大学文科数学试卷
- 格式:doc
- 大小:68.00 KB
- 文档页数:2
大学文科高数试题及答案一、选择题(每题4分,共40分)1. 假设函数f(x)在点x=a处可导,那么下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处可能不连续D. f(x)在x=a处的导数为0答案:A2. 极限lim(x→0)(sinx/x)的值是:A. 1B. 0C. 2D. 不存在答案:A3. 以下哪个选项是微分方程的解:A. y = e^x + CB. y = e^(-x) + CC. y = x^2 + CD. y = sin(x) + C答案:A4. 函数f(x)=x^2在区间[0,2]上的最大值是:A. 0B. 1C. 4D. 2答案:C5. 积分∫(0到1) x dx的值是:A. 0B. 1/2C. 1D. 2答案:B6. 以下哪个函数是偶函数:A. f(x) = x^3B. f(x) = x^2C. f(x) = sin(x)D. f(x) = |x|答案:B7. 以下哪个选项是函数f(x)=x^2的原函数:A. x^3B. 2xC. x^3/3D. x^2/2答案:C8. 如果函数f(x)在区间(a,b)上单调递增,则:A. f(x)在区间(a,b)上一定连续B. f(x)在区间(a,b)上可能不连续C. f(x)在区间(a,b)上一定存在最大值D. f(x)在区间(a,b)上一定存在最小值答案:B9. 以下哪个选项是函数f(x)=ln(x)的导数:A. 1/xB. xC. ln(x)D. 1答案:A10. 以下哪个选项是函数f(x)=e^x的不定积分:A. e^x + CB. e^(-x) + CC. e^x/x + CD. e^x * x + C答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3在x=1处的导数是________。
答案:32. 极限lim(x→∞)(1/x)的值是________。
答案:03. 函数f(x)=x^2+2x+1的最小值是________。
一、选择题(每题5分,共40分)1. 已知函数f(x) = x^2 - 2x + 1,则f(3)的值为:A. 5B. 6C. 7D. 82. 若a,b是实数,且|a+b| ≤ 2,则|a-b|的最大值为:A. 2B. 3C. 4D. 53. 已知向量a = (2, 3),b = (1, -2),则|a+b|的值为:A. 3B. 4C. 5D. 64. 已知函数f(x) = log2(x+1),则f(3)的值为:A. 1B. 2C. 3D. 45. 若等差数列{an}的公差为d,首项为a1,则第10项与第15项之和为:A. 14a1 + 19dB. 15a1 + 19dC. 14a1 + 20dD. 15a1 + 20d6. 已知等比数列{bn}的公比为q,首项为b1,则第5项与第8项之积为:A. b1q^4B. b1q^7C. b1q^5D. b1q^87. 若三角形ABC的三边长分别为a,b,c,且满足a+b+c=12,则三角形ABC的面积最大值为:A. 18B. 24C. 36D. 488. 已知函数f(x) = e^x,则f(x)在x=0处的导数为:A. 1B. eC. e^2D. e^39. 已知函数f(x) = sin(x),则f'(π)的值为:A. 0B. 1C. -1D. sin(π)10. 若等差数列{an}的公差为d,首项为a1,则第n项与第2n项之差的平方为:A. n^2d^2B. (n+1)^2d^2C. (2n-1)^2d^2D. (n-1)^2d^2二、填空题(每题5分,共20分)11. 若函数f(x) = ax^2 + bx + c在x=1处的导数为0,则a+b+c=______。
12. 已知向量a = (2, 3),b = (1, -2),则a·b的值为______。
13. 若等差数列{an}的首项为a1,公差为d,则第n项an=______。
14. 已知等比数列{bn}的首项为b1,公比为q,则第n项bn=______。
