9=6+8,由此进行求解即可.11.【答案】90【考点】奇阶幻方问题九个数的和是:9×10=90;故答案为:90.【分析】表一中填入的是1~9这九个不同的自然数,中心数是5;表二中的中心数是10,还有另外两个数9、11,这三个数都是表一中相应位置上的数加5得来的,由此可把表一其它格中的数也加5填入表二即可;要求表二中九个数的和可用中心数乘9求得即可.12.【答案】【考点】奇阶幻方问题【解析】【解答】解:这个方格如下:【分析】(1)首先计算幻和:[(﹣2)+(﹣1)+0+1+2+3+4+5+6)]÷3=18÷3=6;再算出中心数:6÷3=2;剩余的每两个数的和是4:(﹣1)+5=4+0=(﹣2+6)=3+1;调整每一对数的位置填入表格即可.13.【答案】8【考点】奇阶幻方问题【解析】【解答】解:3+7+★=★+□+4,得出□=6,6×3=18,所以★=18﹣7﹣3=8;具体答案如下,故答案为:8.【分析】如图,首先由3+7+★=★+□+4,推出中间的数字为6;又因每行、每列以及每条对角线上的三个数的和相等,说明行、列以及对角线上的三个数的和是6的3倍为18,由此解决问题.14.【答案】18【考点】奇阶幻方问题【解析】【解答】解:每行、每列、每条对角线上的三个数的和是:8+6+16=30;中心数是:30﹣8﹣12=10,右上角的数是:30﹣16﹣10=4;第一行中间的数是:N=30﹣8﹣4=18.【分析】先确定每行、每列、每条对角线上的三个数的和,8+6+16=30;再确定对角线上的中心数:30﹣8﹣12=10,然后求出右上角的数:30﹣16﹣10=4;最后得出第一行中间的数N=30﹣8﹣4=18.15.【答案】8【考点】奇阶幻方问题【解析】【解答】解:如图:由20×16×A=A×4×B得出B=80,20×C×80=4×C×D得出D=400,20×400×X=80×E×X得出E=100,20×16×A=20×400×X得出A=25X,16×C×100=20×400×X得出C=5X,所以A×C×X=20×C×80,25X×X=1600X×X=64,X=8.故答案为:8.【分析】如图:因为每行、每列及每条对角线上的三个数之积都相等,可以得到20×16×A=A×4×B=B×E×X=X×D×20=A×C×X=20×C×B=4×C×D=16×C×E,选择合适的等式求得结论即可.二、解答题16.【答案】【考点】奇阶幻方问题【解析】【解答】解:2+3+…+8+9+10=54,幻和:54÷3=18;中间数:18÷3=6;剩下两个数=18﹣6=12=10+2=9+3=8+4=7+5,所以幻方如下:【分析】只看行,有三行,三行的总和是:2+3+…+8+9+10=54,由于每行上的三个数的和都相等,所以幻和是:54÷3=18;由于三个数的和是18,所以中心格的数字必须是:18÷3=6;然后把剩下的和为18﹣6=12的两个数:2和10,3和9,4和8,5和7,调整填入方格即可.三、综合题17.【答案】(1)16(2)100(3)【考点】奇阶幻方问题【解析】【解答】解:(1)如图,①X+a+b=c+d+19,②X+c+e=e+f+13,③X+d+f=X+a+b,所以3X+a+b+c+d+e+f=X+a+b+c+d+e+f+13+19X=16;(2)设三位数的百位、十位、个位分别是a,b,c,三位数表示为100a+10b+c;设(100a+10b+c):(a+b+c)=k则100a+10b+c=ka+kb+kc;由于abc均为自然数,可知,k最大值是100,此时b,c均为0;(3)130÷6=21…4,(÷×÷×÷)×(÷×÷×÷)×…×(÷×÷)=1×1×1×…×(÷)=×=.故答案为:(1)16;(2)100;(3).