2019-2020学年鲁教版七年级上册数学期末试卷(1)-精华版
- 格式:docx
- 大小:95.81 KB
- 文档页数:4
一、选择题1.给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为( )A .①②B .②③C .②④D .③④ 2.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A .B .C .D . 3.如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°4.线段10AB cm =,C 为直线AB 上的点,且2BC cm =,,M N 分别是,AC BC 中点,则MN 的长度是( )A .6cmB .5cm 或7cmC .5cmD .5cm 或6cm 5.下列各等式的变形中,等式的性质运用正确的是( )A .由02x =,得2x =B .由14x -=,得5x =C .由23a =,得23a =D .由a b =,得a b c c= 6.小丽买了20支铅笔,店主给她8折优惠(即按标价的80%出售),结果共便宜了1.6元,则每支铅笔的标价是( )A .0.20元B .0.40元C .0.60元D .0.80元 7.下列各题正确的是( )A .由743x x =-移项得743x x -=B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---=D .由()217x x +=+去括号、移项、合并同类项得5x =8.一张试卷共有25道题,若做对1题得4分,做错1题扣1分,小明做了全部试题只得了70分,那么小明做对了( )道.A .17B .18C .19D .20 9.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .5 10.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( ) A .2 B .﹣2C .3D .﹣3 11.已知n 为正整数,则()()2200111n -+-=( ) A .-2 B .-1 C .0 D .212.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)二、填空题13.同一条直线上有三点A ,B ,C ,且线段BC=3AB ,点D 是BC 的中点,CD=3,则线段AC 的长为______.14.如图,若AOB ∠是直角,OM 平分AOC ∠,ON 平分COB ∠,则MON ∠=________.15.某校组织七年级学生参加研学活动,如果单独租用45座车若干辆,则刚好坐满;如果单独租用60座客车,则可少租2辆,并且剩余15座.该校参加研学活动的有_______人. 16.张老师带学生乘车外出郊游,甲车主说:”不论师生,每人8折,"乙车主说:“学生9折,老师免费,“张老师算了一下,不论坐谁的车,费用一样,则张老师带的学生人数是________.17.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.18.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………19.计算3253.1410.31431.40.284⨯+⨯-⨯=__. 20.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.三、解答题21.如图,C ,D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,6cm AD =.求:(1)线段AB 的长;(2)线段DE 的长.22.如图所示,已知O 是直线AB 上一点,90BOE FOD ∠=∠=︒,OB 平分COD ∠.(1)图中与DOE ∠互余的角有________________;(2)图中是否有与DOE ∠互补的角?如果有,直接写出全部结果;如果没有,说明理由.23.公园门票价格规定如下表: 购票张数1~50张 51~100张 100张以上 每张票的价格 13元 11元 9元50人.若两个班都以班为单位购票,则一共应付1240元,问:(1)如果两班联合起来,作为一个团体购票,可省多少元?(2)两班各有多少学生?(3)如果七(1)班单独组织去公园游玩,作为组织者的你将如何购票才最省钱? 24.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:购买服装数(套) 1~35 36~60 61及61以上已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?25.计算(1)(-5)+(-7);(2)(-1)100×5+(-2)4÷426.上海与南京间的公路长为364km,一辆汽车以xkm/h的速度开往南京,请用代数式表示:(1)汽车从上海到南京需多少小时?(2)如果汽车的速度增加2km/h,从上海到南京需多少小时?(3)如果汽车的速度增加2km/h,可比原来早到几小时?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据圆柱、圆锥、正方体、球,可得答案.【详解】解:①圆柱由3个面围成,2个底面是平面,1个侧面是曲面,故①错误;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面,故②正确;③球仅由1个面围成,这个面是曲面,故③错误;④正方体由6个面围成,这6个面都是平面,故④正确;故选:C.【点睛】本题考查了认识立体图形,熟记各种图形的特征是解题关键.2.A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.故选:A.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.3.C解析:C【分析】首先求得AB与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点睛】本题考查了方向角,正确理解方向角的定义是关键.4.C解析:C【分析】根据题意分两种情况,①C为线段AB延长线上的点,②C为线段AB上的点,利用中点的性质分别进行求解.【详解】如图1, ①C为线段AB延长线上的点,∵,M N分别是,AC BC中点,∴CM=12AC=12(AB+BC)=6cm,CN=12BC=1cm,∴MN=CM-CN=5cm;如图2,②C为线段AB上的点,∵,M N分别是,AC BC中点,∴CM=12AC=12(AB-BC)=4cm,CN=12BC=1cm,∴MN=CM+CN=5cm;故选C.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系. 5.B解析:B【解析】【分析】利用等式的基本性质判断即可.【详解】解:A 、由02x =,得x=0,不符合题意; B 、由x-1=4,得x=5,符合题意; C 、由2a=3,得a=32,不符合题意; D 、由a=b ,c≠0,得a b c c =,不符合题意; 故选:B .【点睛】本题考查了等式的性质,熟练掌握等式的基本性质是解题的关键.6.B解析:B【分析】设未知数,根据题意中的等量关系列出方程,然后求解.【详解】解:设每支铅笔的标价是x 元,根据题意得:20×(1-80%)x=1.6解得x=0.4故选:B .【点睛】本题考查一元一次方程的实际应用,此题要注意联系生活,知道八折就是标价的80%. 7.D解析:D【分析】根据解一元一次方程的步骤计算,并判断.【详解】A 、由743x x =-移项得743x x -=-,故错误;B 、由213132x x --=+去分母得()()221633x x -=+-,故错误; C 、由()()221331x x ---=去括号得42391x x --+=,故错误;D 、由()217x x +=+去括号得:227x x +=+,移项、合并同类项得5x =,故正确.故选:D .【点睛】本题主要考查了一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“-”号的,括号里各项都要变号.解析:C【分析】此题等量关系为:做对题所得分-做错题所扣分数=70分,设小明做对了x 道,则做错了(25-x)道,根据题意列方程求解即可.【详解】解:设小明做对了x 道,则做错了(25-x)道,根据题意得:4x-(25-x)×1=70,解得:x=19,故选:C .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.9.B解析:B【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:∵132n x y 与4313x y 是同类项, ∴n+1=4,解得,n=3,故选:B.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.10.D解析:D【分析】先将多项式合并同类型,由不含x 的二次项可列【详解】6x 2﹣7x+2mx 2+3=(6+2m )x 2﹣7x +3,∵关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,∴6+2m=0,解得m =﹣3,故选:D .【点睛】此题考查多项式不含项的计算,此类题需先将多项式合并同类型后,由所不含的项得到该项的系数等于0来求值.解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n为正整数,∴2n为偶数.∴(-1)2n+(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 12.D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键.二、填空题13.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.14.45°【分析】结合图形根据角的和差以及角平分线的定义找到∠MON与∠AOB的关系即可求出∠MON的度数【详解】解:∵OM平分∠AOCON平分∠BOC∴∠MOC=∠AOC∠NOC=∠BOC∴∠MON=解析:45°【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB的关系,即可求出∠MON的度数.【详解】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC,∠NOC=12∠BOC,∴∠MON=∠MOC-∠NOC=12(∠AOC-∠BOC)=12(∠AOB+∠B0C-∠BOC)=12∠AOB=45°.故选答案为45°.【点睛】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.15.405【分析】设租用45座车x辆则租用60座客车为(x-2)辆根据等量关系列出方程即可求解【详解】设租用45座车x辆则租用60座客车为(x-2)辆根据题意得:45x=60(x-2)-15解得:x=9解析:405【分析】设租用45座车x辆,则租用60座客车为(x-2)辆,根据等量关系,列出方程,即可求解.【详解】设租用45座车x辆,则租用60座客车为(x-2)辆,根据题意得:45x=60(x-2)-15,解得:x=9,45×9=405(人),答:该校参加研学活动的有405人.故答案是:405.【点睛】本题主要考查一元一次方程的实际应用,找出等量关系,列出方程,是解题的关键.16.8人【解析】【分析】设张老师带的学生数为x人车费原价为a元/人则在甲车主处需要费用为08a(1+x)元在乙车主处需要09ax元根据两车的费用一样建立方程求出其解即可【详解】设张老师带的学生数为x人车解析:8人【解析】【分析】设张老师带的学生数为x人,车费原价为a元/人,则在甲车主处需要费用为0.8a(1+x)元,在乙车主处需要0.9ax元,根据两车的费用一样建立方程求出其解即可.【详解】设张老师带的学生数为x人,车费原价为a元/人,由题意,得0.8a(1+x)=0.9ax,解得:x=8,故答案为:8人.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时根据当两车主的费用一样建立方程是关键.17.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2+-m m234【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4,故答案为2m2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.18.【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解解析:83n-【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.19.0【分析】先把0314314都转化为314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便解析:0【分析】先把0.314,31.4都转化为3.14,然后逆运用乘法分配律进行计算即可得解.【详解】解:3253.1410.31431.40.284⨯+⨯-⨯,353.141 3.14 3.14288=⨯+⨯-⨯,353.14(12)88=⨯+-,3.140=⨯,0=.故答案为:0.【点睛】本题考查了有理数的乘法运算,把算式进行转化,逆运用乘法分配律运算更加简便. 20.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.三、解答题21.(1)10.8cm ;(2)0.6cm【分析】(1)设2cm AC x =,3cm CD x =,4cm BD x =,则根据6cm AD =列式计算即可. (2)由E 为线段AB 的中点,且根据(1)知AB 的长为10.8cm ,即可求出DE 的长.【详解】(1)设2cm AC x =,3cm CD x =,4cm BD x =.则有236x x +=,解得 1.2x =.则234910.8x x x x ++==.所以AB 的长为10.8cm .(2)因为E 为线段AB 的中点, 所以1 5.4cm 2AE AB ==. 所以6 5.40.6cm DE AD AE =-=-=【点睛】本题考查的是两点之间的距离,熟知各线段之间的和及倍数关系是解答此题的关键.22.(1)EOF ∠,BOD ∠,BOC ∠;(2)BOF ∠,COE ∠.【分析】(1)由∠BOE=90°,则∠DOE+∠BOD=90°,要求与∠DOE 互余的角,只要找到与∠BOD 相等的角即可,即∠BOC ,∠EOF ;(2)根据同角的余角相等,结合OB 平分∠COD ,可得∠DOE=∠AOF ,∠EOF=∠BOD=∠BOC ,则∠DOE 的补角与∠AOF 的补角相等,即∠DOE 互补的角:∠BOF 、∠EOC ;【详解】解:(1)∵∠BOE=∠FOD=90°,∴∠AOF+∠EOF=90°,∠BOD+∠DOE=90°,∠DOE+∠EOF=90°,∵OB 平分∠COD ,∴∠BOD=∠BOC ,∠AOF=∠DOE ,∴与∠DOE 互余的是:∠EOF 、∠BOD 、∠BOC ;故答案为:∠EOF 、∠BOD 、∠BOC ;(2)由(1)以及同角的余角相等可知,∠AOF=∠DOE ,∠EOF=∠BOD=∠BOC , ∴∠DOE 的补角与∠AOF 的补角相等,∵∠AOF+∠BOF=180°,∠BOF=∠EOC ,∴∠AOF+∠EOC=180°,∴∠DOE 的补角有:∠BOF 和∠EOC .【点睛】本题考查了补角和余角的定义,以及角平分线的定义,解题的关键是根据同角或等角的余角相等,同角或等角的补角相等进行解答.23.(1)304元;(2)七(1)班有48人,七(2)班有56人;(3)买51张门票可以更省钱.【分析】(1)利用算术方法即可解答;(2)若设初一(1)班有x 人,根据总价钱即可列方程;(3)应尽量设计的能够享受优惠.【详解】(1)12401049304-⨯=(元),所以可省304元.(2)设七(1)班有x 人,则七(2)班有(104)x -人.由题意得1311(104)1240x x +-=或139(104)1240x x +-=,解得48x =或76x =(不合题意,舍去).即七(1)班有48人,七(2)班有56人.(3)由(2)可知七(1)班共48人,若买48张门票,共需4813624⨯=(元),若买51张门票,共需5111561⨯=(元),所以买51张门票可以更省钱.【点睛】本题考查了一元一次方程的应用.在优惠类一类问题中,注意认真理解优惠政策,审题要细心.24.七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】解:∵67604020⨯=40203650>∴所以一定有一个班的人数大于35人.设大于35人的班有学生x人,则另一班有学生(67-x)人,依题意得5060(67)3650x x+-=6730x-=答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.25.(1)-12;(2)9【分析】(1)同号相加,取相同符号,并把绝对值相加,据此计算即可;(2)先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)(-5)+(-7)=-(5+7)=-12.(2)(-1)100×5+(-2)4÷4=5+16÷4=5+4=9.【点睛】本题主要考查了有理数的加法及有理数的混合运算,熟练掌握运算法则是解本题的关键.26.(1)364xh;(2)3642x+h;(3)3643642x x⎛⎫-⎪+⎝⎭h【分析】(1)根据题意,可以用代数式表示出汽车从上海到南京需要的时间;(2)根据题意,可以用代数式表示出汽车的速度增加2千米/时,从上海到南京需要的时间;(3)根据题意,可以用代数式表示出如果汽车的速度增加2千米/时,可比原来早到几小时.【详解】解:(1)汽车从上海到南京需364xh;(2)如果汽车的速度增加2km/h,从上海到南京需3642x+h;(3)如果汽车的速度增加2km/h,可比原来早到3643642x x⎛⎫-⎪+⎝⎭h.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.。