文科数学高考试题及答案一、选择题(本题共12小题,每小题5分,共60分)1. 函数f(x)=x^2-4x+3的零点个数为:A. 0B. 1C. 2D. 3答案:C2. 已知向量a=(1,2),b=(3,-1),则向量a+b的坐标为:A. (4,1)B. (-2,3)C. (2,-3)D. (-2,-3)答案:A3. 已知等差数列{an}的前三项分别为1,3,5,则该数列的通项公式为:A. an=2n-1B. an=n^2C. an=n+1D. an=2n+1答案:A4. 已知函数f(x)=x^3-3x^2+2x,求f'(x):A. f'(x)=3x^2-6x+2B. f'(x)=x^2-3x+2C. f'(x)=x^3-3x^2+2D. f'(x)=x^2-3x+1答案:A5. 已知双曲线C的方程为x^2/a^2-y^2/b^2=1,其中a>0,b>0,且双曲线C的离心率为e=√2,求a和b的关系:A. a=bB. a=2bC. b=2aD. b=√2a答案:D6. 已知三角形ABC的内角A,B,C满足A+B=2C,且sinA+sinB=sinC,求角C的大小:A. 30°B. 45°C. 60°D. 90°答案:C7. 已知函数f(x)=|x-1|+|x+2|的值域为:A. [3,+∞)B. [1,+∞)C. [2,+∞)D. [0,+∞)答案:C8. 已知抛物线y^2=4x的焦点为F,点P(1,2)在抛物线上,求点P到焦点F的距离:A. 1B. 2C. 3D. 4答案:C9. 已知正方体的棱长为a,求其内切球的表面积:A. 4πa^2B. 6πa^2C. 4π(a/2)^2D. 6π(a/2)^2答案:C10. 已知等比数列{an}的前三项分别为1,q,q^2,求该数列的前三项和S3:A. 1+q+q^2B. 1+q+q^3C. 1+q^2+q^3D. 1+q+q^4答案:A11. 已知函数f(x)=x^2-4x+3,求f(x)的最小值:A. -1B. 0C. 1D. 3答案:A12. 已知直线l的方程为y=2x+1,求直线l与x轴的交点坐标:A. (-1/2,0)B. (1/2,0)C. (-1,0)D. (1,0)答案:B二、填空题(本题共4小题,每小题5分,共20分)13. 已知函数f(x)=x^3-3x^2+2x,求f''(x):答案:f''(x)=6x-614. 已知圆的方程为(x-2)^2+(y-3)^2=9,求该圆的圆心坐标:答案:(2,3)15. 已知函数f(x)=|x-1|+|x-3|的最小值为2,求该函数的值域:答案:[2,+∞)16. 已知等差数列{an}的前n项和为Sn,且S3=9,S6=21,求该数列的公差d:答案:2三、解答题(本题共4小题,共70分)17.(本题满分10分)已知函数f(x)=x^3-3x^2+2x,求f(x)的单调区间。
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数f(x) = 2x - 3在定义域上的最大值为:A. 1B. 2C. 3D. 42. 已知等差数列{an}的前三项分别为1, 3, 5,则该数列的公差为:A. 1B. 2C. 3D. 43. 下列命题中正确的是:A. 平方根和算术平方根都是非负数B. 所有有理数的平方根都是实数C. 所有实数的平方根都是实数D. 所有无理数的平方根都是实数4. 下列函数中,y = ax² + bx + c(a ≠ 0)的图像开口向上的是:A. a = 1, b = 2, c = 3B. a = -1, b = -2, c = 3C. a = 1, b = -2, c = -3D. a = -1, b = 2, c = -35. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点位于:A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 在三角形ABC中,若角A、B、C的对边分别为a、b、c,则下列等式中正确的是:A. a² + b² = c²B. b² + c² = a²C. a² + c² = b²D. a² + b² + c² = 07. 下列不等式中,恒成立的是:A. x² > 0B. x³ > 0C. x² > 1D. x³ > 18. 若函数y = f(x)的图像与直线y = kx(k ≠ 0)有唯一交点,则函数f(x)的图像可能是:A. 单调递增函数B. 单调递减函数C. 周期函数D. 反比例函数9. 下列事件中,属于随机事件的是:A. 抛掷一枚硬币,正面朝上B. 抛掷一枚骰子,得到6C. 抛掷一枚骰子,得到偶数D. 抛掷一枚骰子,得到奇数10. 下列命题中,正确的是:A. 对于任意实数x,x² ≥ 0B. 对于任意实数x,x³ ≥ 0C. 对于任意实数x,x² = 0D. 对于任意实数x,x³ = 011. 若等比数列{an}的前三项分别为a₁, a₂, a₃,且a₁ + a₂ + a₃ = 6,a₁a₂a₃ = 8,则该数列的公比为:A. 2B. 4C. 8D. 1612. 下列函数中,y = f(x)的图像为一条直线的是:A. y = x²B. y = 2x + 1C. y = 3x - 2D. y = x³二、填空题(本大题共8小题,每小题5分,共40分。