【分析】(1)如图,为了便于分析推导,先在方格内填入相应的字母来代替数,由于方格内已填好了两个数19和13,还有一个未知数x,根据“每一行、每一列以及两条对角线上的三个数的和都相等”可得等式:①X+a+b=c+d+19,②X+c+e=e+f+13,③X+d+f=X+a+b,三个等式左右两边各相加整理得出答案即可;(2)设三位数的百位、十位、个位分别是a,b,c;三位数表示为100a+10b+c;比值为k,探讨k的最大值得出答案即可;(3)÷×÷×÷=1每6个数为一组,用130除以6,看得到的余数是多少,确定最后算到那个数,进一步计算得出答案即可.四、应用题18.【答案】解:中心数为27÷3=9;第三列第二行的数为:27﹣5﹣10=12;第一列第三行的数为:27﹣5﹣9=13;第一列第一行的数为:27﹣13﹣6=8;第二列第一行的数为:27﹣8﹣5=14;第二列第三行的数为:27﹣14﹣9=4;把数填入图中得:【考点】奇阶幻方问题【解析】【分析】因为每行、每列、每条对角线上各数的和都等于27,所以幻和为27,中心数为27÷3=9,再据表格中的其它数,利用幻和取出即可.19.【答案】解:根据分析可得:【考点】奇阶幻方问题【解析】【分析】根据幻和是6,可得中心数是:6÷3=2;那么对角线、第二行、第二列剩下两个数的和就为:6﹣2=4;所以只要凑成:4=3+1=5+(﹣1)=0+4=﹣2+6,然后稍微调整一下即可得出答案.20.【答案】解:幻和:(1+2+3+4+…+9)÷3=45÷3=15;中间数:15÷3=5;其它两个数的和是10,1+9=2+8=3+7=4+6;【考点】奇阶幻方问题【解析】【分析】先求出这9个数的和,用这个9个数的和除以3求出幻和,再用幻和除以3求出中间数;再根据幻和减去中间数,就是剩下两个数的和,根据幻和,调整这些数的位置,得出幻方.21.【答案】解:四个角各放一个,其余四格各放4个,这样每边都是6个;如下图:【考点】奇阶幻方问题【解析】【分析】要使每边都是6个,从最简单的情况着手,即四个角的数量相等;如果四个角的数量都是3个,那么每边两个方格就有6个棋子,每边会空出一格不合适,所以角上的棋子数量不会超过2个;如果每个角上都是2个,那么每边中间的空格也是2个棋子,这样一共是2×8=16个棋子,不是20个,不合题意;如果每个角上都是1个,那么每边的中间的空格就是4个棋子,一共是1×4+4×4=20个棋子,符合题意.四个角各放一个,其余四格各放4个,这样每边都是6个.22.【答案】解:给未知的数编号如下:幻和是60×3=180a=180﹣48﹣60=72;b=180﹣72﹣12=96c=180﹣48﹣96=36d=180﹣24﹣72=84这个幻方就是:【考点】奇阶幻方问题【解析】【分析】中间数是60,那么幻和就是60×3=180,用这个幻和减去已知的数,即可得出其它的数,从而得解.23.【答案】解:第3行第3列的数是:45﹣24﹣3=18第3行第1列的数是:45﹣21﹣18=6第2行第2列的数是:45﹣24﹣6=15第2行第1列的数是:45﹣15﹣3=27第1行第1列的数是:45﹣27﹣6=12第2行第1列的数是:45﹣15﹣21=9【考点】奇阶幻方问题【解析】【分析】(1)根据横、竖、斜行的三个数的和都是45,用45减去24和3,求出第3行第3列的数是多少;(2)根据横、竖、斜行的三个数的和都是45,用45减去第3行第2列和第3行第3列的数,求出第3行第1列的数是多少;(3)根据横、竖、斜行的三个数的和都是45,用45减去24和第3行第1列的数,求出第2行第2列的数是多少;(4)根据横、竖、斜行的三个数的和都是45,用45减去第2行第2列和第2行第3列的数,求出第2行第1列的数是多少;(5)根据横、竖、斜行的三个数的和都是45,用45减去第2行第1列和第3行第1列的数,求出第1行第1列的数是多少;(6)根据横、竖、斜行的三个数的和都是45,用45减去第2行第2列和第3行第2列的数,求出第1行第2列的数是多少.。