一、选择题1.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒2.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A .B .C .D . 3.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1 4.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为( ) A .互余 B .互补 C .相等 D .无法确定 5.在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x 场,则根据以上信息所列方程正确的是( ) 大比分胜(积分) 负(积分) 3:03 0 3:13 0 3:2 2 1A .3x+2x =32B .3(11﹣x )+3(11﹣x )+2x =32C .3(11﹣x )+2x =32D .3x+2(11﹣x )=326.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-37.如图,长方形ABCD 中,AB 3cm =,BC 2cm =,点P 从A 出发,以1cm/s 的速度沿A B C →→运动,最终到达点C ,在点P 运动了3秒后点Q 开始以2cm /s 的速度从D 运动到A ,在运动过程中,设点P 的运动时间为t ,则当APQ △的面积为22cm 时,t 的值为( )A .2或103B .2或113C .1或103D .1或133 8.某商场的老板销售一种商品,标价为360元,可以获得80%的利润,则这种商品进价多少( )A .80元B .200元C .120元D .160元 9.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .1210.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6 11.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯-12.下列说法:①a -一定是负数;②||a 一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l ;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个二、填空题13.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n 棱柱,最多可以截得________边形.14.如图,数轴上A ,B 两点表示的数分别为2-和6,数轴上的点C 满足AC BC =,点D 在线段AC 的延长线上.若32AD AC =,则BD =________,点D 表示的数为________.15.(1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________;(2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________. 16.我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布__________尺. 17.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.18.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.19.下列各组式子:①a ﹣b 与﹣a ﹣b ,②a +b 与﹣a ﹣b ,③a +1与1﹣a ,④﹣a +b 与a ﹣b ,互为相反数的有__.20.若2(1)20a b -+-=,则2015()a b -= _______________. 三、解答题21.读下列语句,画出图形,并回答问题.(1)直线l 经过A ,B ,C 三点,且C 点在A ,B 之间,点P 是直线l 外一点,画直线BP ,射线PC ,连接AP ;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.22.已知90AOB ∠=︒,OC 为一条射线,OE ,OF 分别平分AOC ∠,BOC ∠,求EOF ∠的度数.23.松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲工厂比乙工厂要多用20天在加工过程中,学校每天需付甲工厂费用80元,乙工厂费用120元.(1)这批校服共有多少件?(2)在实际加工过程中,甲、乙两个工厂按原生产效率合作一段时间后,甲工厂停工了,乙工厂每天的生产效率提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间比甲工厂工作时间的2倍还多4天,则乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲工厂单独完成;方案二:由乙工厂单独完成;方案三:按第(2)问方式完成并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种既省时又省钱的加工方案.24.解方程:(1)5(8)6(27)22m m m +--=-+(2)2(3)7636x x x --+=- 25.若关于x ,y 的多项式my 3+3nx 2y +2y 3-x 2y +y 不含三次项,求2m +3n 的值. 26.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行线的性质和角平分线性质可求.【详解】解:∵AB ∥CD ,∴∠1+∠BEF=180°,∠2=∠BEG ,∴∠BEF=180°-50°=130°,又∵EG 平分∠BEF ,∴∠BEG=1∠BEF=65°,2∴∠2=65°.故选:B.【点睛】此题考查平行线的性质,角平分线的性质,解题关键在于掌握两直线平行,内错角相等和同旁内角互补这两个性质.2.A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.故选:A.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.3.A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=1BD=4,2∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.4.C解析:C【分析】∠1和∠2互余,∠2与∠3互余,则∠1和∠3是同一个角∠2的余角,根据同角的余角相等.因而∠1=∠3.【详解】∵∠1与∠2互余,∠2与∠3互余,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,故选:C.【点睛】本题考查了余角的定义.解题的关键是掌握余角的定义,以及同角的余角相等这一性质.5.C解析:C【分析】设中国队以大比分3:2取胜的场次有x场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x)场,根据总积分=3×小比分获胜的场次数+2×大比分获胜场次数,即可得出关于x的一元一次方程.【详解】解:设中国队以大比分3:2取胜的场次有x场,则中国队以小比分3:1或3:0取胜的场次有(11﹣x)场,依题意,得:2x+3(11﹣x)=32.故选:C.【点睛】本题考查了一元一次方程的应用,正确理解题意、找准相等关系是解题的关键.6.B解析:B【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.7.A解析:A【分析】首先分P运动了3秒以内和3秒以后两种情况,分别结合速度和距离的关系列出等式,从而完成求解.【详解】四边形ABCD 是矩形AD BC 2cm ∴==,当点P 在AB 边时AB 3cm =∴此时点Q 还在点D 处,AP t = ∴APQ 12t 22S =⨯⨯=△ ∴t 2=;3秒后,点P 在BC 上∴()AQ 22t 3=-- ∴()APQ 1322t 322S ⎡⎤=⨯⨯--=⎣⎦△ ∴10t 3= ∴当APQ △的面积为22cm 时,t 的值为2或103. 故选A .【点睛】本题考察了矩形、一元一次方程、三角形面积计算等知识;求解的关键是熟练掌握矩形、一元一次方程的性质,并运用到实际问题的求解过程中,即可得到答案.8.B解析:B【分析】利用公式:标价=(1+利润率)×进价,列出方程,求解即可.【详解】设进价为x 元.标价=(1+利润率)×进价根据题意,列方程:(180%)360x +=解得200x =故选B.【点睛】本题考查了一元一次方程的应用,属于典型题,熟练掌握价格公式是解题关键. 9.B解析:B【分析】根据同类项定义得出m 3=,代入求解即可.【详解】解:∵322x y 和m 2x y -是同类项,∴m 3=,∴4m 24432412-=⨯-=-,故选B .【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项.10.C解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.11.A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 12.A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】-不一定是负数,故该说法错误;①a②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.二、填空题13.五六七【分析】三棱柱有五个面用平面去截三棱柱时最多与五个面相交得五边形因此最多可以截得五边形;四棱柱有六个面用平面去截三棱柱时最多与六个面相交得六边形因此最多可以截得六边;五棱柱有七个面用平面去截三n+.解析:五,六,七,2【分析】三棱柱有五个面,用平面去截三棱柱时最多与五个面相交得五边形.因此最多可以截得五边形;四棱柱有六个面,用平面去截三棱柱时最多与六个面相交得六边形.因此最多可以截得六边;五棱柱有七个面,用平面去截三棱柱时最多与七个面相交得七边形.因此最多可以截得七边形;n棱柱有n+2个面,用平面去截三棱柱时最多与n+2个面相交得n+2边形.因此最多可以截得n+2边形.【详解】用一个平面去截三棱柱最多可以截得5边形,用一个平面去截四棱柱最多可以截得6边形,用一个平面去截五棱柱最多可以截得7边形,试根据以上结论,用一个平面去截n棱柱,最多可以截得n+2边形.故答案为五;六;七; n+2.【点睛】此题考查截一个几何体,解题关键在于熟练掌握常见几何体的截面图形.14.4【分析】根据点AB表示的数求出AB的长再根据中点的定义求出AC=BC 再求出AD的长然后求出OD的长再求出BD即可得解【详解】如图:∵AB两点表示的数分别为-2和6∴AB=6-(-2)=8∵AC=B解析:4【分析】根据点A 、B 表示的数求出AB 的长,再根据中点的定义求出AC=BC ,再求出AD 的长,然后求出OD 的长,再求出BD ,即可得解.【详解】如图:∵A ,B 两点表示的数分别为-2和6,∴AB=6-(-2)=8,∵AC=BC=12AB=12×8=4, ∵AD=32AC=32×4=6, ∴OD=AD-AO=6-2=4,∴BD=6-4=2,点D 表示的数是4.故答案为2;4.【点睛】本题考查了两点间的距离,数轴,主要利用了线段中点的定义,数轴上两点间距离的求法.15.减去2x 等式的性质1;除以等式的性质2【解析】【分析】根据等式的性质即可作答等式的性质1等式两边加同一个数(或式子)结果仍得等式;性质2等式两边乘同一个数或除以一个不为零的数结果仍得等式【详解】(1 解析:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【解析】【分析】根据等式的性质即可作答.等式的性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.【详解】(1)由等式325x x =+的两边都减去2x ,得到等式5x =,这是根据等式的性质1; (2)由等式1338x -=的两边都除以13-,得到等式x=98-,这是根据等式的性质2; 故答案为:减去2x ,等式的性质1;除以13-,98-,等式的性质2. 【点睛】 本题考查了等式的性质.遇到此类题目要先确定等式变形前后用的是性质1还是2,再用相应的方法求解.16.【解析】【分析】设第一天织布x 尺则第二天织布2x 尺第三天织布4x 尺第四天织布8x 尺第五天织布16x 尺根据5日共织布5尺列方程求解即可【详解】设第一天织布x 尺则第二天织布2x 尺第三天织布4x 尺第四天织 解析:531【解析】【分析】设第一天织布x 尺,则第二天织布2x 尺,第三天织布4x 尺,第四天织布8x 尺,第五天织布16x 尺,根据5日共织布5尺列方程求解即可.【详解】设第一天织布x 尺,则第二天织布2x 尺,第三天织布4x 尺,第四天织布8x 尺,第五天织布16x 尺,根据题意可得:x+2x+4x+8x+16x =5, 解得:5x 31=, 即该女子第一天织布531尺, 故答案为531. 【点睛】 本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 17.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值 解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 18.【分析】将已给的式子作恒等式进行变形表示a 由于k≠0先将式子左右同时除以(-4k )再移项系数化1即可表示出a 【详解】∵k≠0∴原式两边同时除以(-4x )得∴∴故答案为【点睛】本题考查的是代数式的表示 解析:2248b k k+将已给的式子作恒等式进行变形表示a ,由于k≠0,先将式子左右同时除以(-4k ),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x )得,224b k a k=-- ∴224b a k k=+, ∴2224828b k b k a k k+=+=, 故答案为2248b k k+. 【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.②④【分析】直接利用互为相反数的定义分析得出答案【详解】解:①a -b 与-a-b=-(a+b )不是互为相反数②a+b 与-a-b 是互为相反数③a+1与1-a 不是相反数④-a+b 与a-b 是互为相反数故答案解析:②④【分析】直接利用互为相反数的定义分析得出答案.【详解】解:①a -b 与-a-b=-(a+b ),不是互为相反数,②a+b 与-a-b ,是互为相反数,③a+1与1-a ,不是相反数,④-a+b 与a-b ,是互为相反数.故答案为:②④.【点睛】本题考查了互为相反数,正确把握相反数的定义是解题的关键.20.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1.本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.三、解答题21.(1)见解析;(2)直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB ,AB ;射线有7条,分别是射线PC ,PB ,BP ,AC ,CB ,BC ,CA ;线段有6条,分别是线段PA ,PB ,PC ,AB ,AC ,BC .【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.22.45︒【分析】本题需要分类讨论,当OC 在AOB ∠内部时,根据OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠,即可求出EOF ∠的度数;当OC 在AOB ∠外部时,OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠,所以1122EOF FOC EOC BOC AOC ∠=∠-∠=∠-∠,即可解决. 【详解】解:①如图,当OC 在AOB ∠内部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠, 所以1122COE COF AOC BOC ∠+∠=∠+∠, 即12EOF AOB =∠∠.又因为90AOB ︒∠=,所以45EOF ︒∠=.②如图,当OC 在AOB ∠外部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠, 所以1111()452222EOF FOC EOC BOC AOC BOC AOC AOB ︒∠=∠-∠=∠-∠=∠-∠=∠=.综上所述,45EOF ︒∠=.【点睛】本题主要考查了角度的计算和角平分线的定义,熟练分类讨论思想,并且画出图形是解决本题的关键.23.(1)960件(2)28天(3)方案三【分析】(1)由题意设这批校服共有x 件,并根据题意建立一元一次方程进行求解即可;(2)根据题意设甲工厂加工a 天,则乙工厂共加工(24)a +天,并根据题意建立一元一次方程进行求解即可;(3)根据题意分别计算三种方案所需的时间与费用,并进行比较即可得出答案.【详解】解:(1)设这批校服共有x 件.由题意,得201624x x -=.解得960x =.答:这批校服共有960件.(2)设甲工厂加工a 天,则乙工厂共加工(24)a +天.依题意得(1624)24(125%)(24)960a a a ++⨯++-=.解得12a =.2424428a +=+=.答:乙工厂共加工28天.(3)①方案一:需要耗时9601660÷=(天),费用为60(1080)5400⨯+=(元); ②方案二:需要耗时9602440÷=(天),费用为40(12010)5200⨯+=(元); ③方案三:甲工厂耗时12天,乙工厂耗时28天,故需要耗时28天,费用为12(1080)28(10120)4720⨯++⨯+=(元).综上,方案三既省时又省钱.【点睛】本题考查一元一次方程的实际应用,读懂题干并依据题干条件建立一元一次方程求解是解题的关键.24.(1)10m =;(2)5x =【分析】(1)直接去括号、移项、合并同类项、化系数为1即可求解;(2)直接去分母、去括号、移项、合并同类项、化系数为1即可求解.【详解】解:(1)5(8)6(27)22m m m +--=-+5m 4012m 42m 22+-+=-+6m 60-=-m 10=(2)2(3)7636x x x --+=- ()6x 4x 336(x 7+-=--)6x 4x 1236x 7+-=-+11x 55=x 5=【点睛】此题主要考查解一元一次方程,解题的关键是熟练掌握解题步骤.25.-3.【分析】先合并同类项,根据已知得出m+2=0,3n-1=0,求出m 、n 的值后代入进行计算即可.【详解】my 3+3nx 2y +2y 3-x 2y +y =(m +2)y 3+(3n -1)x 2y +y ,∵此多项式不含三次项,∴m +2=0,3n -1=0,∴m =-2,n =13, ∴2m +3n =2×(-2)+3×13=-4+1=-3. 【点睛】本题考查了合并同类项和解一元一次方程的应用,关键是求出m 、n 的值. 26.(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可; (2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.。