大学文科数学练习题一、单项选择题(每题3分,共30分)1. 下列哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^4 \)D. \( f(x) = x^5 \)2. 微积分中,曲线 \( y = x^2 \) 在 \( x = 1 \) 处的切线斜率是多少?A. 0B. 1C. 2D. 43. 以下哪个选项是二项式定理的展开式?A. \( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \)B. \( (a+b)^n = \sum_{k=1}^{n} \binom{n}{k} a^{n-k} b^k \)C. \( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k} \)D. \( (a+b)^n = \sum_{k=1}^{n} \binom{n}{k} a^{k} b^{n-k} \)4. 函数 \( f(x) = \sin(x) \) 的周期是多少?A. \( 2\pi \)B. \( \pi \)C. \( \frac{\pi}{2} \)D. \( \frac{2\pi}{3} \)5. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. 26. 以下哪个是定积分的性质?A. \( \int_{a}^{b} f(x) dx = \int_{b}^{a} f(x) dx \)B. \( \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx \)C. \( \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx +\int_{c}^{b} f(x) dx \)D. 以上都是7. 函数 \( y = \ln(x) \) 的导数是什么?A. \( \frac{1}{x} \)B. \( x \)C. \( x^2 \)D. \( \ln(x^2) \)8. 以下哪个是二阶导数?A. \( \frac{d^2y}{dx^2} \)B. \( \frac{dy}{dx} \)C. \( \frac{d^3y}{dx^3} \)D. \( \frac{d^4y}{dx^4} \)9. 以下哪个是二重积分的表示?A. \( \iint_R f(x, y) dx dy \)B. \( \int_R f(x, y) dx \)C. \( \int_R f(x, y) dy \)D. \( \iint_R f(x, y) dy dx \)10. 以下哪个是无穷级数?A. \( \sum_{n=1}^{\infty} \frac{1}{n^2} \)B. \( \sum_{n=1}^{10} \frac{1}{n^2} \)C. \( \sum_{n=1}^{100} \frac{1}{n^2} \)D. \( \sum_{n=1}^{1000} \frac{1}{n^2} \)二、填空题(每题4分,共20分)1. 函数 \( f(x) = x^2 - 4x + 4 \) 的最小值是 ________。
普通高等学校招生全国统一考试 数学(供文科考生使用)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,其中第II 卷第22题〜第23题为选考题,其它题为必考题.全卷满分150分,考试时间120分钟. 参考公式:样本数据x 1,x 2,…,x n .的方差s 2=])(....)()[(n122221x x x x x x n -++-+- 其中x 为样本平均数柱体体积公式V = Sh 其中S 为底面面积,h 为髙 锥体体积公式V=h 31S 其中S 为底面面积,h 为髙 球的表面积、体积公式S=4πR 2,V=34πR 2其中R 为球的半径 第I 卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A=}065x N {x 2≤-+∈x ,B=}{A C C ⊆,则集合B 中元素的个数为A.3B.4C.27D.282.已知复数z 满足i z12z =-+,则z 的值为 A.25 B.45 C.210 D.253.在△ABC 7==,D 为AC 中点,则AC BD ⋅的值为A.-1B.-2C.lD.24.—个三棱锥的三视图如图所示,已知网格纸上正方形小格的边樣为1,则该几何体的体积为 A.332 B.364 C.32 D.64 5.设命题R x p ∈∃:"使得ax 2+x+1<0”,命题x x 31-a 3f :"q -⋅+=)()(x 为增函数”若q p ∧⌝为真命题,则实数a.的取值范围是A.(-∞,1]B.