2019年数学竞赛六年级初赛试题及答案最新 (I)TAG:六年级初赛| XX年| 希望杯试题|1.计算:=___________.2.计算:=__________.3.对于任意两个数x, y定义新运算,运算规则如下:x ♦ y=x × y – x ÷2,xy =x + y ÷ 2,按此规则计算,3.6 ♦ 2=_________,♦ (7.54.8) = __________.4.在方框里分别填入两个相邻的自然数,使下式成立。
5.在循环小数中,将表示循环节的圆点移动到新的位置,使新的循环小数的小数点后第XX 位上的数字是6,则新的循环小数是__________.6.一条项链上共有99颗珠子,如图1,其中第1颗珠子是白色的,第2,3颗珠子是红色的,第四颗珠子是白色的,第5,6,7,8颗珠子是红色的,第9颗珠子是白色的,……则这条项链中共有红色的珠子_______颗。
7.自然数a和b的最小公倍数是140,最大公约数是5,则a+b的最大值是________。
8.根据图2计算,每块巧克力_______元(□内是一位数字)。
9.手工课上,小红用一张直径是20cm的圆形纸片剪出如图3所示的风车图案(空白部分),则被剪掉的纸片(阴影部分)的面积是________cm²。
(π取3.14)10.用若干棱长为1cm的小正方体码放成如图4所示的立体,则这个立体的表面积(含下底面面积)等于_________cm²。
11.图5中一共有_________个长方形(不包含正方形).12.图6中,每个圆圈内的汉字代表1~9中的一个数字,汉字不同,数字也不同,每个小三角形三个顶点上的数字之和相等。
若7个数字之和等于12,则“杯”所代表的数字是________。
13.如图7,沿着圆周放置黑、白棋子各100枚,并且各自相邻排列。
若将圆周上任意两枚棋子换位一次称为一次对换,则至少经过_________次对换可使全部的黑棋子彼此不相邻。
2019年六年级数学竞赛模拟试题一、填空题。
(每题4分,共64分)1、1×2×3×4×5×…×998×999×1000的积,末尾有()个连续的零。
2、用n去除13511、13903和14589时所得的余数相同,n最大是()。
3、如果一个小正方体木块的表面积是60平方厘米,那么由1000个同样的小正方体堆成的大正方体的表面积是()。
4、把红、黄、绿三面旗子挂在旗杆上可以挂一面,二面,三面,不同顺序,排法不同,问有()种不同挂法。
5、从1、2、3、4、5、6、7、…、1994这些自然数中,最多可以取( 999)个数能使这些数中任意两个数的差都不等于。
6、把38个梨分给7个小朋友,如果每个小朋友分得的个数都不一样,那么,最多能分得的个数是()个。
7、3点过()分时,时针和分针离“2”的距离相等,并且在“2”的两边.8、一把钥匙开一把锁,但不知哪把钥匙开哪把锁,问最多试()次能用9把钥匙把9把锁打开。
最少()次。
9、把一个时钟改装成一个玩具钟,使得时针每转一圈,分针转16圈,秒针转36圈,开始时三针重合,问在时针旋转一周的过程中,三针重合了()次。
(不计起始和终点的位置)10、一个自行车选手在相距950千米的甲、乙两地之间训练。
从甲地出发,去时每90千米休息一次,到达乙地并休息一天后再沿原路返回,每100千米休息一次,他发现恰好有一个休息地点与去时的一个休息地点相同。
问这个休息地点距甲地()千米。
11、某个阶梯教室,有20排座位,第一排有10个座位,以后每一排比前一排多一个座位,如果考试时每一排的考生都不许相邻而坐,那么这阶梯教室最多能坐()个考生。
12、一辆汽车从A城市开往B城市,如果把车速提高20%,则可比原定时间提前1小时到达B城市,如果按原来的速度先行驶100千米后,再将速度提高30%,恰巧也能比原定时间提前1小时到达B城市。