一、选择题1.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的().A.B.C.D.2.一根直木棒长10厘米,棒上有刻度如图,若把它作为尺子,只测量一次,能测量的长度共有()A.7种B.6种C.5种D.4种3.下图是一个三面带有标记的正方体,它的表面展开图是()A.B.C.D.4.把一张长方形的纸片按如图所示的方式折叠,EM,FM为折痕,C点折叠后的C'点∠的度数是()落在MB'的延长线上,则EMFA.85°B.90°C.95°D.100°5.如图,每个圆纸片的面积都是30,圆纸片A与B,B与C,C与A的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为()A .54B .56C .58D .696.在三峡大坝截流时,用载重卡车将一堆石料运到围堰龙口,第一次运了这堆石料的少万方,第二次运了剩下的多万方,此时还剩下万方未运,若这堆石料共有万方,于是可列方程为( )A .B .C .D .7.在解分式方程31x -+21x x+-=2时,去分母后变形正确的是( ) A .()()3221x x -+=- B .()3221x x -+=-C .()322x -+=D .()()3221x x ++=- 8.一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( )A .34000mB .32500mC .32000mD .3500m 9.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .2+6nB .8+6nC .4+4nD .8n 10.﹣(a ﹣b +c )变形后的结果是( ) A .﹣a +b +c B .﹣a +b ﹣c C .﹣a ﹣b +c D .﹣a ﹣b ﹣c 11.据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是A .B .C .D .12.绝对值大于1且小于4的所有整数的和是( )A .6B .–6C .0D .4二、填空题13.某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.14.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.15.一件衣服进价120元,按标价的八折出售仍能赚32元,则标价是__元.16.在等式“2×( )-3×( )= -15”的括号中分别填入一个数,使这两个数满足:互为相反数.则这两个数依次是______,____________.17.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为______. 18.列式表示:(1)三个连续整数的中间一个是n ,用代数式表示它们三个数的和为______;(2)三个连续奇数的中间一个是n ,其他两个数用代数式表示为______;(3)设n 表示任意一个整数,试用含n 的式子表示不能被3整除的数为______.19.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____.20.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.三、解答题21.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)22.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .23.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?24.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。
鲁教版2019-2020七年级数学上册期末模拟测试题1(能力提升 含答案)一、单选题1.下列关系式:①x 2-3x =4;②S =3.5t ;③y =32x -;④y =5x -3;⑤C =2πR ;⑥S =v 0t +12at 2;⑦2y +y 2=0,其中不是函数关系的是( )A.①⑦B.①②③④C.④⑥D.①②⑦ 2.下列各组数中互为相反数的是( )A.-2与2(-2)B.-2与38-C.2与(-2)2D.|-2|与2 3.如图,AB ∥CD ,AD ∥BC ,OE=OF ,图中全等三角形共有( )A .6对B .5对C .4对D .3对4.如图所示,数轴上表示1,3的点为A,B,且C,B 两点到点A 的距离相等,则点C 所表示的数是 ( )A.2-3B.3-2C.3-1D.1-35.在平面直角坐标系中,点A 的坐标为(1,1),点B 的坐标为(11,1),点C 到直线AB 的距离为4,且△ABC 是直角三角形,则满足条件的点C 有( )个.A .7B .8C .5D .66.下列运算正确的是( )A.42=±B.382=±C.42±=±D.39=37.已知△ABC ≌△DEF ,若AB =5,BC =6,AC =8,则△DEF 的周长是( )A .8B .18C .19D .208.如图,线段AC 与BD 交于点0,且OA=OC ,请添加一个条件,使△AOB ≌△COD ,这个条件是( )A.AC=BDB.OD=OCC.∠A=∠CD.OA=OB9.如图所示,AB =CD ,AC =BD ,则下列说法正确的是( )A.可用“SAS”直接证明△AOB ≌△DOCB.可用“SAS”直接证明△ABC ≌△DCBC.可用“SSS”直接证明△AOB ≌△DOCD.可用“SSS”直接证明△ABC ≌△DCB 10.如图,把一张长方形的纸片沿着EF 折叠,点C 、D 分别落在M 、N 的位置,且∠MFB =12∠MFE .则∠MFB =( )A.30°B.36°C.45°D.72°二、填空题 11.20114(3)20144()6-+--⨯-+=_____.12.如图,在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上.(Ⅰ)AC 的长等于_____;(Ⅱ)在线段AC 上有一点D ,满足AB 2=AD•AC ,请在如图所示的网格中,用无刻度的直尺,画出点D ,并简要说明点D 的位置是如何找到的(不要求证明)_____.13.无理数5﹣10的整数部分为________.14.如图AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y=﹣33x 上,再将△AB 1O 1绕点B 1逆时针旋转到A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y=﹣33x 上,…依次进行下去,若点B 的坐标是(0,1),则O 2018的纵坐标为_____15.已知点P (a ,b )在一次函数y=2-x +3的图象上,则代数式2a+b-2的值等于_________.16.如图,在△ABC 中,AD ⊥BC 于D ,BF 与AD 相交于E .若AD=BD ,BE=AC ,BC=8cm ,DC=3cm ,则AE=_____,∠BFC=_____.17.P (-3,-4)到y 轴的距离是__________.18.边长为7,24,25的ABC 内有一点P 到三边距离相等,则这个距离为______ . 19.在一次函数()132y k x k =-+-中,如果y 的值随自变量x 的值增大而增大,那么k 的取值范围是________.20.如图,在平面直角坐标系中,点()2,0A ,点()6,4B ,,点P 是直线y x =上一点,若12∠=∠,则点P 的坐标是__________.三、解答题21.已知某弹簧长度的最大挂重为25千克,在弹性限度内,用x 表示的物体的质量,用y 表示弹簧的长度,其关系如表: 所挂物体质量的质量/千克0 1 2 3 4 5 6 7 8 弹簧的长度/cm 12 12.5 13 13.5 14 14.5 15 15.5 16 (1)弹簧不挂物体时的长度是 cm ;(2)随着x 的变化,y 的变化趋势是: ;(3)根据表中数据的变化关系,写出y 与x 的关系式,并指出自变量的取值范围是 .22.某社区决定购置一批共享单车,经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需1600元.(1)求男式单车和女式单车每辆分别是多少元?(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过5000元,问该社区有几种购置方案?怎样的购置才能使所需总费用最低?最低费用是多少?23.已知实数x、y满足21x-+|2x﹣2y+1|=0,求3(x2﹣2xy)﹣[3x2﹣2y﹣2(3xy+y)]的值.24.如图,方格中小正方形边长为1,ABC的三个顶点都在小正方形的格点上,求:()1ABC的周长;()2ABC的面积;()3点C到AB边的距离.25.某水果批发市场规定,批发水果不少于100千克时,批发价为每千克2.5元.小王携带现金3 000元到市场采购苹果,并以批发价买进,如果购买的苹果为x千克,小王付款后的剩余现金为y元,求y关于x的函数表达式,并写出自变量x的取值范围.26.如图,有一座锥形小山,要测量锥形小山两端A、B的距离,先在平地上取一个可以直接到达A和B的点C,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.你能说说其中的道理吗?27.在某书店准备购进甲、乙两种图书共100本,购书款不高于2224元,两种图书的进价、售价如下表所示:甲种图书乙种图书进价(元/本)16 28售价(元/本)26 40请解答下列问题:(1)在这批图书全部售出的条件下,书店如何进货利润最大?最大利润是多少?(2)书店计划用(1)中的最大利润购买单价分别为72元、96元的排球、篮球捐给贫困山区的学校,那么在钱恰好用尽的情况下,最多可以购买排球和篮球共多少个?28.(2016浙江省绍兴市)根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.参考答案1.A【解析】函数是指两个变量之间的关系,而①⑦只有一个变量,故①⑦不是函数;②③④⑤都有两个变量,并且给等号右边的变量一个确定的值,等号左边的变量都只有唯一的值与之对应,所以②③④⑤都是函数;⑥是以后将要学习的一个物理公式,对于一个确定的运动过程而言,v 0和a 都是不变的,只有S 和t 两个变量,并且满足一一对应,故⑥也是函数,故选A.2.A【解析】选项A. -2=2,选项B. -2=-2,选项 C. 2与(2=2,选项,故选A.3.A【解析】【分析】首先证明△AFO ≌△CEO ,可得AO=CO ,然后再同理可得△FOD ≌△EOB ,再依次证明△FOD ≌△EOB ,△ACB ≌△ACD ,△ABD ≌△DCB ,△AOB ≌△COD 即可.【详解】:∵AD ∥BC ,∴∠FAC=∠BCA ,在△AFO 和△CEO 中,FAO ECO AOF COE FO EO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFO ≌△CEO (AAS ),∴AO=CO ,同理可得△FOD≌△EOB,在△AOD和△COB中,DAO BCOAO COAOD COB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOD≌△COB(ASA),∴AD=BC,在△ACB和△CAD中,AD BCDAC ACBAC AC=⎧⎪∠=∠⎨⎪=⎩,∴△ACB≌△ACD(SAS),∴AB=CD,∠BAC=∠ACD,在△ABD和△DCB中,AD BCAB CDDB DB=⎧⎪=⎨⎪=⎩,∴△ABD≌△DCB(SSS),在△AOB和△COD中,OAB OCDAOB CODAB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOB≌△COD(AAS).共有6对.故选:A.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.A 【解析】解:设点C 所表示的数是a .∵点A 、B 所表示的数分别是1、3,∴AB =3﹣1. 又∵C ,B 两点到点A 的距离相等,∴AC =1﹣a =3﹣1,∴a =2﹣3.故选A .点睛:本题考查了实数与数轴的对应关系.解题时,采用了“数形结合”的数学的思想. 5.B【解析】到直线AB 的距离为4的直线有两条.以一条直线为例,当∠A 为直角时,可得到2个点;当∠B 为直角时,可得到2个点;以AB 为直径的圆与这条直线有2 交点,此时∠C 为直角.同理可得到另一直线上有2个点.所以一共有8个点.故选:B.6.C【解析】分析:本题只要根据算术平方根、平方根以及立方根的计算法则即可得出答案.详解:A 42=,则计算错误;B 382=,则计算错误;C 、42=±,计算正确;D 、无法进行计算;故选C .点睛:本题主要考查的就是平方根、算术平方根的计算,属于基础题型.一个非负数的平方a a 的算术平方根,a 表示a 的平方根. 7.C【解析】试题解析:∵AB =5,BC =6,AC =8,∴△ABC 的周长=AB +BC +AC =5+6+8=19,∵△ABC ≌△DEF ,∴△DEF 的周长等于△ABC 的周长,∴△DEF 的周长是19.故选C .点睛:全等三角形的对应角相等,对应边相等.8.C【解析】试题解析:A、添加AC=BD不能判定△OAB≌△COD,故此选项错误;B、添加OD=OC不能判定△OAB≌△COD,故此选项错误;C、添加∠A=∠C,可利用ASA判定△OAB≌△COD,故此选项正确;D、添加AO=BO,不能判定△OAB≌△COD,故此选项错误;故选C.点睛:判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.D【解析】分析:根据“全等三角形的判定方法”结合“已知条件”进行分析判断即可.详解:∵在△ABC和△DCB中,AB=CD,AC=BD,且BC=CB,∴△ABC≌△DCB(SSS),即图中能够直接证明两三角形全等的是:用“SSS”证明△ABC≌△DCB.故选D.点睛:熟记“全等三角形的判定方法:SSS、SAS、ASA、AAS和HL的内容”是正确解答本题的关键.10.B【解析】由折叠的性质可得:∠MFE=∠EFC,∵∠MFB=12∠MFE,设∠MFB=x°,则∠MFE=∠EFC=2x°,∵∠MFB+∠MFE+∠EFC=180°,∴x+2x+2x=180,解得:x=36,∴∠MFB=36°.故选B.点睛:由折叠的性质可得:∠MFE=∠EFC,又由∠MFB=12∠MFE,可设∠MFB=x°,然后根据平角的定义,即可得方程:x+2x+2x=180,解此方程即可求得答案.11.13【解析】原式=2+9﹣1×4+6=13.故答案为:13.12.5 见解析.【解析】【分析】(1)由勾股定理即可求解;(2)寻找格点M和N,构建与△ABC全等的△AMN,易证MN⊥AC,从而得到MN与AC的交点即为所求D点.【详解】5=;(2)如图,连接格点M和N,由图可知:AB=AM=4,=,5=,∴△ABC≌△MAN,∴∠AMN=∠BAC,∴∠MAD+∠CAB=∠MAD+∠AMN=90°,∴MN⊥AC,易解得△MAN以MN为底时的高为165,∵AB2=AD•AC,∴AD=AB2÷AC=165,综上可知,MN与AC的交点即为所求D点.【点睛】本题考查了平面直角坐标系中定点的问题,理解第2问中构造全等三角形从而确定D 点的思路.13.1【解析】 91016∴10<4,∴10的整数部分为:1.故答案为:1.14.3027+100932【解析】【详解】观察图象可知,O 2018在直线y=3时, OO 2018=1009•OO 2=1009×(3)3∴O 2018的纵坐标=12OO 2018302710093+302710093+15.1 【解析】分析:把点P 的坐标代入一次函数解析式,得出23a b +=.代入22a b +-即可. 详解:∵点P (a ,b )在一次函数y =−2x +3的图象上,∴b=−2a+3,则2a+b=3.∴2a+b−2=1故答案为:1.点睛:考查一次函数点的坐标特征,比较简单.16.2cm 90°【解析】【分析】由题意可得BD=AD=5cm,根据已知可证明△BDE≌△ADC(HL),可得DE=CD=3cm,根据AE=AD-DE求出AE长即可,根据∠DAC+∠C=90°,∠DAC=∠DBE可得∠DBE+∠C=90°,即可求出∠BFC=90°.【详解】∵BC=8cm,DC=3cm,∴BD=AD=5cm,在Rt△BDE和Rt△ADC中,∵BE=AC,BD=AD,∴△BDE≌△ADC(HL),∴DE=CD=3cm,∠DAC=∠DBE,∴AE=AD-DE=5-3=2cm,∵∠DAC+∠C=90°,∠DAC=∠DBE,∴∠DBE+∠C=90°,∴∠BFC=90°故答案为:(1).2cm;(2). 90°【点睛】本题考查全等三角形的判定与性质,全等三角形的判断方法有:AAS、SAS、SSS、ASA及HL等,熟练掌握判定定理是解题关键.17.3【解析】【分析】根据点到y轴的距离等于横坐标的绝对值解答.【详解】点P(-3,﹣4)到y轴的距离为3.故答案为:3.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.18.3【解析】【分析】首先根据三边长确定三角形是直角三角形,再根据题意画出图形,连接AP,BP,CP,根据直角三角形的面积公式即可求得该距离的长.【详解】∵72+242=252,∴△ABC是直角三角形,根据题意画图,如图所示:连接AP,BP,CP,设PE=PF=PG=x,S△ABC=12×AB×CB=84,S△ABC=12AB×x+12AC×x+12BC×x=12(AB+BC+AC)•x=12×56x=28x,则28x=84,x=3,故答案为:3.【点睛】本题考查了勾股定理的逆定理,三角形的面积,角平分线的性质,注意构造辅助线,则直角三角形的面积有两种表示方法:一是整体计算,即两条直角边乘积的一半;二是等于三个小三角形的面积和,即12(AB+AC+BC )x ,然后即可计算x 的值. 19.k >1【解析】分析:先根据一次函数的性质:y 随着x 增大而增大得出关于k 的不等式,求出k 的取值范围即可.详解:在一次函数()132y k x k =-+-中,∵y 的值随自变量x 的值增大而增大,∴10k ->,解得k >1.故答案为:k >1.点睛:本题考查了一次函数的性质. 根据一次函数的增减性列出关于k 的不等式是解题的关键.20.