[41,1) C.(41,1] D.[41,1] 6.我国著名的古典数学名著《九章算术》一书的“盈不足”一章中有一两鼠穿垣问题,其内容如下:今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半.问:何日相逢?题意是:有垛厚五尺(旧制长度单位,1尺=10寸)的墙壁,大小两只老鼠同时从墙的两侧,沿一直线相对打洞.大鼠第一天打进1尺,以后每天的进度为前一天的2倍;小鼠第—天也打进1尺,以后每天的进度是前一天的一半.则它们何时相遇? 下图为计算该问题的程序框图,若输人的P 为5,则输出的t 值为A.152 B.1 54 C.2 176 D.2 1727.某省为全运会选拔跳水运动员,对某运动员进行测试,在运动员跳完一个动作之后由7名裁判打分,统计结果为平均分9.5分,方差为a ,为体现公平,裁判委员会决定去掉一个最高分10分,一个最低分9分,则 A.平均分变大,方差变大 B.平均分变小,方差变小 C.平均分变小,方差变大 D.平均分不变,方差变小8.已知函数f(x)=sin(6x πω+)(0>ω),对任意的x ∈R 有分f (x 1)≤f(x)≤f(x 2)^恒成立,且丨x 1-x 2丨的最小值为2π,则下列结论正确的是A.f(6x π-)是奇函数B.f(6x π+)是偶函数C.点(06,π)是f(x)的一个对称中心 D.x=-6π是f(x)的一条对称轴 9.若a >b >0,0<c <1,则A.log a c <log b cB.log c a <log c bC.a c <b cD.c a >c b10.平面α过正方体ABCD-A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为A. 32B. 22C. 33D.1311.若函数f (x )=x-13sin 2x+a sin x 在(-∞,+∞)单调递增,则a 的取值范围是 A.[-1,1] B.[-1,13] C.[-13,13] D.[-1,-13]12.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是A.17πB.18πC.20πD.28π第II 卷(非选择题 共90分)第II 卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须做答,第22题-23题为选考题,考生根据要求作答二、填空题:(本大提共4题 每题5分 共20分,把答案填在题中横线上) 13.设向量a =(x ,x+1),b =(1,2),且a ⊥b ,则x = .14.已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ-π4)= .15.设直线y =x+2a 与圆C :x 2+y 2-2ay-2=0相交于A ,B 两点,若|AB|=2 3,则圆C 的面积为 .16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B 需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.三、解答题:(本大题共6小题 共70分 解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=1,a n b n+1+b n+1=nb n.3(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(本小题,满分12分)如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6.顶点P在平面ABC内的正投影为点D,D 在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(本小题,满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(本小题,满分12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连接ON并延长交C于点H.(Ⅰ)求|OH||ON|;(Ⅱ)除H以外,直线MH与C是否有其他公共点?说明理由.21.(本小题,满分12分)已知函数f(x)=(x-2)e x+a(x-1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在22、23二题中任选一题作答,如多做则按所做第一题计分,作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑22.