六年级竞赛题1.四宫数独:把1 ~ 4 填入下面的宫格,使每一横行,每一竖列,每个粗线框中的四个格子所填数字不重复。
“?”表示的数字是.2.四宫数独:把1 ~ 4 填入下面的宫格,使每一横行,每一竖列,每个粗线框中的四个格子所填数字不重复。
“?”表示的数字是.3.4.5.6.(A) (B) (C) (D)7.(A) (B) (C) (D)8.(A) (B) (C) (D)9.10.11.阿凡提来到了魔法城堡,魔法城堡的大门是一个智能密码锁,大门上有提示语:下面这个计算的结果就是打开大门的密码了.•••1000 - 3.4 28571⨯ 2.3 =请你输入打开魔法城堡大门的密码:.12.蓝精灵热爱学习,可是她被下面这道计算题给难住了,你能帮她吗?计算:5.4321×0.5679-0.4321×5.5679+0.321=.13.已知大白拥有的魔力磁铁数量的2比小宏的少10%,则用百分数表示,大白3拥有的魔力磁铁数量比小宏的多%.14.哈利波特用魔法杖改变了一个分数,变化后发现分子增加20%,分母减少19%,则新分数比原来分数增加了%.(四舍五入精确到1%)15.霍格沃兹的魔法世界里定义了一种新运算△,规定a△b=(a+b)÷b,那么:3 4△19= .5 2016.迷糊老师在黑板上写了三个分数:2012,2013,2014,其中最大的分数是:2017 2018 2019.17.小猪佩奇的后花园是一个如图所示的梯形(单位:m ),梯形的面积是m2.18.猪八戒爱喝含糖的水,他有甲、乙两杯糖水,所含糖的重量之比为5:3,所含水的重量之比为3:5,糖水的总重量比为5:8,则甲杯的含糖量是.(结果用最简分数表示)19.皮卡丘爱做化学实验,她有一杯含盐7%的盐水重100 克,蒸发了一部分水后,盐水含盐10%,则蒸发的水是克.20.皮皮鲁在学习除法竖式,他发现一个三位数除以19,商是a,余数是b (a,b都是自然数),则a+b 的最大值是.21.鲁西西家里面有一个三层书架,其中第一,二层书的数量比为5:3,第二,三层书的数量比为7:13,若书架上的书总数不超过100 本,则第三层放有本书.22.数学王子高斯是一个数论高手,他的小学老师曾经考过他这么一个问题:从数字1,2,3,4,5,6,7,8,9 中任取3 个数组成三位数,所组成的数中,能被4 整除的三位数有个.23.欧几里得是一位伟大的古希腊时期的数学家,他写过一本书叫做《几何原本》.他曾经思考过这样一个问题:26. 小乔巴将 1 到 25 这 25 个数随意排成一行,然后将它们依次和 1,2,3,…,25 相减,并且都是大数减小数,把得到的 25 个差相加,结果最大是.27. 劳拉在最近的这次古墓任务中来到了古埃及,她在一个神秘金字塔里发现了1 , 3 , 5 , 7 , 9 , 11 , 13 ,1 123 5 8 13π取 3.14)24. 青青草原羊村里举行了一次智力大比拼.结果发现,前五名的平均成绩比前三名的平均成绩少 1 分,前七名的平均成绩比前五名的平均成绩少 3 分.若第四名到第七名的平均成绩为 84 分,则前三名的平均成绩是 分.25. 神探夏洛克·福尔摩斯发现了一个密码宝箱,已知密码是一个三位数 A .目前有一个线索,在 123,931,297,419 四个三位数中,每个数都恰好含有三位数 A 中的一个数字,且出现的位置和 A 中的位置不同,则三位数 A 是.一个有趣的数列,请你观察下面一列数的规律,这列数从左往右第 10 个数 是.如图,OAB 是一个圆心角为 45°,半径为 12 m 的扇形,以 OA 为直径画 一个半圆,交 OB 于点 C ,则图中阴影部分的面积是 m 2.(圆周率29. 阿里巴巴商城在举行促销活动,一套巴克球降价 5 元出售,和往日按原价销售相比,销量提高了 20%,获利提高了 10%,则降价后每套巴克球可获利元.30. 