(3,3)【解析】如图,过 B 作 BN ⊥x 轴于 N ,过 P 作 PM ⊥x 轴于 M , PC ⊥BN 于 C ,则 ∠PCB =∠PMA =90°,∠PCN =∠CNM =∠PMN =90°, ∴四边形 MNCP 是矩形,∴PC =MN ,PM =CN ,∠CPM =90,PC ∥ MN ,∵∠1=∠2 , P 在直线 y =x 上,∴∠2+∠BPC =∠POA =45∘=∠1+∠APM ,∴∠BPC =∠MP A ,设 P 的坐标为 (a ,a ) ,∵点A(2,0), 点B(6,4) ,∴PM=a,AM=a−2 ,PC=6−a,BC=4−a,∵∠BPC=∠MP A,∠PCB=∠PMA=90°,∴△MP A∽△CPB,∴PM AMPC BC=,即264a aa a-=--,解得:a =3 ,∴P的坐标为(3,3) .故答案为:(3,3).点睛:(1)求点的坐标问题,首先是作出跟坐标有关的线段,即由这点向坐标轴分别做垂线段,然后设点的坐标,再根据条件找出所设未知数满足的方程,求解即可;(2)本题的两个难点,一是设点P坐标时,设为(a,a)即可,这是直线y=x上点的特征:横纵坐标相同,二是找出所设未知量的方程,本题是利用相似三角形性质得到,有时可利用勾股定理或三角函数列出.21.(1)12;(2)x 每增加1 千克,y 增加0.5cm;(3)y=0.5x+12,0≤x≤25【解析】分析:(1)观察表格,当所挂物体质量为0时,即是弹簧不挂物体时的长度;(2)根据表格数据可值x 每增加1 千克,y增加0.5cm;(3)根据(2)中观察的规律写出函数关系式,根据题意知0≤x≤25.详解:(1)由表格知,弹簧不挂物体时的长度是12cm;(2) 根据表格数据可值x每增加1 千克,y增加0.5cm;(3) ∵x每增加1 千克,y增加0.5cm,∴y=0.5x+12(0≤x≤25).点睛:本题考查了函数的实际应用,解答本题的关键是观察表格中的数据,得出y与x的函数关系式.22.(1)男式单车200元/辆,女式单车150元/辆;(2)见解析.【解析】【分析】(1)设男式单车x元/辆,女式单车y元/辆,根据“购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需1600元”列方程组求解可得;(2)设购置女式单车m 辆,则购置男式单车(m+4)辆,根据“两种单车至少需要22辆、购置两种单车的费用不超过5000元”列不等式组求解,得出m 的范围,即可确定购置方案;再列出购置总费用关于m 的函数解析式,利用一次函数性质结合m 的范围可得其最值情况.【详解】解:(1)设男式单车x 元/辆,女式单车y 元/辆,根据题意,得:34541600x y x y =⎧⎨+=⎩,解得:x 200150y =⎧⎨=⎩, 答:男式单车200元/辆,女式单车150元/辆;(2)设购置女式单车m 辆,则购置男式单车(m+4)辆,根据题意,得:()42220041505000m m m ++≥⎧⎨++≤⎩, 解得:9≤m≤12,∵m 为整数,∴m 的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W ,则W=200(m+4)+150m=350m+800,∵W 随m 的增大而增大,∴当m=9时,W 取得最小值,最小值为3950,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为3950元.【点睛】本题主要考查二元一次方程组、一元一次不等式组及一次函数的应用,理解题意找到题目蕴含的相等关系或不等关系列出方程组或不等式组是解题的关键.23.4.【解析】【分析】根据非负数的性质得出x ,y 的值,再化简代入计算即可.【详解】∵21x -+|2x ﹣2y+1|=0, ∴2x ﹣1=0,2x ﹣2y+1=0,解得x=12,y=1, ∴3(x 2﹣2xy )﹣[3x 2﹣2y ﹣2(3xy+y )]=3x 2﹣6xy ﹣3x 2+2y+6xy+2y=4y ,当x=12,y=1时,原式=4y=4. 【点睛】本题考查了非负数的性质以及整式的化简求值,掌握去括号与合并同类项是解题的关键. 24.(1)ABC 的周长为13105++;(2)72(3)点C 到AB 的距离是713. 【解析】【分析】(1)根据勾股定理求得△ABC 的三条边长后,再来求该三角形的周长;(2)利用图形知ABC BDEF BCD ACE ABF S S S S S =---;(3)设点C 到AB 的距离为h ,则根据三角形的面积公式知1722AB h ⋅=,据此可求得h 的值. 【详解】解:()1根据勾股定理知,10BC =,5AC =,13AB =,故ABC 的周长13105AB BC AC =++=++;()2根据图示知,ABC BDEF BCD ACE ABF SS S S S =---;即1117331312232222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=;()3设点C 到AB 的距离是h . 由()2知,三角形ABC 的面积是72,则1722AB h ⋅=,即171322h =, 解得,71313h =,即点C 到AB 的距离是1313.【点睛】本题考查了勾股定理.解答(2)时,正确的运用面积加减法计算结果是解题的关键.25.y 与x 之间的函数关系式为y =3000-2.5x,自变量x 的取值范围是100≤x≤1200.【解析】试题分析:利用已知批发价为每千克2.5元,小王携带现金3000元到这个市场采购苹果,求得解析式,又因为批发苹果不少于100千克时,批发价为每千克2.5元,所以x≥100kg .试题解析:由已知批发价为每千克2.5元,小王携带现金3000元到这个市场采购苹果得y 与x 的函数关系式:y=3000-2.5x ,∵批发苹果不少于100千克时,批发价为每千克2.5元,∴x≥100kg ,∴至多可以买3000÷2.5=1200kg .故自变量x 的取值范围:100≤x≤1200.26.见解析【解析】【分析】由题意知AC=DC ,BC=EC ,根据∠ACB=∠DCE 即可证明△ABC ≌△DEC ,即可得AB=DE ,即可解题.【详解】在△ACB 和△DCE 中,CA CD ACB DCE CB CE =⎧⎪∠=∠⎨⎪=⎩,,, 所以△ACB ≌△DCE ,所以AB =DE .【点睛】本题考查了全等三角形在实际生活中的应用,考查了全等三角形对应边相等的性质,本题中证明△ABC ≌△DEC 是解题的关键.27.(1) x=48时,总利润最大为1104 元;(2) 15个.【解析】分析:(1)由于购买甲种图书x 本,则购买乙种图书(100-x )本,根据:总利润=甲种图书的总利润+乙种图书的总利润可列函数关系式;(2)设购买a 个排球,b 个篮球.根据题意得出:72a+96b=1104,尽可能多买排球才能购买数量最多,故当买一个篮球时,求出可以购买排球个数,正好是整数.详解:(1)∵总利润为w=(26-16)x+(40-28)(100-x)=-2x+1200,∵16x+28×(100-x)≤2224∴x≥48∵W随着x的增大而减小∴当x=48时,总利润最大,最大利润为w=-2×48+1200=1104(元).(2)设买排球m个,篮球n个,由题意得72m+96n=1104,即3m+4n=46,∴n=4634m-,∴141mn=⎧⎨=⎩,或104mn=⎧⎨=⎩,或67mn=⎧⎨=⎩,或210mn=⎧⎨=⎩.∴m+n=15、14、13、12.∴最多可以购买排球和篮球共15个.点睛:本题考查了一次函数的应用和二元一次方程的应用,理解题意找到题目蕴含的相等关系是解应用题的关键.28.(1)0.5小时,300m3/h;(2)Q=﹣300t+1050.【解析】试题分析:(1)暂停排水时,游泳池内的水量Q保持不变,图象为平行于横轴的一条线段,由此得出暂停排水需要的时间;由图象可知,该游泳池3个小时排水900(m3),根据速度公式求出排水速度即可;(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0),再求出(2,450)在直线y=kt+b上,然后利用待定系数法求出表达式即可.试题解析:(1)暂停排水需要的时间为:2﹣1.5=0.5(小时).∵排水数据为:3.5﹣0.5=3(小时),一共排水900m3,∴排水孔排水速度是:900÷3=300m3/h;(2)当2≤t≤3.5时,设Q关于t的函数表达式为Q=kt+b,易知图象过点(3.5,0).∵t=1.5时,排水300×1.5=450,此时Q=900﹣450=450,∴(2,450)在直线Q=kt+b上;把(2,450),(3.5,0)代入Q=kt+b,得,解得,∴Q关于t的函数表达式为Q=﹣300t+1050考点:一次函数的应用。
一、选择题1.如图,∠AOB =12∠BOD ,OC 平分∠AOD ,下列四个等式中正确的是( )①∠BOC =13∠AOB ;②∠DOC =2∠BOC ;③∠COB =12∠BOA ;④∠COD =3∠COB .A .①②B .②③C .③④D .①④2.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A .白B .红C .黄D .黑3.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③4.把一张长方形的纸片按如图所示的方式折叠,EM ,FM 为折痕,C 点折叠后的C '点落在MB '的延长线上,则EMF ∠的度数是( )A .85°B .90°C .95°D .100°5.在三峡大坝截流时,用载重卡车将一堆石料运到围堰龙口,第一次运了这堆石料的少万方,第二次运了剩下的多万方,此时还剩下万方未运,若这堆石料共有万方,于是可列方程为( ) A . B . C . D .6.某种商品每件的标价是330元,按标价的8折销售时,仍可获利10%,则这种商品每件的进价为( ) A .300元B .250元C .240元D .200元7.下列变形不正确的是( ) A .由2x-3=5得:2x=8 B .由-23x=2得:x=-3 C .由2x=5得:x=25D .由x+5 =3x-2得:7=2x8.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x- = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅ 2m+ 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个 A .1 B .2C .3D .49.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b10.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +-11.若一个数的绝对值的相反数是17-,则这个数是( ) A .17-B .17+C .17±D .7±12.用计算器求243,第三个键应按( ) A .4B .3C .y xD .=二、填空题13.如图,直线AB ,CD 交于点O ,射线OM 平分,若,则等于________.14.如图,已知OM 是AOC ∠的平分线,ON 平分BOC ∠.若120AOC ︒∠=,30BOC ︒∠=,则MON ∠=_________.15.如图,折线AC -CB 是一条公路的示意图,8km AC =,甲骑摩托车从A 地沿这条公路到B 地,速度为40km/h ,乙骑自行车从C 地沿这条公路到B 地,速度为10km/h ,两人同时出发,结果甲比乙早到6分钟.则这条公路的长为________.16.用5个同样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是_______,宽是________.17.如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为_____.18.在如图所示的运算流程中,若输出的数3y=,则输入的数x=________________.19.数轴上A、B两点所表示的有理数的和是 ________.20.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.三、解答题21.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.22.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段,,,使它们分别与线段a相等;(2)在射线OD上作线段,使与线段b相等;(3)连接,,,.23.甲、乙两人骑自行车分别从相距36km的两地匀速同向而行,如果甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米?24.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★. 例如:(1,2)(3,4)23142=⨯-⨯=★. 根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 25.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c . (1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗? 26.计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 根据∠AOB =12∠BOD ,OC 平分∠AOD ,得到∠AOB=13∠AOD ,∠AOC=∠DOC=12∠AOD ,进而得到∠BOC=12∠AOB ,∠DOC =3∠BOC 从而判断出①②错误,③④正确. 【详解】 解:因为∠AOB =12∠BOD , 所以∠AOB=13∠AOD , 因为OC 平分∠AOD ,所以∠AOC=∠DOC=12∠AOD ,所以∠BOC=∠AOC -∠AOB =12∠AOD -13∠AOD=16∠AOD=12∠AOB , 故①错误,③正确; 因为∠DOC=12∠AOD ,∠BOC=16∠AOD , 所以∠DOC =3∠BOC 故②错误,④正确. 【点睛】本题考查了角的和差倍数关系,根据题意表示∠AOB=13∠AOD ,∠AOC=∠DOC=12∠AOD ,进而根据角的关系即可作出判断. 2.C解析:C 【解析】试题分析:由第一个图可知绿色和白色、黑色相邻,由第二个图可知绿色和蓝色、红色相邻,由已知可得每一块的各面都涂上不同的颜色,3块的涂法完全相同.根据第三个图可知涂成绿色一面的对面涂的颜色是黄色,故答案选C. 考点:几何体的侧面展开图.3.D解析:D 【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③. 【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠, ∴APA BPB ''∠=∠, 故①正确;∵射线PA '经过刻度27,∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补, 故②正确;∵12APB APA ''∠=∠,∴=272APA A PB '''∠∠=︒,∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′, ∴射线PA '经过刻度45. 故③正确. 故选D . 【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.4.B解析:B 【解析】 【分析】根据折叠的性质:对应角相等,对应的线段相等,可得. 【详解】解:根据图形,可得:∠EMB′=∠EMB ,∠FMB′=∠FMC , ∵∠FMC +∠FMB′+∠EMB′+∠BME =180°, ∴2(∠EMB′+∠FMB′)=180°, ∵∠EMB′+∠FMB′=∠FME , ∴∠EMF =90°,故选B . 【点睛】本题主要考查图形翻折的性质,解决本题的关键是要熟练掌握图形翻折的性质.5.A解析:A 【解析】 【分析】找到等量关系为:总共石料数-第一次运的-第二次运的=剩下的.根据题中的条件,代入关系式即可得出所求的方程. 【详解】由题意这堆石料共有x 万方,且第一次运了这堆石料的少2万方, 即可得出第一次运了(x−2)万方; ∵第二次员了剩下的多3万,6.C解析:C 【分析】设这种商品每件的进价为x 元,根据题意列出关于x 的方程,求出方程的解即可得到结果. 【详解】设这种商品每件的进价为x元,根据题意得:330×80%−x=10%x,解得:x=240,则这种商品每件的进价为240元.故选C.【点睛】此题考查一元一次方程的应用,找准题目中的等量关系是解题的关键. 7.C解析:C【分析】根据等式的性质逐一进行判断即可得答案.【详解】A.由2x-3=5的两边同时加上3得:2x=8,故该选项正确,B.由-23x=2的两边同时乘以32-得:x=-3,故该选项正确,C.由2x=5的两边同时除以2得:x=52,故该选项错误,D.由x+5=3x-2的两边同时加上(2-x)得:7=2x,故该选项正确,故选:C.【点睛】本题考查了等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.8.D解析:D【分析】根据题意可知,A型纸盒需要4个长方形纸板,1个正方形纸板,B型纸盒需要3个长方形纸板和2个正方形纸板,设A型盒子个数为x个,可得A型纸盒需要长方形纸板的数量和B型纸盒需要长方形纸板的数量,可列出方程对①进行判断;设B型盒中正方形纸板的个数为m个,可得B型纸盒需要长方形纸板的数量和A型纸盒需要长方形纸板的数量,可列出方程对②进行判断;设做A型盒子用了正方形纸板x张,做B型盒子用了正方形纸板y 张,则可得A型盒子x个,B型盒子y个,根据长方形纸板360张,正方形纸板120张,可得出方程组,求出A型纸盒和B型纸盒的数量可对③④进行判断.【详解】设A型盒子个数为x个,则A型纸盒需要长方形纸板4x张,正方形纸板x张,由于制作一个B型纸盒需要两张正方形纸板,因此可得B型纸盒的数量为1202x-个,需要长方形纸板3×1202x-张,因此可得120433602xx-+=,故①正确;设B 型盒中正方形纸板的个数为m 个,则B 型纸盒有2m 个,需要长方形纸板3×2m个,A 型纸盒有(120-m )个,则需长方形纸板4(120-m )个,所以可得方程3×2m+4(120-m )=120,故②正确;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则有,212043360x y x y +=⎧⎨+=⎩解得,7224x y =⎧⎨=⎩即,A 型纸盒有72个,B 型纸盒有24个,所以B 型盒中正方形纸板 48 个 故③④正确. 故选D. 