(本小题,满分10分)如图,△OAB是等腰三角形,∠AOB=120°,以O为圆心,12OA为半径作圆.(Ⅰ)证明:直线AB与☉O相切;(Ⅱ)点C,D在☉O上,且A,B,C,D四点共圆,证明:AB∥C D.23.(本小题,满分12分)在直角坐标系xOy中,曲线C1的参数方程为x=a cos ty=1+a sin t(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.(Ⅰ)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a.24.已知函数f(x)=|x+1|-|2x-3|.(Ⅰ)画出y=f(x)的图象; (Ⅱ)求不等式|f(x)|>1的解集.数学(供文科考生使用)参考答案1.B2.C3.C4.A5.D6.D7.D8.B9.B 10.A 11.C 12.A13.-23【解析】本题考查平面向量垂直的性质,意在考查考生的化归与转化能力,运算求解能力.因为a=(x,x+1),b=(1,2),a⊥b,所以x+2(x+1)=0,解得x=-23.【备注】本题从平面向量的数量积为0入手,转化为含x的方程,解题十分顺畅,体现了向量的思维应用价值.14.-43【解析】本题考查同角三角函数的基本关系式,诱导公式等知识.通性通法因为sin(θ+π4)=35,所以cos(θ-π4)=sin[π2+(θ-π4)]=sin(θ+π4)=35,因为θ为第四象限角,所以-π2+2kπ<θ<2kπ,k∈Z,所以-3π4+2kπ<θ-π4<2kπ-π4,k∈Z,所以sin(θ-π4)=-1−(35)2=-45,所以tan(θ-π4)=sin(θ−π4)cos(θ−π4)=-43.光速解法因为θ是第四象限角,且sin(θ+π4)=35,所以θ+π4为第一象限角,所以cos(θ+π4)=45,所以tan(θ-π4)=sin(θ−π4)cos(θ−π4)=−cos[π2+(θ−π4)]sin[π2+(θ−π4)]=-cos(θ+π4)sin(θ+π4)=-43.【备注】本题易错点是利用同角三角函数的基本关系式求余弦值时,未注意到角的取值范围,或注意到角的取值范围,但因为角在某象限的三角函数值的符号判断出错,导致求解的结果出错.15.4π【解析】本题考查直线与圆的位置关系,圆的面积等知识,意在考查考生的数形结合能力、运算求解能力.圆C的方程可化为x2+(y-a)2=a2+2,可得圆心的坐标为C(0,a),半径r= a2+2,所以圆心到直线x-y+2a=0的距离为2=2,所以(2)2+(3)2=( a2+2)2,解得a2=2,所以圆C的半径为2,所以圆C的面积为4π.【备注】破解此类题的关键是过好三关:一是借形关,即会思图与用图;二是方程关,利用直角三角形(弦长的一半、弦心距、半径所构成的直角三角形)寻找关于参数的方程;三是公式应用关,即利用圆的面积公式求解. 16.216 000【解析】本题考查线性规划的实际应用,意在考查考生的实际应用能力,以及运算求解能力.设某高科技企业生产产品A 和产品B 分别为x 件,y 件,生产产品A 、产品B 的利润之和为z 元.依题意得 1.5x +0.5y ≤150x +0.3y ≤905x +3y ≤600x ∈N y ∈N ,即3x +y ≤30010x +3y ≤9005x +3y ≤600x ∈N y ∈N ,目标函数为z =2 100x+900y .其可行域为四边形OMNC 及其内部区域中的整点,其中点O (0,0),M (0,200),N (60,100),C (90,0),当直线z =2 100x+900y 经过点N (60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000,即生产产品A 、产品B 的利润之和的最大值为216 000元.【备注】破解此类题的关键:一是构建模型,读懂应用背景,构建简单线性规划模型.二是判断二元一次不等式表示平面区域的方法——“选点法”:直线定边界,分清虚实;选点定区域,常选原点.三是求线性目标函数的最值的一般步骤:一画二移三求.本题突破口是准确作出可行域,准确理解z 的几何意义,就可以借助图形得到答案.17.(Ⅰ)由已知,a 1b 2+b 2=b 1,b 1=1,b 2=13,得a 1=2. 所以数列{a n }是首项为2,公差为3的等差数列, 通项公式为a n =3n-1.(Ⅱ)由(Ⅰ)和a n b n+1+b n+1=nb n ,得b n+1=b n3,因此数列{b n }是首项为1,公比为13的等比数列.记{b n }的前n 项和为S n ,则S n =1−(13)n1−1=32-12×3n −1.