名侦探柯南在自己的笔记本上写了两个两位数,他发现其中一个数的 3等于其中的△ABF 和△AFD 的面积分别是 40 和 64. 则四边形 DFEC 的面积是.的 3 倍少 1 米,则短绳原来长米.1另一个数的 3,这两个数的差最大是.31. 龙猫家的大花园是一个平行四边形.如图,线段 AE 和 BD 将花园分成四块,32. 黄金梅丽号轮船从甲港经丙港到乙港,从甲港到丙港是逆水而行,从丙港到乙港是顺水而行,从甲港到丙港的路程是从丙港到乙港的 2.轮船逆水而行3的速度是顺水而行的速度的一半,轮船从甲港经丙港到乙港共行了 7 小时. 这艘轮船从乙港经丙港返回甲港需要小时.有两条绳子,长绳比短绳的 2 倍多 4 米,各截掉 6 米以后,长绳比短绳28. 所罗门是以色列最有智慧的君王,有一天,他给大臣们出了一道题:33.如图,正方形ABCD 与梯形CDEF 共边,AF 与BC 交于点G,若AD=DE=3,AG : GF=1 : 2,则梯形CDEF 的面积为.34.精灵宝可梦从1~20 这20 个自然数中任取若干个(至少两个),使这些数的乘积的末位数字是3,则它共有种不同的取法.35. 步行的菲菲和骑自行车的猪猪侠,分别从相距40 千米的A、B 两地同时出发,相向而行.已知菲菲每小时行4 千米,但每行30 分钟就休息 5 分钟;猪猪侠每小时行12 千米,分钟后,两人在途中相遇.36. 数学家高斯在研究整数问题时,发明了取整记号[x ],用[x ]表示不超过 x 的最大整数.问:自然数 n 的值依次取 1,2,3,…,2019 时,[ n ] + n + n的值共[ ] [ ]2 3 6有种可能.37. 甲、乙两个工程队合作一项大工程,计划按照甲、乙、甲、乙、……的顺序轮流施工,即每队施工一天后由另一队接替,这样甲和乙施工的天数刚好一样多;实际按照甲、乙、乙、甲、乙、乙、……的顺序施工,结果比原计划提前两天完工,且最后一天是甲施工.已知甲的工作效率是乙的 2,则完成3 这项工程实际用了天.38. 小聪明爱看故事书,他有一本故事书标记的页码是 1~m 页,所有页码的各位数字之和是 190,则 m =.39. 英国航海家库克船长在探险时发现了一个神秘的图形.如图,点 E ,F ,G ,H 分别是四边形 ABCD 各边上的点,若 2AF =FB ,2CH =HD ,BG =GC ,DE =EA ,四边形 ABCD 的面积是 12,则四边形 EFGH 的面积是.40. 史莱克和钢铁侠从同一地出发去环球影城,史莱克走得慢,比钢铁侠早出发5 分钟,钢铁侠出发后 15 分钟可追上史莱克.若史莱克每分钟多走 5 米,钢铁侠每分钟多走 10 米,其他条件不变,则钢铁侠出发后 13 分钟追上史莱克, 则史莱克初始的速度是每分钟走米答案。
2019年六年级数学竞赛试卷一、填空。
1、一个自然数与它本身相加、相减、相除所得的和、差、商再相加,结果是1991,那么原来的自然数是()。
2分2、在一次运动会中,甲班参加田赛的有15人,参加径赛的有12人,参加田赛又参加径赛的有7人,没有参加比赛的有21人,那么甲班共有()人。
2分3、大年三十彩灯悬,彩灯齐明光灿灿,三三数时能数尽,五五数时剩一盏,七七数时刚刚好,八八数时还缺三。
请你自己猜一猜,彩灯至少有()盏。
2分4、小明、小红、小青三位小朋友去钓鱼,数一数他们钓的鱼,发现小明钓的鱼是小红钓的3倍,小红钓的鱼比小青少7条,小青钓的鱼比小明少9条,小明钓到()条鱼。
2分5、幼儿园的老师把一些画片分给A,B,C三个班,每人都能分到6张.如果只分给B班,每人能得15张,如果只分给C班,每人能得14张,问只分给A班,每人能得()张?2分6、哥哥与弟弟两人的年龄3年后的年龄差是7岁,哥哥今年的年龄是弟弟的2倍,哥哥今年的年龄()岁?3分7、某工厂的27位师傅共带40名徒弟,每位师傅可以带一名徒弟、两名徒弟或三名徒弟,如果带一名徒弟的师傅的人数是其他师傅人数的两倍,那么带两名徒弟的师傅有()位。