【点睛】本题考查了列一元一次方程和二元一次方程组的应用,解答本题时注意无盖盒子中的长方形及正方形的个数之间的关系是解答的关键.9.A解析:A 【解析】2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b , 故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.10.B解析:B 【分析】要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n . 【详解】因为第一个单项式是1112(1)2x x -=-⨯; 第二个单项式是222222(1)2x x =-⨯; 第三个单项式是333332(1)2x x -=-⨯, …,所以第n 个单项式是(1)2nnnx -. 故选:B . 【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.11.C解析:C 【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可. 【详解】 ∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C. 【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.12.C解析:C 【解析】用计算器求243,按键顺序为2、4、y x 、3、=. 故选C.点睛:本题考查了熟练应用计算器的能力,解题关键是熟悉不同的按键功能.二、填空题13.142°【解析】【分析】根据对顶角相等求出∠AOC 的度数再根据角平分线的定义求出∠AOM 的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142° 【解析】 【分析】根据对顶角相等求出∠AOC 的度数,再根据角平分线的定义求出∠AOM 的度数,然后根据平角等于180°列式计算即可得解. 【详解】解:∵∠BOD =76°, ∴∠AOC=∠BOD =76°, ∵射线OM 平分∠AOC , ∴∠AOM=∠AOC=×76°=38°, ∴∠BOM=180°-∠AOM=180°-38°=142°. 故答案为142°. 【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.14.45°【解析】【分析】根据角平分线的定义及角的和差关系即可求解【详解】解:∵OM 平分∠AOCON 平分∠BOC ∴∠MOC=∠AOC=60°∠CON=∠BOC=15°∴∠MON=∠MOC-∠CON=60 解析:45°【解析】【分析】根据角平分线的定义及角的和差关系即可求解.【详解】解: ∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=12∠AOC=60°,∠CON=12∠BOC=15°, ∴∠MON=∠MOC-∠CON=60°-15°=45°;故答案为:45°;【点睛】 本题主要考查角平分线的性质,角的度数的计算,关键在于运用数形结合的思想推出∠MON=∠MOC-∠CON .15.12km 【分析】首先设这条公路的长为xkm 由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A 地沿这条公路到B 地的时间根据等量关系列出方程即可【详解】解:设这条公路的长为xk解析:12km【分析】首先设这条公路的长为xkm ,由题意得等量关系:乙骑自行车行驶(x-8)千米的时间-6分钟=甲骑摩托车从A 地沿这条公路到B 地的时间,根据等量关系列出方程即可.【详解】解:设这条公路的长为xkm .由题意,得86401060x x -=-. 解得:12x =.故答案为:12km .【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.16.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x 列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x 则长=(14-10x )=2x 解得x=1即小长方形的宽为1长为2;故答解析:1【解析】观察图形找出大长方形与小长方形的关系,设小长方形的宽为x,列出方程即可求出其长和宽的值.【详解】解:设小长方形的宽为x,则长=12(14-10x)=2x,解得x=1,即小长方形的宽为1,长为2;故答案为:2;1.【点睛】本题考查了一元一次方程的应用,准确识图并列出方程是解题的关键.17.n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2解析:n2+2【详解】解:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…第n个图形中小圆的个数为3+3+5+7+…+(2n﹣1)=n2+2.故答案为:n2+2.【点睛】本题考查规律型:图形的变化类.18.或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x 当输入的x为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x的值而得出结论.【详解】解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).∴3=12x或3=12(x+1).∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.19.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.20.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.三、解答题21.CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.【解析】【分析】(1)以点O 为圆心,a 为半径作圆,分别交射线OA ,OB ,OC 于A′、B′、C′;、 (2)以点O 为圆心,b 为半径作圆,分别交射线OD ,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.23.甲骑自行车每小时行18千米,乙骑自行车每小时行9千米【分析】设甲骑自行车每小时行x 千米,先根据“甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙”用含x 的代数式表示出乙的速度,然后根据甲5小时骑行的路程-乙6小时骑行的路程=36千米即可列出方程,解方程即可求出结果.【详解】解:设甲骑自行车每小时行x 千米,则乙骑自行车每小时行133623x ⎛⎫+- ⎪⎝⎭千米,即7126x ⎛⎫- ⎪⎝⎭千米. 依题意,得()755112366x x ⎛⎫-+-= ⎪⎝⎭,解得18x =. 712211296x -=-=. 答:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米.【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.24.(1)-5;(2)2;(3)k=0,-1,-2,-3.【分析】(1)原式利用规定的运算方法计算即可求出值;(2)原式利用规定的运算方法列方程求解即可;(3)原式利用规定的运算方法列方程,表示出x ,然后根据k 是整数求解即可.【详解】解:(1)根据题意得:原式=−3×3−2×(−2)=−9+4=−5;故答案为:−5;(2)根据题意得:3x+1−(−2)×(x−1)=9,整理得:5x =10,解得:x =2,故答案为:2;(3)∵等式(−3,2x−1)★(k ,x +k )=3+2k 的x 是整数,∴(2x−1)k−(−3)(x +k )=3+2k ,∴(2k +3)x =3, ∴323x k =+, ∵k 是整数, ∴2k +3=±1或±3,∴k =0,−1,−2,−3.【点睛】此题考查了新运算以及解一元一次方程,正确理解新运算是解题的关键.25.(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.26.(1)2-;(2)7.【分析】(1)先去括号,再进行有理数运算即可;(2)根据有理数混合运算顺序和运算法则计算可得.【详解】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷45+3×|1﹣(﹣2)2|=﹣12﹣(﹣8)×54+3×|1﹣4|=﹣12+10+3×|﹣3|=﹣12+10+9=7【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.。
一、选择题1.已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD 等于( )A .15 cmB .16 cmC .10 cmD .5 cm2.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .63.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒4.已知线段AB =6cm ,反向延长线段AB 到C ,使BC =83AB ,D 是BC 的中点,则线段AD 的长为____cmA .2B .3C .5D .6 5.某人连续休假4天,这四天的日期之和是74,他休假第一天的日期是( ) A .17号 B .18号 C .19号 D .20号 6.对于ax+b=0(a ,b 为常数),表述正确的是( )A .当a≠0时,方程的解是x=b aB .当a=0,b≠0时,方程有无数解C .当a=0,b=0,方程无解D .以上都不正确.7.一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( )A .34000mB .32500mC .32000mD .3500m 8.书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x 本书,则可列方程为( )A .2x -8=12(x +8)+3B .2x =12(x +8)+3C .2x -8=12x +3D .2x =12x +3 9.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次10.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x --11.下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯-12.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m二、填空题13.如图,已知OM 是AOC ∠的平分线,ON 平分BOC ∠.若120AOC ︒∠=,30BOC ︒∠=,则MON ∠=_________.14.如图是一个正方体盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数,则填入正方形中A,B,C内的三个数依次为__,___,___.15.方程2243x-=的解是__________16.若4a+9与3a+5互为相反数,则a的值为_____.17.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2016的值为_______.18.礼堂第一排有a个座位,后面每排都比第一排多1个座位,则第n排座位有________________.19.把35.89543精确到百分位所得到的近似数为________.20.绝对值小于100的所有整数的积是______.三、解答题21.把如图图形沿虚线折叠,分别能折叠成什么几何体(图中的五边形均为正五边形)?观察折成的几何体,回答下列问题:(1)每个几何体有多少条棱?哪些棱的长度相等?(2)每个几何体有多少个面?它们分别是什么图形?哪些面的形状、大小完全相同?22.把一副三角板的直角顶点O重叠在一起.(1)问题发现:如图①,当OB平分∠COD时,∠AOD+∠BOC的度数是;(2)拓展探究:如图②,当OB不平分∠COD时,∠AOD+∠BOC的度数是多少?(3)问题解决:当∠BOC的余角的4倍等于∠AOD时,求∠BOC的度数.23.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.24.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为多少?25.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?26.观察下列单项式:﹣x,2x2,﹣3x3,…,﹣9x9,10x10,…从中我们可以发现:(1)系数的规律有两条:系数的符号规律是系数的绝对值规律是(2)次数的规律是(3)根据上面的归纳,可以猜想出第n个单项式是.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD ,又AB=4cm ,继而即可求出答案.【详解】∵点C 是线段AB 的中点,AB=20cm ,∴BC=12AB=12×20cm=10cm , ∵点D 是线段BC 的中点, ∴BD=12BC=12×10cm=5cm , ∴AD=AB-BD=20cm-5cm=15cm .故选A .【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.2.A解析:A【分析】根据题意可知BC=6,所以AC=18,由于D 是AC 中点,可得AD=9,从BD=AB-AD 就可求出线段BD 的长.【详解】由题意可知12AB =,且12BC AB =, 所以6BC =,18AC =.因为点D 是线段AC 的中点, 所以1118922AD AC ==⨯=, 所以1293BD AB AD =-=-=.故选A .【点睛】本题考查了两点间的距离以及中点的性质,根据图形能正确表达线段之间的和差关系是解决本题的关键.3.B解析:B【分析】根据平行线的性质和角平分线性质可求.【详解】解:∵AB ∥CD ,∴∠1+∠BEF=180°,∠2=∠BEG ,∴∠BEF=180°-50°=130°,又∵EG 平分∠BEF ,∴∠BEG=12∠BEF=65°,∴∠2=65°.故选:B.【点睛】此题考查平行线的性质,角平分线的性质,解题关键在于掌握两直线平行,内错角相等和同旁内角互补这两个性质.4.A解析:A【分析】由BC=83AB可求出BC的长,根据中点的定义可求出BD的长,利用线段的和差关系求出AD的长即可.【详解】∵BC=83AB,AB=6cm,∴BC=6×83=16cm,∵D是BC的中点,∴BD=12BC=8cm,∵反向延长线段AB到C,∴AD=BD-AB=8-6=2cm,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.5.A解析:A【解析】【分析】设休假第一天日期为x号,则其余三天的日期为(x+1),(x+2),(x+3),根据四天的日期之和为74建立方程求出其解即可.【详解】解:设休假第一天日期为x号,由题意,得:x+(x+1)+(x+2)+(x+3)=74,解得:x=17,故选A.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用, 相邻两个整数之间相差1的关系的运用,解答时根据四天的日期之和为74建立方程是关键.6.D解析:D【分析】ax+b=0(a ,b 为常数),当a=0时,就不是一元一次方程,当a=0时,是一元一次方程.分两种情况进行讨论.【详解】A 、当a≠0时,方程的解是x=-b a,故错误; B 、当a=0,b≠0时,方程无解,故错误;C 、当a=0,b=0,方程有无数解,故错误;D 、以上都不正确.故选D .【点睛】 此题很简单,解答此题的关键是:正确记忆一元一次方程的一般形式中,一次项系数不等于0.7.B解析:B【分析】设计划注入水的时间为x 小时,根据“比预定的时间提前了10分钟完成注水任务”列出方程并解答.【详解】设计划注入水的时间为x 小时,依题意得:()20105002+5001+2025006060x x ⎛⎫⨯⨯---= ⎪⎝⎭%, 解得x=5.5×500=2500,即计划注入水的体积为2500立方米.故选B.【点睛】此题考查一元一次方程的应用,解题关键在于根据题意找到等量关系列出方程. 8.A解析:A【分析】根据题意可以列出相应的方程,从而可以解答本题.【详解】解:由题意可得,2x-8=12(x+8)+3, 故选:A .【点睛】 本题考查了由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.9.C解析:C【分析】首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般. 10.C解析:C【分析】由整式的加法运算,把每个选项进行计算,再进行判断,即可得到答案.【详解】解:A 选项、333251933724x x x x x x +----=-+-,不符合题意;B 选项、333581212724x x x x x x ++-+-=-+-,不符合题意;C 选项、333541x x x x -++-+-=3724x x -++,符合题意;D 选项、337322724x x x x x -+---=-+-,不符合题意.故选:C .【点睛】本题考查了整式的加法运算,解题的关键是熟练掌握整式加法的运算法则进行解题. 11.A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 12.B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m ,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题13.45°【解析】【分析】根据角平分线的定义及角的和差关系即可求解【详解】解:∵OM 平分∠AOCON 平分∠BOC ∴∠MOC=∠AOC=60°∠CON=∠BOC=15°∴∠MON=∠MOC-∠CON=60 解析:45°【解析】【分析】根据角平分线的定义及角的和差关系即可求解.【详解】解: ∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=12∠AOC=60°,∠CON=12∠BOC=15°, ∴∠MON=∠MOC-∠CON=60°-15°=45°;故答案为:45°;【点睛】 本题主要考查角平分线的性质,角的度数的计算,关键在于运用数形结合的思想推出∠MON=∠MOC-∠CON .14.02【分析】利用正方体及其表面展开图的特点解题【详解】解:由于只有符号不同的两个数互为相反数由正方体的展开图解题得填入正方形中内的三个数依次为102故答案为102【点睛】本题主要考查互为相反数的概念解析:0 2【分析】利用正方体及其表面展开图的特点解题.