【解析】本题考查等差数列,数列的递推关系式,等差数列的通项与等比数列的前n 项和公式等知识,意在考查考生的化归与转化能力,运算求解能力. (Ⅰ)把n =1代入式子a n b n+1+b n+1=nb n ,即可求出数列{a n }的首项,再利用等差数列的通项公式,即可求其通项公式;(Ⅱ)将(Ⅰ)中得到的{a n}的通项公式代入式子a n b n+1+b n+1=nb n,即可判断{b n}为等比数列,再利用等比数列的前n项和公式,得出结果.【备注】若干个能唯一确定一个数列的量称为该数列的“基本量”.首项与公差是等差数列的“基本量”,首项与公比是等比数列的“基本量”.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法.18.(Ⅰ)因为P在平面ABC内的正投影为D,所以AB⊥PD.因为D在平面PAB内的正投影为E,所以AB⊥DE.所以AB⊥平面PED,故AB⊥PG.又由已知,可得PA=PB,所以G是AB的中点.(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC内的正投影.理由如下:由已知可得PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=23CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=23PG,DE=13PC.由已知,正三棱锥的侧面是直角三角形且PA=6, 可得DE=2,PE=22.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=13×12×2×2×2=43.【解析】本题考查空间几何体中线、面的位置关系等知识,意在考查考生的空间想象能力、化归与转化能力、运算求解能力.(Ⅰ)欲证G是AB的中点,只需证明PG⊥AB.(Ⅱ)利用三棱锥的体积公式求解四面体PDEF的体积.【备注】无19.(Ⅰ)当x≤19时,y=3 800;当x>19时,y=3 800+500(x-19)=500x-5 700.所以y与x的函数解析式为y=3 800,x≤19500x−5 700,x>19(x∈N).(Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1100×(3 800×70+4 300×20+4 800×10)=4 000.若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1100×(4 000×90+4 500×10)=4 050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.【解析】本题考查柱状图、频数、平均数等知识,意在考查考生的数据处理能力、统计意识和应用意识,化归与转化能力,运算求解能力.(Ⅰ)读懂题意与柱状图,即可用分段函数的形式表示y与x的函数解析式;(Ⅱ)读懂不小于即是大于或等于,并且把频率问题转化为频数问题,即可求出n的最小值;(Ⅲ)分别求出n=19与n=20时,这100台机器在购买易损零件上所需费用的平均数,比较平均数大小,即可得出结论.【备注】本题易错点有两处:一是混淆了频率分布直方图与柱状图,导致全题皆错;二是审题不清或不懂题意,导致解题无从入手.避免此类错误,需认真审题,读懂题意,并认真观察频率分布直方图与柱状图的区别,纵轴表示的意义.20.(Ⅰ)由已知得M(0,t),P(t 22p,t).又N为M关于点P的对称点,故N(t 2p ,t),ON的方程为y=ptx,代入y2=2px,整理得px2-2t2x=0,解得x1=0,x2=2t 2p .因此H(2t2p,2t).所以N为OH的中点,即|OH||ON|=2.(Ⅱ)直线MH与C除H以外没有其他公共点.理由如下:直线MH的方程为y-t=p2t x,即x=2tp(y-t).代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH与C只有一个公共点,所以除H以外直线MH与C没有其他公共点.【解析】本题考查抛物线的图象和性质,直线和抛物线的位置关系等知识,意在考查考生的运算求解能力.(Ⅰ)利用对称性与线段的中点坐标公式,即可得|OH||ON|的值;(Ⅱ)判断直线MH与C 的位置关系,即可得出结论.【备注】破解此类解析几何题的关键:一是“对称”引路,利用线段中点的坐标公式即可快速求出两线段的比值;二是“转化”桥梁,即会利用分析法,把所需判断直线与抛物线是否有其他公共点的问题转化为判断直线MH与C的位置关系问题.21.(Ⅰ)f'(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).