3分8、一部电视剧共8集,要在3天里播完,每天至少播一集,则安排播出的方法共有()种可能。
3分9、由A、B、C、D、E、F六个孩子。
已知①B比A高11厘米;②C比D矮1厘米;③E比B高2厘米;④F比B矮7厘米,比D矮2厘米;⑤六人中最矮的身高156厘米。
根据条件,你能排出它们的高矮顺序吗?3分10、甲、乙两人分别从A、B两地同时出发相向面行。
已知甲的速度比乙快,8小时两人在途中C点相遇。
如果两人的速度各增加2千米,那么相遇时间可缩短2小时,且相遇点D距C点3千米。
求甲原来的速度是()? 3分11、人的正常体温(腋温)是多少。
12、会飞的蝙蝠是属于动物(鸟类还是哺乳)13、种子的发芽需要充足的水分、空气和适宜的。
14、食物链通常从开始的,到凶猛的肉食动物终止。
2019-2020年六年级下册数学竞赛试卷
班级姓名
一、填空(每空2分,共24分)
1.=15÷()=()﹕16
2.把1.606、1和1.6按从大到小的顺序排列为()。
3.一张半圆形纸片半径是1分米,它的周长是()分米,要剪成这样的半圆形,至少要一张面积是()平方分米的长方形纸片。
4. 一排长椅共有90个座位,其中一些座位已经有人就座了。
这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。
原来至少有_ _人已经就座。
5.吨煤平均7次运完,每次运这些煤的(),每次运煤()吨。
6. 十几辆卡车运送315桶汽油,每辆卡车运的桶数一样多,且一次运完.那么, 每辆卡车运()桶。
7. 五个数的平均数是30,若把其中一个数改为40,则平均数是35,这个
改动的数是( )。
8.两个圆的直径比是 2 :5,周长比是(),面积比是()。
二、判断(每题2分,共10分)
1.某班男生人数比女生人数多,那么女生人数就比男生少。
()
2.半圆的周长就是圆周长的一半。
( )
3.把圆分成若干份,分的份数越多,拼成的图形越接近于长方形。
()
4.把10克糖放入100克水中,糖是糖水的。
()
5.7吨的和1吨的一样重。
()
三、选择(每题3分,共18分)
1.下面图形中,()是正方体的表面展开图.
A. B. C.
2.一种商品先降价,又提价,现价与原价相比()。
A.现价高;
B.原价高;
C.相等。
3.一个三角形,三个内角度数的比是1:3:6,这个三角形是()。
A.锐角三角形;
B.直角三角形;
C.钝角三角形
4.甲数是m,比乙数的8倍多n,表示乙数的式子是()
A.8m+n
B.m+8+n
C.(m-n)÷8
5.正方形和圆的周长相等,那么面积谁大?()
A.同样大;
B.正方形大;
C.圆大;
D.无法比较。
6.两件衣服都按80元出售,其中一件赚了,另一件亏了,那么两件衣服合算在一起,结果是( )。
A.赚了
B.亏了
C.不赚不亏
D.无法比较
四、下面各题怎样算简便就怎样算(每题4分,共8分)
÷-3.6+6.25×+ ×+×+×
五、应用题(每题10分,共40分)【在草稿本上算出得数,直接填答。
】
1.一个环形内圆半径是3米,外圆周长是37.68米,这个环形的面积是多少平方米? 答:这个环形的面积是( )平方米。
2.在一张长12厘米,宽8厘米的长方形纸上,剪下两个最大的圆,那么每个圆的面积是多少?剩下部分的面积是多少?
答:每个圆的面积是( )平方厘米,剩下部分的面积
是( )平方厘米。
3.某班男生人数是女生人数的23 ,后来转来1名男生后,男生是女生的710
,现在全班有多少人?
答:现在全班( )人。
4.甲、乙两人同时从相距2000米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去.这样不断来回,直到甲和乙相遇为止,狗共行了多少米?