【详解】解:由于只有符号不同的两个数互为相反数,由正方体的展开图解题得填入正方形中A,B,C内的三个数依次为1,0,2.故答案为1,0,2【点睛】本题主要考查互为相反数的概念,只有符号不同的两个数互为相反数.解题时勿忘记正方体展开图的各种情形.15.x=9【分析】根据解一元一次方程的步骤先去分母再移项合并同类项系数化为1即可求解;【详解】解:2x-6=122x=12+62x=18x=9故答案为x=9【点睛】本题考查解一元一次方程的步骤解题关键是解析:x=9【分析】根据解一元一次方程的步骤先去分母,再移项,合并同类项,系数化为1即可求解;【详解】解:224 3x-=2x-6=122x=12+62x=18x=9故答案为x=9.【点睛】本题考查解一元一次方程的步骤,解题关键是:移项变号.16.-2【分析】利用相反数的性质求出a的值即可【详解】解:根据题意得:4a+9+3a+5=0移项合并得:7a=﹣14解得:a=﹣2故答案为﹣2【点睛】本题考查了解一元一次方程以及相反数熟练掌握运算法则是解析:-2【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.17.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+ 4|=−|−2+4|=−2…所以n是奇数解析:﹣1008【解析】a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n-;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.18.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n解析:a n1+-【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.19.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.20.0【分析】先找出绝对值小于100的所有整数再求它们的乘积【详解】:绝对值小于100的所有整数为:0±1±2±3…±100因为在因数中有0所以其积为0故答案为0【点睛】本题考查了绝对值的性质要求掌握绝解析:0【分析】先找出绝对值小于100的所有整数,再求它们的乘积.【详解】:绝对值小于100的所有整数为:0,±1,±2,±3,…,±100,因为在因数中有0所以其积为0.故答案为0.【点睛】本题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.三、解答题21.(1)第一个图形能折成一个正五棱锥,有10条棱,侧棱相等,底面上的五条棱相等;第二个图形能折成一个正五棱柱,有15条棱,上下底面上的棱相等,侧棱相等;(2)第一个几何体有6个面,分别是5个等腰三角形,1个正五边形,等腰三角形的形状、大小相同;第二个几何体有7个面,分别是5个长方形,2个正五边形,长方形的形状、大小相同,正五边形的形状、大小相同【分析】(1)由五棱锥与五棱柱的折叠及五棱锥与五棱柱的展开图解题.(2)根据五棱锥与五棱柱的特征即可求解.【详解】解:(1)图形(1)有10条棱,底面棱的长度相等,侧面棱的长度相等;图形(2)有15条棱,两个底面棱的长度相等,侧面棱的长度相等;(2)图形(1)有6个面,底面是五边形,侧面是形状、大小完全相同的三角形;图形(2)有7个面,底面是形状、大小完全相同的五边形,侧面是形状、大小完全相同的长方形.【点睛】本题考查了展开图折叠成几何体的知识,有一定难度,同时考查了学生的想象和动手能力.22.(1)180°;(2)180°;(3)60°.【解析】试题分析:(1)先根据OB平分∠COD得出∠BOC及∠AOC的度数,进而可得出结论;(2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC,根据∠BOC的余角的4倍等于∠AOD即可得出结论.解:(1)∵OB平分∠COD,∴∠BOC=∠BOD=45°.∵∠AOC+∠BOC=45°,∴∠AOC=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.故答案为180°;(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,∴∠AOD=180°﹣∠BOC.∵∠AOD=4(90°﹣∠BOC),∴180°﹣∠BOC=4(90°﹣∠BOC),∴∠BOC=60°.考点:余角和补角;角平分线的定义.23.大正方形的面积是36cm2【分析】设小正方形的边长为x,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积.【详解】设小正方形的边长为x,则大正方形的边长为4+(5−x)cm或(x+1+2)cm,根据题意得:4+(5−x)=(x+1+2),解得:x=3,∴4+(5−x)=6,∴大正方形的面积为36cm2.答:大正方形的面积为36cm2.【点睛】本题考查了一元一次方程的应用,解题的关键是设出小正方形的边长并表示出大正方形的边长.24.180元或202.5元【分析】先根据题意判断出可能打折的情况,再分别算出可能的可能的原价.【详解】∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.【点睛】本题考查打折销售问题,关键在于分类讨论.25.(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧; (2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯, =97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.26.(1)奇数项为负,偶数项为正;与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -【分析】通过观察题意可得:奇数项的系数为负,偶数项的系数为正,且系数的绝对值与自然数序号相同,次数也与与自然数序号相同.由此可解出本题.【详解】(1)奇数项为负,偶数项为正,与自然数序号相同;(2)与自然数序号相同;(3)(1)n n nx -.【点睛】本题考查了单项式的有关概念.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.。
一、选择题1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A .白B .红C .黄D .黑2.已知线段AB =6cm ,反向延长线段AB 到C ,使BC =83AB ,D 是BC 的中点,则线段AD 的长为____cmA .2B .3C .5D .63.如图是一个正方体展开图,若在其中的三个正方形A 、B 、C 内分别填入适当的数,使得他们折成正方体后相对的面上的两个数互为相反数,则填入正方形A 、B 、C 内的三个数依次为( )A .1,-2,0B .0,-2,1C .-2,0,1D .-2,1,0 4.两个锐角的和是( ) A .锐角 B .直角 C .钝角 D .锐角或直角或钝角 5.某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =-6.下列各等式的变形中,等式的性质运用正确的是( )A .由02x =,得2x =B .由14x -=,得5x =C .由23a =,得23a =D .由a b =,得a b c c = 7.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0 B .2 C .﹣2 D .﹣68.把方程112x =变形为2x =,其依据是( ) A .等式的性质1B .等式的性质2C .乘法结合律D .乘法分配律 9.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x 10.一个多项式与²21x x -+的和是32x -,则这个多项式为( ) A .253x x -+B .21x x -+-C .253x x -+-D .2513x x -- 11.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .112.若|a |=1,|b |=4,且ab <0,则a +b 的值为( )A .3±B .3-C .3D .5±二、填空题13.乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A ,B 两站之间需要安排不同的车票________种.14.如图所示,若∠AOC =90°,∠BOC =30°,则∠AOB =________;若∠AOD =20°,∠COD =50°,∠BOC =30°,则∠BOD =______,∠AOC =________,∠AOB =________.15.解方程213412208x x x -+-= -1,去分母时,方程两边应都乘____,得______________________,这一变形的依据是________________.16.如果3m -与21m +互为相反数,则m =________. 17.单项式20.8a h π-的系数是______.18.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.19.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______. 20.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.三、解答题21.已知:O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.若30AOC ∠=︒.求DOE ∠的度数;(2)在图1中,AOC a ∠=,直接写出DOE ∠的度数(用含a 的代数式表示); (3)将图1中的DOC ∠绕顶点O 顺时针旋转至图2的位置,探究AOC ∠和DOE ∠的度数之间的关系.写出你的结论,并说明理由.22.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”23.某地下停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场的小型汽车数量是中型汽车的3倍,这些车共缴纳停车费270元,则小型汽车有多少辆?24.解下列方程: (1)51784a -=; (2)22146y y +--=1; (3)2131683x x x -+-= -1 25.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=;在数轴上2-与3所对的两点之间的距离:235--=;在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______;数轴上表示数x 和3的两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.26.上海与南京间的公路长为364km ,一辆汽车以xkm/h 的速度开往南京,请用代数式表示:(1)汽车从上海到南京需多少小时?(2)如果汽车的速度增加2km/h ,从上海到南京需多少小时?(3)如果汽车的速度增加2km/h ,可比原来早到几小时?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:由第一个图可知绿色和白色、黑色相邻,由第二个图可知绿色和蓝色、红色相邻,由已知可得每一块的各面都涂上不同的颜色,3块的涂法完全相同.根据第三个图可知涂成绿色一面的对面涂的颜色是黄色,故答案选C.考点:几何体的侧面展开图.2.A解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm,∵反向延长线段AB到C,∴AD=BD-AB=8-6=2cm,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.3.A解析:A【分析】本题可根据图形的折叠性,对图形进行分析,可知A对应-1,B对应2,C对应0.两数互为相反数,和为0,据此可解此题.【详解】解:由图可知A对应-1,B对应2,C对应0.∵-1的相反数为1,2的相反数为-2,0的相反数为0,∴A=1,B=-2,C=0.故选A.【点睛】本题考查的是相反数的概念,两数互为相反数,和为0,本题如果学生想象不出来图形,可用手边的纸剪出上述图形,再根据纸片折出正方体,然后判断A、B、C所对应的数.4.D解析:D【分析】在0度到90度之间的叫锐角,可以用赋值法讨论.【详解】解:当∠A=10°,∠B=20°时,∠A+∠B=30°,即两锐角的和为锐角;当∠A=30°,∠B=60°时,∠A+∠B=90°,即两锐角的和为直角;当∠A=50°,∠B=60°时,∠A+∠B=110°,即两锐角的和为钝角;综上所述,两锐角的和可能是锐角,可能是直角,也可能是钝角故选D.【点睛】利用赋值法解题,可以使一些难以直接证明的问题简单易解.5.B解析:B【分析】首先根据题目中已经设出每天安排x个工人生产螺钉,则(22-x)个工人生产螺母,由1个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程【详解】设每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,利用一个螺钉配两个螺母. 由题意得:2×1200x=2000(22-x ),故选:B .【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于根据题意列出方程.6.B解析:B【解析】【分析】利用等式的基本性质判断即可.【详解】解:A 、由02x =,得x=0,不符合题意; B 、由x-1=4,得x=5,符合题意; C 、由2a=3,得a=32,不符合题意; D 、由a=b ,c≠0,得a b c c =,不符合题意; 故选:B .【点睛】本题考查了等式的性质,熟练掌握等式的基本性质是解题的关键.7.C解析:C【分析】将x =2代入方程12x +a =-1可求得. 【详解】解:将x =2代入方程12x +a =﹣1得1+a =﹣1, 解得:a =﹣2.故选C .【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握. 8.B解析:B【分析】根据等式的基本性质,对原式进行分析即可.【详解】x=,这是依据等式的性质2.将原方程两边都乘2,得2故选B.【点睛】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.9.D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.10.C解析:C【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】∵一个多项式与x2-2x+1的和是3x-2,∴这个多项式=(3x-2)-(x2-2x+1)=3x-2-x2+2x-1=253-+-.x x故选:C.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.11.C解析:C【解析】【分析】根据非负数的性质可得a-1=0,b+3=0,求出a、b后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.12.A解析:A【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.二、填空题13.20【解析】【分析】本题需先求出AB之间共有多少条线段根据线段的条数即可求出车票的种数【详解】设点CDE是线段AB上的三个点根据题意可得:图中共用=10条线段∵A到B与B到A车票不同∴从A到B的车票解析:20【解析】【分析】本题需先求出A、B之间共有多少条线段,根据线段的条数即可求出车票的种数.【详解】设点C、D、E是线段AB上的三个点,根据题意可得:图中共用()5152-⨯=10条线段∵A到B与B到A车票不同.∴从A到B的车票共有10×2=20种故答案为20.【点睛】本题主要考查了如何求线段的条数的问题,在解题时要注意线段的条数与车票种数的联系与区别.14.120°80°70°100°【分析】利用角度的和差计算求各角的度数【详解】若∠AOC=90°∠BOC=30°则∠AOB=∠AOC+∠BOC=90°+30°=120°;若∠AOD=20°∠COD=50解析:120° 80° 70° 100°【分析】利用角度的和差计算求各角的度数.【详解】若∠AOC=90°,∠BOC=30°,则∠AOB=∠AOC+∠BOC=90°+30°=120°;若∠AOD=20°,∠COD=50°,∠BOC=30°,则∠BOD=∠COD+∠BOC=50°+30°=80°;∠AOC=∠AOD+∠DOC=20°+50°=70°;∠AOB=∠AOD+∠COD+∠BOC=20°+50°+30°=100°;故答案为:120°,80°,70°,100°.【点睛】此题考查几何图形中角度的和差计算,根据图形确定各角度之间的数量关系是解题的关键.15.10x-6(2x-1)=15(3x+4)-120等式的性质2【分析】找出方程两边分母的最小公倍数根据等式的性质2即可得答案【详解】∵12208的最小公倍数是120∴去分母时方程两边应都乘120得10解析:10x-6(2x-1)=15(3x+4)-120 等式的性质2【分析】找出方程两边分母的最小公倍数,根据等式的性质2即可得答案.【详解】∵12、20、8的最小公倍数是120,∴去分母时,方程两边应都乘120,得10x-6(2x-1)=15(3x+4)-120,这一变形的依据是:等式的性质2故答案为:120,10x-6(2x-1)=15(3x+4)-120,等式的性质2【点睛】本题考查解一元一次方程及等式的性质,等式的性质2:等式两边同时乘(或除)相等的数或式子,两边依然相等;熟练掌握相关知识是解题关键.16.-4【分析】根据互为相反数的两个数的和为0列出方程解方程即可【详解】∵3-m与2m+1互为相反数∴3-m=-(2m+1)去括号得:3-m=-2m-1移项并合并同类项得:m=-4故答案是:-4【点睛】解析:-4【分析】根据互为相反数的两个数的和为0列出方程,解方程即可.【详解】∵3-m与2m+1互为相反数,∴3-m=-(2m+1)去括号,得:3-m=-2m-1移项并合并同类项,得:m=-4.故答案是:-4.【点睛】考查了用一元一次方程解决相反数的问题;用到的知识点为:a 的相反数为-a,则它们的和为0.17.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.18.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的. 19.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.20.5×108【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数解析:5×108【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.三、解答题21.(1)15DOE ∠=︒;(2)12DOE a ∠=;(3)2AOC DOE ∠∠=,理由见解析. 【分析】(1)先根据补角的定义求出∠BOC 的度数,再由角平分线的性质得出∠COE 的度数,根据∠DOE =∠COD -∠COE 即可得出结论;(2)同(1)可得出结论;(3)先根据角平分线的定义得出∠COE =∠BOE =12∠BOC ,再由∠DOE =∠COD -∠COE 即可得出结论.【详解】(1)∵COD ∠是直角,30AOC ∠=︒, 180903060BOD ∴∠=︒-︒-︒=︒,9060150COB ∴∠=︒+︒=︒,∵OE 平分BOC ∠,1752BOE BOC ∴∠=∠=︒, 756015DOE BOE BOD ∴∠=∠-∠=︒-︒=︒.(2)COD ∠是直角,AOC a ∠=,1809090BOD a a ∴∠=︒-︒-=︒-,9090180COB a a ∴∠=︒+︒-=︒-,∵OE 平分BOC ∠,119022BOE BOC a ∴∠=∠=︒-, ()11909022DOE BOE BOD a a a ∴∠=∠-∠=︒--︒-=. (3)2AOC DOE ∠=∠,理由是:180BOC AOC ∠=︒-∠,OE 平分BOC ∠,119022BOE BOC AOC ∴∠=∠=︒-∠, 90COD ∠=︒, ()909018090BOD BOC AOC AOC ∴∠=︒-∠=︒-︒-∠=∠-︒,()11909022DOE BOD BOE AOC AOC AOC ⎛⎫∴∠=∠+∠=∠-︒+︒-∠=∠ ⎪⎝⎭, 即2AOC DOE ∠=∠.【点睛】本题考查的是角的计算,熟知角平分线的定义、补角的定义是解答此题的关键. 22.34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.23.小型汽车有45辆【分析】设中型汽车有x 辆,则小型汽车有3x 辆,根据“这些车共缴纳停车费270元”列出关于x 的方程,然后求解方程即可.【详解】设中型汽车有x 辆,则小型汽车有3x 辆,根据题意,得643270+⨯=x x ,合并同类项,得18x =270,系数化为1,得x =15,则3x =45.答:小型汽车有45辆.【点睛】本题主要考查一元一次方程的应用,解此题的关键在于根据题意设出未知数,找到题中相等关系列出方程.24.(1)3a =;(2)4y =-;(3)179x =. 【分析】(1)先方程两边同乘以8去分母,再按照移项、合并同类项、系数化为1的步骤解方程即可得;(2)先方程两边同乘以12去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得;(3)先方程两边同乘以24去分母,再按照去括号、移项、合并同类项、系数化为1的步骤解方程即可得.【详解】(1)方程两边同乘以8去分母,得5114a -=,移项,得5141a =+,合并同类项,得515a =,系数化为1,得3a =;(2)方程两边同乘以12去分母,得3(2)2(21)12y y +--=,去括号,得364212y y +-+=,移项,得341262y y -=--,合并同类项,得4y -=,系数化为1,得4y =-;(3)方程两边同乘以24去分母,得4(21)3(31)824x x x --+=-,去括号,得8493824x x x ---=-,移项,得8982443x x x --=-++,合并同类项,得917x -=-,系数化为1,得179x =. 【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键.25.(1)3;|x−3|;x ,-2;(2)5;−3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x >3和x <−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x和3的两点之间的距离为:|x−3|;数轴上表示数x和−2的两点之间的距离表示为:|x+2|;故答案为:3,|x−3|,x,-2;(2)①当x在-2和3之间移动时,|x+2|+|x−3|=x+2+3−x=5;②当x>3时,x−3+x+2=7,解得:x=4,当x<−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.26.(1)364xh;(2)3642x+h;(3)3643642x x⎛⎫-⎪+⎝⎭h【分析】(1)根据题意,可以用代数式表示出汽车从上海到南京需要的时间;(2)根据题意,可以用代数式表示出汽车的速度增加2千米/时,从上海到南京需要的时间;(3)根据题意,可以用代数式表示出如果汽车的速度增加2千米/时,可比原来早到几小时.【详解】解:(1)汽车从上海到南京需364xh;(2)如果汽车的速度增加2km/h,从上海到南京需3642x+h;(3)如果汽车的速度增加2km/h,可比原来早到3643642x x⎛⎫-⎪+⎝⎭h.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.。
一、选择题1.如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =( )cmA .4B .3C .2D .12.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒ 3.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为( ) A .30°B .60°C .120°D .150° 4.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为( ) A .互余 B .互补 C .相等 D .无法确定 5.已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( )A .6(x+2)+4x =18B .6(x ﹣2)+4x =18C .6x+4(x+2)=18D .6x+4(x ﹣2)=18 6.下列解方程中去分母正确的是( )A .由,得B .由,得C .由,得D .由,得 7.将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+ B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+ 8.一张试卷共有25道题,若做对1题得4分,做错1题扣1分,小明做了全部试题只得了70分,那么小明做对了( )道.A .17B .18C .19D .209.下列去括号运算正确的是( )A .()x y z x y z --+=---B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ 10.下列关于多项式21ab a b --的说法中,正确的是( )A .该多项式的次数是2B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1-11.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .412.下列说法中错误的有( )个①绝对值相等的两数相等.②若a ,b 互为相反数,则a b=﹣1.③如果a 大于b ,那么a 的倒数小于b 的倒数.④任意有理数都可以用数轴上的点来表示.⑤x 2﹣2x ﹣33x 3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A .4个B .5个C .6个D .7个二、填空题13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________.14.把棱长为1cm 的四个正方体拼接成一个长方体,则在所得长方体中,表面积最大等于________2cm .15.已知三个数的比是2:4:7,这三个数的和是169,这三个数分别是____,____,____ 16.所谓方程的解就是使方程中等号左右两边相等的未知数的值。
鲁教版(五四制2019---2020学年度第一学期期末考试七年级数学试卷考试时间:100分钟;满分120分题号一二三总分得分评卷人得分一、单选题1.(3分)同学们,交通安全要时刻牢记.下列交通标志图案中,是轴对称图形的是( ).A.B.C.D.2.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE3.(3分)在实数5、227、π、327、0.1212212221…(两个1之间依次多一个2)中,其中无理数的个数有( )A.1个B.2个C.3个D.4个4.(3分)直角三角形ABC的两条直角边的长分别为1、2,则它的斜边长为()A.3B.5C.2 D.35.(3分)下列式子中,正确的是()A.B.C.D.6.(3分)在平面直角坐标系中,点P(3,﹣2)到y轴的距离为()A.3 B.﹣3 C.2 D.﹣27.(3分)重庆一中寄宿学校北楼,食堂,含弘楼的位置如图所示,如果北楼的位置用(-1,2)表示,食堂的位置用(2,1)表示,那么含弘楼的位置表示成()A .(0,0)B .(0,4)C .(-2,0)D .(1,5)8.(3分)等腰三角形周长为20cm ,底边长ycm 与腰长xcm 之间的函数关系是( ) A .y=20-2x(0<x <10) B .y=20-2x(5<x <10) C .y=10-x(5<x <10)D .y=10-0.5x(10<x <20)9.(3分)如图,一架长25m 的梯子AB 斜靠在墙AC 上,这时梯足距墙面AC 距离为7m ,如果梯子顶端沿墙下滑4m ,那么梯足将向外滑动的距离BB 1为( )A .15mB .9mC .8mD .5m10.(3分)若点A (﹣3,y 1),B (2,y 2),C (4,y 3)是函数y=kx+2(k <0)图象上的点,则( ) A .1y <2y <3y B .1y >2y >3y C .1y <3y <2y D .2y >3y >1y评卷人 得分二、填空题11.(4分)化简: 43ππ-+-=________12.(4分)如图,为了加固小板凳,用两枚钉子A ,B 将一根木条钉在它上面,这种做法的几何原理是利用了三角形的_____.13.(4分)如图,小明从A 地沿北偏东60°方向走2千米到B 地,再从B 地向正南方向走3千米到C 地,此时小明距离A 地 千米(结果可保留根号).14.(4分)若某个正数的两个平方根分别是2a ﹣1与2a+5,则a=_____.15.(4分)如图,将直线OA 向上平移2个单位,得到一个一次函数的图象,则这个一次函数的表达式为__________.16.(4分)在平面直角坐标系中,已知一次函数23y x =-的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1>x 2,则y 1____y 2(填“>”或“<”).17.(4分)如图,在锐角△ABC 中,AC =8,△ABC 的面积为20,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM +MN 的最小值是________.18.(4分)小婷家与学校之间是一条笔直的公路,小婷从家步行前往学校的途中发现忘记带昨天的回家作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小婷沿原路返回.两人相遇后,小婷立即赶往学校,妈妈沿原路返回家,并且小婷到达学校比妈妈到家多用了5分钟,若小婷步行的速度始终是每分钟100米,小婷和妈妈之间的距离y 与小婷打完电话后步行的时间x 之间的函数关系如图所示(1)妈妈从家出发_____分钟后与小婷相遇;(2)相遇后妈妈回家的平均速度是每分钟_____米,小婷家离学校的距离为_____米.评卷人得分三、解答题19.(7分)求下列各等式中x的值(1)4(x﹣1)2=9 (2)3(1﹣x)3﹣81=020.(7分)在数轴上找出13对应的点.21.(7分)如果一个正数m的两个平方根为a+1和2a﹣7,请你求出这个正数.22.(7分)如图,已知DA⊥AC,EC⊥AC,点B在AC上,且DB⊥EB,AD=CB.求证:EB=BD.23.(7分)已知:如图,已知△ABC,(1)画出与△ABC关于轴对称的图形△A1B1C1.(2)求△ABC的面积.24.(7分)在一次消防演习中,消防员架起一架25米长的云梯,如图斜靠在一面墙上,梯子底端离墙7米.(1)求这个梯子的顶端距地面有多高?(2)如果消防员接到命令,要求梯子的顶端下降4米(云梯长度不变),那么云梯的底部在水平方向应滑动多少米?25.(8分)已知:一次函数y=kx+b的图象经过M(0,2),(1,3)两点.求该图象与x轴交点的坐标.26.(8分)如图,一次函数y=kx+b的图象经过(2,4)、(0,2)两点,与x轴相交于点C.求:(1)此一次函数的解析式;(2)△AOC的面积.参考答案1.B2.B3.C4.B5.A6.A7.C8.B9.C10.B11.112.稳定性13.14.-115.y=2x+216.>17.518.860210019.(1)x=52或x=﹣12;(2)x=﹣2.20.见解析21.922.见解析. 23.(1)如图所示:(2)524.(1)24米;(2)8米.25.(-2,0)26.(1)y=x+2;(2)4。
鲁教版2019-2020七年级数学上册期末模拟测试题1(基础含答案)一、单选题1.如图,AB∥FC,DE=EF,AB=15,CF=8,则BD等于( )A.8B.7C.6D.52.有两条或两条以上对称轴的轴对称图形是()A.等腰三角形B.角C.等边三角形D.锐角三角形3.如图,在△ABC中,D,E分别是边AC和BC上的点,且DE⊥BC,若△ADB≌△EDC,则∠C=()A.15°B.20°C.25°D.30°4.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有()A.6对B.5对C.4对D.3对5.在△ABC的中,90C∠,周长为60,斜边与一直角边比为13:5,则这个三角形的三边长分别是()A.5,4,3B.13,12,5C.10,8,6D.26,24,10 6.把一副三角板按如图叠放在一起,则的度数是A. B. C. D.7.如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为()A.22B.26C.3D.26 28.下列说法:①两边和其中一边的对角对应相等的两个三角形全等.②角的对称轴是角平分线③两边对应相等的两直角三角形全等④成轴对称的两图形一定全等⑤到线段两端距离相等的点在线段的垂直平分线上,正确的有( )个.A.2B.3C.4D.59.若正比例函数y =kx 的图象经过点(2,1),则k 的值为( )A .﹣12B .12C .﹣2D .210.两直线 l 1 : y =2 x -1, l 2 : y = x +1的交点坐标为( ).A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)二、填空题11.将二次函数2y x 4x 7=-+化为2y (x a)b =-+的形式,如果直角三角形的两边长分别为a 、b ,那么第三边的长为________.12.如图3,在△ABC 中,AD ⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为 __________.13.函数y =25x -的自变量x 的取值范围是_____.14.在32,-35,38,0.5,2π,3.14159265,--25,1.103030030003…中,无理数有______ (多写或少写都不得分)15.已知(x ﹣1)3=64,则x 的值为__.16.如图,在平面直角坐标系中,点A 的坐标为(﹣2,23),以原点O 为中心,将点A 顺时针旋转165°得到点A′,则点A′的坐标为___________.17.9的平方根是_______;8 的立方根是_________.18.直线x+2y=5与直线x+y=3的交点坐标是________.19.已知函数,若,则.20.如图,在△ABC中,E是BC边上一点,沿AE折叠,点B恰好落在AC边上的点D处,若∠BAC=60°,BE=CD,则∠AED=______ 度.三、解答题21.已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A,B,点P在该函数图象上,P到x轴、y轴的距离分别为d1,d2.(1)当P为线段AB的中点时,d1+d2=_____;(2)设点P横坐标为m,用含m的代数式表示d1+d2,并求当d1+d2=3时点P的坐标;22.在四边形ABCD中,AB=AD,BC=CD.(1)如图1,请连接AC,BD,求证:AC垂直平分BD;(2)如图2,若∠BCD=60°,∠ABC=90°,E,F分别为边BC,CD上的动点,且∠EAF=60°,AE,AF分别与BD交于G,H,求证:△AGH∽△AFE;(3)如图3,在(2)的条件下,若EF⊥CD,直接写出GHBD的值.23.如图,在边长为1的正方形网格中建立平面直角坐标系,已知ABC 三个顶点分别为()1,2A -、()2,1B 、()4,5C .()1画出ABC 关于x 轴对称的111A B C ;()2以原点O 为位似中心,在x 轴的上方画出222A B C ,使222A B C 与ABC 位似,且位似比为2,并求出222A B C 的面积.24.已知:y-2与x 成正比例,且当x=2时,y=3.⑴写出y 与x 之间的函数表达式;⑵计算当y=-4时,求x 的值.25.(1)在实数范围内定义运算“⊕”,其法则为:a ⊕b =a 2﹣b 2,求方程(4⊕3)⊕x =24的解.(2)已知2a 的平方根是±2,3是3a +b 的立方根,求a ﹣2b 的值. 26.如图,在Rt △ABC 中,∠ABC=90°,∠C=60°,AC=10,将BC 向BA 方向翻折过去,使点C 落在BA 上的点C',折痕为BE,求EC 的长度.27.如图,AD平分∠BAC,点E在AD上,连接BE、CE.若AB=AC,BE=CE.求证:∠1=∠2.28.对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A惯有点M的对称点的点B,点B关于直线l 的对称轴为点C.①若A、B、C三点不在同一条直线上,判断△ABC是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n 的值.