答:狗共行了( )米。
5.一块正方形木板,一边锯掉8厘米,一边锯掉5厘米,锯完后的面积比原来正方形面
答:原来木板的边长是( )厘米。
附送:
2019-2020年六年级下册数学竞赛题
一、仔细想,认真填。
(每小题3分,共30分。
)
1、北京到天津的实际距离是120千米,在一幅地图上量得两地的图上距离
是3厘米,这幅地图的比例尺是( )。
2、一个长方形操场,长120米,宽80米。
把它画在比例尺是11000
的图纸上,长应画( )厘米,宽应画( )厘米。
3、把两个完全一样的圆柱,拼成一个长30厘米的圆柱,但表面积减少25.12平方厘米,原来每个圆柱的体积是( )立方厘米。
4、一种农药,是用药液和水按照1:1500配制而成的。
如果现在只有4千克的药液,能配制这种农药( )千克。
5、一个圆柱的侧面积是188.4平方分米,底面半径是2分米。
它的高是( )分米。
6、有两个底面半径相等的圆柱,高的比是3:5。
第二个圆柱的体积是45
立方厘米,第二个圆柱的体积比第一个多( )立方厘米。
7、用铁皮制作圆柱形通风管10节,每节长80厘米,底面圆的周长是34厘
米。
至少需要铁皮( )平方米。
8、如果两个比a b 和c d
的比值互为倒数,那么a 、b 、c 、d 可以组成的比例是( )。
9、有一块正方体的木料,它的棱长是4分米。
把这块木料加工成一个最大
的圆柱体,这个圆柱体的体积是( )。
10、一个圆锥与一个圆柱的底面积相等。
已知圆锥与圆柱的体积的比是1
6
,
圆柱的高是4.8,圆锥的高是()厘米。
三、慎重选择,对号入座。
(每小题2分,共12分。
)
1、如果A×2=B÷3,那么A:B=()
①2:3 ②3:2 ③1:6 ④6:1
2、在同时同地测得的杆高和影长()
①不成比例②成正比例③成反比例
3、如果图上距离3厘米表示实际距离1.5毫米,那么这幅图的比例尺是()
①1:20②1:2 ③20:1
4、在比例尺是1 :8的图纸上,甲、乙两个圆的直径比是2 :3,那么甲、乙两个圆的实际的直径比是()
①1 :8 ②4 :9 ③2 :3
5、一个圆柱,侧面展开后得到一个正方形,它的高是底面半径的()
倍。
①2 ②4 ③π④2π
6、一个圆柱体和一个圆锥体的高相等体积也相等,圆锥体的底面积是12平
方分米,圆柱体的底面积是()。
①4平方分米②12平方分米③36平方分米
三、认真推敲,做个好裁判。
(每小题2分,共20分。
)
1、在比例中,两个内项积与两个外项积的商等于1。
()
2、圆的半径和它的面积成正比例。
()
3、加工时间一定,加工零件个数和加工每个零件所需的时间成反比例。
()
4、实际距离一定,图上距离与比例尺成正比例。
()
5、铺地面积一定时,方砖边长与所需块数成反比例。
()
6、把一个长方形操场画在比例尺是1:1000的图上,图上操场的面积比实
际缩小了1000倍。
()
7、如果两个圆柱的侧面积相等,那么这两个圆柱的底面周长也一定相等。
()
8、一个圆柱和一个圆锥等底等高,它们的体积相差48 立方分米,这个圆
锥的体积应是24立方分米。
()
9、一个圆锥的高不变,底面半径扩大2倍,体积也扩大2倍。
()
10、在一幅比例尺为1:100的地图上测算一个正方形的面积为9平方厘米,
这个正方形的实际面积是9÷
1
100
=900平方厘米。
()
四、认真审题,细心计算。
(共14分)
1、直接写得数。
(每小题1分)
7 ÷1.4= 0.9+99 ×0.9 = 400÷ 25÷ 8=
1.25× 0.8 =(
2.4+1.2)÷ 6= 1.9× 4 ×0.5=
2、解比例。
(每小题2分)
8:13=24:х1
6
:χ=
2
9
:
8
15
40
24
=
5
χ
χ
25
=
1.2
7.5
五、解决生活中的问题。
(第1题4分,其余题各5分)1、一种农药中药液和水是按照1:1500配制而成的。
现在有5克这样的药液,可配制出多少克农药?(4分)
2、一个圆锥形沙堆,底面积是15平方米,高2米。
用这堆沙铺在长400米、宽3米的路面上,能铺多厚?
3、一个圆柱形玻璃容器的底面直径是10厘米。
小明把一块铁块从这个容器的水中取出后,水面下降3厘米。
这块铁块的体积是多少?
4、一个没有盖的圆柱形铁皮水桶,高是8分米,底面直径是高的3。
王爷爷
4
要做两个这样的水桶,大约用多少平方分米的铁皮?(用进一法取近似值,得数保留整十平方分米。
)
5、把一根长1.5米的圆柱形钢材截成三段后,表面积比原来增加9.6平方分米,这根钢材原来的体积是多少?
小学教育资料
好好学习,天天向上!
第7 页共7 页。