参考答案1.B【解析】∵AB//CF ,∴∠A=∠ECF ,又∵DE=EF ,∠AED=∠CEF ,∴△ADE ≌△CFE ,∴AD=CF=8,∴BD=AB-AD=15-8=7,故选B.2.C【解析】A.等腰三角形只有一条对称轴;B.角也只有一条对称轴,是角平分线所在的直线;C.等边三角形有三条对称轴;D.锐角三角形的对称轴数量不确定.故选:C3.D【解析】试题解析:∵ADB △≌EDC △,DB DC ABD C ∴=∠=∠,,DBC C ∴∠=∠,DE BC ⊥,90DEC ∴∠=︒,90A ∴∠=︒,390C ∠=︒,解得,30C ∠=︒,故选D .4.A【解析】【分析】首先证明△AFO ≌△CEO ,可得AO=CO ,然后再同理可得△FOD ≌△EOB ,再依次证明△FOD ≌△EOB ,△ACB ≌△ACD ,△ABD ≌△DCB ,△AOB ≌△COD 即可.【详解】:∵AD ∥BC ,∴∠FAC=∠BCA ,在△AFO 和△CEO 中,FAO ECO AOF COE FO EO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFO ≌△CEO (AAS ),∴AO=CO ,同理可得△FOD ≌△EOB ,在△AOD 和△COB 中,DAO BCO AO COAOD COB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOD ≌△COB (ASA ),∴AD=BC ,在△ACB 和△CAD 中,AD BC DAC ACB AC AC =⎧⎪∠=∠⎨⎪=⎩,∴△ACB ≌△ACD (SAS ),∴AB=CD ,∠BAC=∠ACD ,在△ABD 和△DCB 中,AD BC AB CD DB DB =⎧⎪=⎨⎪=⎩,∴△ABD ≌△DCB (SSS ),在△AOB 和△COD 中,OAB OCDAOB CODAB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOB≌△COD(AAS).共有6对.故选:A.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.5.D【解析】设斜边为13k,则一直角边为5k,由勾股定理得另一直角边为12k,所以5k+12k+13k=60,解得k=2,所以5k=10,12k=24,13k=26,故答案为D.6.A【解析】【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,同理再求出∠α即可【详解】解:如图,∠1=∠D+∠C=45°+90°=135°,∠α=∠1+∠B=135°+30°=165°.故选:A.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.D【解析】∵ACB△为直角三角形且D为AB中点,∴12CD AB=.根据勾股定理得,AB=∴CD=.故选D.点睛:本题考查勾股定理的逆定理和直角三角形的性质,利用了勾股定理的逆定理和直角三角形的性质求解.解决此类题目要熟记斜边上的中线等于斜边的一半.注意勾股定理的应用. 8.A【解析】【分析】①不存在SSA这种判定全等三角形的方法;②根据角的轴对称性进行判断;③斜边和一条直角边对应相等的两个直角三角形全等,据此判断即可;④根据轴对称的性质进行判断;⑤根据线段垂直平分线的性质进行判断.【详解】解:①两边和其中一边的对角对应相等的两个三角形不一定全等,故①错误;②角的对称轴是角平分线所在直线,故②错误;③两边对应相等的两直角三角形不一定全等,故③错误;④根据轴对称的性质可得,成轴对称的两图形一定全等,故④正确;⑤根据中垂线的性质定理的逆定理可得,到线段两端距离相等的点在线段的垂直平分线上,故⑤正确;综上所述,正确的说法有2个.故选:A.【点睛】本题主要考查了轴对称的性质、直角三角形的判定、线段和角的轴对称性的综合应用,解题时注意:对称轴是一条直线;直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.9.B【解析】【分析】根据一次函数图象上点的坐标特征,把(2,1)代入y=kx中即可计算出k的值.【详解】把(2,1)代入y=kx得2k=1,解得k=12.故选B.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.10.D【解析】联立211y xy x=-⎧⎨=+⎩,解得:23xy=⎧⎨=⎩,所以两直线l 1 :y =2 x -1,l 2 :y =x +1的交点坐标为(2,3),故选D.【点睛】本题主要考查了两条直线相交或平行问题,明确求两直线交点坐标就是求两直线解析式组成的二元一次方程组的解是解题的关键.11【解析】【分析】利用配方法将二次函数的一般形式转化为顶点式,然后求得a、b的值;最后根据勾股定理求得直角三角形的第三边的长度.【详解】由二次函数y=x2−4x+7得,y=(x−2)2+3,∴a=2,b=3;∴当a,b当b【点睛】二次函数的三种形式, 勾股定理.12.10【解析】【分析】先利用勾股定理在Rt△ABD中求出AD的长,再利用勾股定理在Rt△ACD中求出AC的长即可.【详解】∵AD⊥BC与D,AB=17,BD=15,∴=8.∴=10.故答案为:10【点睛】本题主要考查了勾股定理的运用,在不同直角三角形中灵活运用勾股定理是解题关键.13.x≥5 2【解析】【分析】根据二次根式的被开方数为非负数可得2x-5≥0,解这个不等式即可得. 【详解】由题意得:2x-5≥0,解得:x≥52,故答案为:x≥5 2 .【点睛】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.14.32,2π, 1.103030030003… 【解析】按照无理数的定义知32,2π, 1.103030030003…是无理数.其中38225 5.=--=-,不是无理数. 15.5【解析】由(x ﹣1)3=64,得:x ﹣1=4,解得:x=5.故答案为:5.16.(22,﹣22)【解析】作AB ⊥x 轴于点B ,∴AB=23,OB=2,则tan ∠AOB=233AB BO == ∴∠AOB=60°,∴∠AOy=30°,∴将点A 顺时针旋转165°得到点A′后,∠A′OC=165°-30°-90°=45°,OA′=OA=2OB=4,∴A′C=OC=22,即A′(22,−22),故答案为:(22,﹣22).17.3,-3;-2【解析】因为3的平方是9,-3的平方是9,所以9的平方根是3±,因为-2的立方是-8,所以-8的立方根是-2,故答案为:3±,-2.18.(1,2)【解析】联立两个函数解析式253x yx y+=⎧⎨+=⎩,解得:12xy=⎧⎨=⎩,则交点坐标为(1,2),故答案为:(1,2).点睛:此题主要考查了一次函数和二元一次方程组的关系,解题关键是联立两个函数解析式构成方程组,解方程组,方程组的解就是两函数图象的交点坐标.19.-1;【解析】【分析】根据已知中的函数解析式,将已知的自变量值(式子)代入化简,求值可得答案.【详解】∵,∴=2解得,x=-1,经检验,x=1是原方程的解.故答案为:-1.【点睛】本题考查的知识点是函数的值,难度不大,属于基础题目.20.70 【解析】由折叠的性质可知,DE=BE,∠ADE=∠ABE,∠DAE=∠BAE=12∠BAC=30°,∵BE=CD,∴DE=DC,∴∠C=∠DEC,∴∠ADE=∠C+∠DEC=2∠C.∴∠ABC=2∠C,又∵∠BAC=60°,∠BAC+∠ABC+∠C=180°,∴∠ABC+∠C=180°-60°=120°,即3∠C=120°,解得:∠C=40°,∴∠ADE=40°×2=80°,∴∠AED=180°-∠DAE-∠ADE=180°-30°-80°=70°.故答案为:70.21.3【解析】【分析】(1)对于一次函数解析式,求出A与B的坐标,即可求出P为线段AB的中点时d1+d2的值;(2)设P(m,2m﹣4),表示出d1+d2,根据d1+d2=3求出m的值,即可确定出P的坐标;【详解】(1)对于一次函数y=2x﹣4,令x=0,得到y=﹣4;令y=0,得到x=2,∴A(2,0),B(0,﹣4),∵P为AB的中点,∴P(1,﹣2),则d1+d2=3;(2)设P(m,2m﹣4),∴d1+d2=|m|+|2m﹣4|,当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,解得:m=1,此时P1(1,﹣2);当m>2时,d1+d2=m+2m﹣4=3,解得:m=73,此时P2(73,23);当m<0时,不存在,综上,P的坐标为(1,﹣2)或(73,23).【点睛】一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,线段中点坐标公式,绝对值的代数意义,以及坐标与图形性质,熟练掌握绝对值的代数意义是解本题的关键.22.(1)证明见解析;(2)证明见解析;(3)312.【解析】试题分析:(1)由题意分别求出A,C点在BD垂直平分线上,所以AC就是BD的垂直平分线.(2),将△ABE绕点A逆时针旋转120得到△ADM.连接AC交BD于O.先证明F、D、M共线,再通过倒角得到∠GAH=∠F AE,所以△AGH∽△AFE.(3)连接AC交BD于O,作HM⊥AD于M,设HM=AM=a,则DH=2a,DM=3a,用a表示GH,BD,求出比值.试题解析:(1)证明:如图1中,连接BD、AC.∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴AC是线段BD的垂直平分线,即AC垂直平分线段BD.(2)如图2中,将△ABE绕点A逆时针旋转120°得到△ADM.连接AC交BD 于O.∵B、D关于AC对称,∴∠ABC=∠ADC=90°,∵∠BCD=60°,∴∠BAD=120°,∵∠EAF=60°,∴∠BAE+∠DAF=∠DAF+∠DAM=60°,∴∠F AE=∠F AM,∵∠ADM=∠ABE=90°=∠ADF,∴F、D、M共线,∵F A=F A,AE=AM,∴△F AE≌△F AM,∴∠AFE=∠AFM,∵∠CAD=∠CAB=60°=∠EAF,∴∠GAO=∠DAF,∵∠AGO+∠GAO=90°,∠AFD+∠F AD=90°,∴∠AGO=∠ADF,∴∠AGH=∠AFE,∵∠GAH=∠F AE,∴△AGH ∽△AFE .(3)解:如图3中,连接AC 交BD 于O ,作HM ⊥AD 于M .∵EF ⊥CD ,∴∠EFD =90°,由(2)可知∠AFD =∠AFE =∠AGO =45°,∵∠ADF =90°,∴AD=DF ,设HM=AM =a ,则DH =2a ,DM 3,在Rt △ACD 中,∵∠ACD =30°,AD =(3a ,∴CD=BD 3AD =(3a , 在Rt △AHD 中,∵∠ADH =30°,AD =(3a ,∴AO=OG =12AD=132+a ,OD 3=332+a , ∴OH=OD ﹣DH 33+a ,﹣2a 31-∴GH=OG+OH 3,∴()331233GH x BD a ==+. 23.(1)作图见解析;(2)28.【解析】分析:(1)画出A 、B 、C 关于x 轴的对称点A 1、B 1、C 1即可解决问题;(2)连接OB 延长OB 到B 2,使得OB=BB 2,同法可得A 2、C 2,△A 2B 2C 2就是所求三角形;详解:()1如图所示,111A B C 就是所求三角形.()2如图所示,222A B C 就是所求三角形如图,分别过点2A 、2C 作y 轴的平行线,过点2B 作x 轴的平行线,交点分别为E 、F , ()1,2A -,()2,1B ,()4,5C ,222A B C 与ABC 位似,且位似比为2,()22,4A ∴-,()24,2B ,()28,10C ,222111810624861028222A B C S ∴=⨯-⨯⨯-⨯⨯-⨯⨯=. 点睛:本题考查作图-位似变换,作图轴对称变换等知识,解题的关键是理解位似变换、轴对称变换的定义.24.(1) 122y x =+; (2)x=-12. 【解析】【分析】(1)根据题意设y-2=kx ,将x 与y 的值代入求出k 的值,即可确定出y 与x 关系式; (2)将y=-4代入y 与x 关系式求出x 的值即可.【详解】(1)根据题意得:y-2=kx ,将x=2,y=3代入得:3-2=2k ,即k=12, 则y-2=12x ,即y=122x +;(2)将y=-4代入y=122x +, 得-4=122x +, 解得x=-12.【点睛】此题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.25.(1)x=±5;(2)-40.【解析】【分析】(1)本题是新定义题型,应该严格按照题中给出的计算法则进行运算,其中有小括号的要先算小括号.(2)利用平方根及立方根的定义求出a 与b 的值,即可确定出a ﹣2b 的值.【详解】(1)∵a ⊕b =a 2﹣b 2,∴(4⊕3)⊕x =(42﹣32)⊕x =7⊕x =72﹣x 2∴72﹣x 2=24,∴x 2=25,∴x =±5.(2)根据题意得:2a =4,3a +b =27,解得:a =2,b =21,则a ﹣2b =2﹣42=﹣40.【点睛】本题考查了立方根,以及平方根,熟练掌握各自的定义是解答本题的关键.26. -5【解析】【分析】作ED ⊥BC 于D,可得含30°的t R CED ∆及含45°的直角三角形BED,设所求的EC 为x,则CD=12 x, BD=ED=2x ,根据BC=5列式求值即可. 【详解】解:作ED⊥BC于D,由折叠的性质可知∠DBE=∠ABE=45°,设所求的EC为x,则CD=12x,BD=ED=32x,∵∠ABC=90°,∠C=60°,AC=10, ∴BC=AC×cos C=5,∴CD+BD= 12x+3x=5,∴3-5.【点睛】本题主要考查了考查翻折变换问题;构造出含30°及含45°的直角三角形是解决本题的突破点. 27.见解析【解析】【分析】由题意可证△ABE≌△ACE,可得∠AEB=∠AEC,则可得∠1=∠2.【详解】∵AB=AC,BE=CE,AE=AE,∴△ABE≌△ACE(SSS),∴∠AEB=∠AEC,∴∠1=∠2.【点睛】本题考查了全等三角形的判定与性质,熟练运用全等三角形的判定是本题的关键.28.(1)(2,2);(3,4);(2)①、直角三角形;理由见解析;②、B(5,8),n=4.【解析】试题分析:(1)根据平移的性质得出点A平移的坐标即可;(2)①、连接CM,根据中心和轴对称的性质和直角三角形的判定解答即可;②、延长BC交x轴于点E,过C点作CF⊥AE 于点F,根据待定系数法得出直线的解析式进而解答即可.试题解析:(1)∵点P(2,3)经1次斜平移后的点的坐标为(3,5),点A的坐标为(1,0),∴点A经1次平移后得到的点的坐标为(2,2),点A经2次平移后得到的点的坐标(3,4);(2)①连接CM,如图1:由中心对称可知,AM=BM,由轴对称可知:BM=CM,∴AM=CM=BM,∴∠MAC=∠ACM,∠MBC=∠MCB,∵∠MAC+∠ACM+∠MBC+∠MCB=180°,∴∠ACM+∠MCB=90°,∴∠ACB=90°,∴△ABC是直角三角形;②延长BC交x轴于点E,过C点作CF⊥AE于点F,如图2:∵A(1,0),C(7,6),∴AF=CF=6,∴△ACF是等腰直角三角形,由①得∠ACE=90°,∴∠AEC=45°,∴E点坐标为(13,0),设直线BE的解析式为y=kx+b,∵C,E点在直线上,可得:,解得:,∴y=﹣x+13,∵点B由点A经n次斜平移得到,∴点B(n+1,2n),由2n=﹣n﹣1+13,解得:n=4,∴B(5,8).考点:几何变换综合题。
期末试卷(1)
一.选择题(共12小题)
1.下列图形中,为轴对称图形的是()
A.B.C.D.
2.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B=()
A.25°B.45°C.30°D.20°
3.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()
A.6 cm B.7 cm C.8 cm D.9 cm
4.下列各组数中,能作为直角三角形三边长的是()
A.4,5,6 B.5,7,12 C.1,1,D.1,,3
5.在实数﹣,,π,中,是无理数的是()
A.﹣B.C.πD.
6.下列计算,正确的是()
A.﹣(﹣)=﹣B.|﹣2|=﹣C.=2D.()﹣1=2
7.如图是某游乐城的平面示意图,并用(6,﹣1)表示球幕电影的位置,那么坐标原点表示的位置是()
A.太空秋千B.梦幻艺馆C.海底世界D.激光战车
8.无论m为何值,点A(m,3﹣2m)不可能在()
A.第一象限B.第二象限C.第三象限D.第四象限
9.下列函数:①y=πx;②y=2x﹣1;③y=;④y=﹣3x;⑤y=x2﹣1中,是一次函数的有()
A.4个B.3个C.2个D.1个
10.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()
A.B.C.
D.
11.以下列各组长度的线段为边,能组成三角形的是()
A.3cm,4cm,8cm B.5cm,5cm,11cm
C.12cm,5cm,6cm D.8cm,6cm,4cm
12.如图,AE⊥BC于E,BF⊥AC于F,CD⊥AB于D,则△ABC中AC边上的高是哪条垂线
段()
A.BF B.CD C.AE D.AF
二.填空题(共4小题)
13.若等腰三角形的两边的边长分别为10cm和5cm,则第三边的长是cm.
14.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.
15.在实数﹣5,﹣,0,π,中,最大的一个数是.
16.甲、乙两动点分别从线段AB的两端点同时出发,甲从点A出发,向终点B运动,乙从点B出发,向终点A运动.已知线段AB长为90cm,甲的速度为2.5cm/s.设运动时间为x(s),甲、乙两点之间的距离为y(cm),y与x的函数图象如图所示,则图中线段DE所表示的函数关系式为.(并写出自变量的取值范围)
三.解答题(共3小题)
=28,17.如图,BD平分∠ABC交AC于点D,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8,若S
△ABC
求DE的长.
18.在平面直角坐标系中,O为坐标原点,点A的坐标为(2x﹣3,﹣2y),它关于x轴
的对称点A
1的坐标为(x+3,y﹣4),关于y轴的对称点为A
2
.
(1)求A
1,A
2
的坐标;
(2)证明:O为线段A
1A
2
的中点.
19.赛龙舟是端午节的主要习俗,某市甲、乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(m)与时间x(min)的对应关系如图所示,请结合图象解答下列问题:
(1)起点A与终点B之间相距多远?
(2)哪支龙舟队先出发?哪支龙舟队先到达终点?
(3)分别求出甲、乙两支龙舟队的y与x之间的函数关系式;
(4)甲龙舟队出发多长时间时两支龙舟队相距200米?。