(i)设a≥0,则当x∈(-∞,1)时,f'(x)<0;当x∈(1,+∞)时,f'(x)>0,所以f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.(ii)设a<0,由f'(x)=0得x=1或x=ln(-2a).①若a=-e2,则f'(x)=(x-1)(e x-e),所以f(x)在(-∞,+∞)单调递增.②若a>-e2,则ln(-2a)<1,故当x∈(-∞,ln(-2a))∪(1+∞)时,f'(x)>0;当x∈(ln(-2a),1)时,f'(x)<0,所以f(x)在(-∞,ln(-2a)),(1,+∞)单调递增,在(ln(-2a),1)单调递减.③若a<-e2,则ln(-2a)>1,故当x∈(-∞,1)∪(ln(-2a),+∞)时,f'(x)>0;当x∈(1,ln(-2a))时,f'(x)<0,所以f(x)在(-∞,1),(ln(-2a),+∞)单调递增,在(1,ln(-2a))单调递减. (Ⅱ)(i)设a>0,则由(Ⅰ)知,f(x)在(-∞,1)单调递减,在(1,+∞)单调递增.又f(1)=-e,f(2)=a,取b满足b<0且b<ln a2,则f(b)>a2(b-2)+a(b-1)2=a(b2-32b)>0,所以f(x)有两个零点.(ii)设a=0,则f(x)=(x-2)e x,所以f(x)只有一个零点.,则由(Ⅰ)知,f(x)在(1,+∞)单调递增,又当x≤1时,f(x)<0,故f(x) (iii)设a<0,若a≥-e2,则由(Ⅰ)知,f(x)在(1,ln(-2a))单调递减,在(ln(-2a),+∞)单调不存在两个零点;若a<-e2递增,又当x≤1时,f(x)<0,故f(x)不存在两个零点.综上,a的取值范围为(0,+∞).【解析】本题考查函数的单调性,函数的零点,导数的应用等知识,意在考查考生的数形结合能力、化归与转化能力以及运算求解能力.(Ⅰ)先求f'(x),对参数a进行分类讨论,由f'(x)>0(f'(x)<0),得函数f(x)的单调递增(减)区间.(Ⅱ)对参数a进行分类讨论,利用导数法判断函数的单调性,从而判断是否有两个零点,最后确定a的取值范围.【备注】判断可导函数的单调性的关键:首先,确定函数的定义域;其次,求导数f'(x);最后,对参数进行分类讨论,解不等式f'(x)>0,得函数f(x)的单调递增区间,解不等式f'(x)<0,得函数f(x)的单调递减区间.注意:如果一个函数具有相同单调性的区间不止一个,这些单调区间不能用“∪”连接,而只能用逗号或“和”字隔开.有关函数的零点问题常用导数法,判断函数的图象特征,寻找关于参数的不等式(组),从而求得结果.22.(Ⅰ)设E是AB的中点,连接OE.因为OA=OB,∠AOB=120°,所以OE⊥AB,∠AOE=60°.AO,即O到直线AB的距离等于☉O半径,所以直线AB与☉O相切.在Rt△AOE中,OE=12(Ⅱ)连接OD,因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设O'是A,B,C,D四点所在圆的圆心,作直线OO'.由已知得O在线段AB的垂直平分线上,又O'在线段AB的垂直平分线上,所以OO'⊥AB.同理可证,OO'⊥CD.所以AB∥CD.【解析】本题考查等腰三角形的性质,直线与圆相切,四点共圆的性质,线线平行的证明等知识,意在考查考生的数形结合能力,化归与转化能力.(Ⅰ)欲证直线AB与☉O相切,只需取AB的中点,证明点O与该中点的连线与AB垂直,根据△OAB是等腰三角形,∠AOB=120°易得结论;(Ⅱ)利用四点共圆的性质,即可证明AB∥CD.【备注】破解此类题的关键:一是需熟记直线与圆相关的性质与定理,解题才有路;二是注意数形结合思想与转化思想在解题中的适时应用.23.(Ⅰ)消去参数t得到C1的普通方程x2+(y-1)2=a2.C1是以(0,1)为圆心,a为半径的圆.将x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0.(Ⅱ)曲线C1,C2的公共点的极坐标满足方程组ρ2−2ρsinθ+1−a2=0,ρ=4cosθ.若ρ≠0,由方程组得16cos2θ-8sin θcos θ+1-a2=0,由已知tan θ=2,可得16cos2θ-8sin θcos θ=0,从而1-a2=0,解得a=-1(舍去),a=1.a=1时,极点也为C1,C2的公共点,在C3上.所以a=1.【解析】本题考查圆的参数方程,圆的极坐标方程与直线的极坐标方程,直线与圆的位置关系等知识.(Ⅰ)把曲线C1的参数方程化为普通方程,即可判断出其表示的曲线,再利用极坐标公式化为极坐标方程;(Ⅱ)由已知两圆的公共点都在直线θ=α0上,可得关于参数a的方程组,解方程组,求a的值.【备注】求解此类问题的关键:首先,会转化,把圆的参数方程转化为普通方程,在转化过程中,一定要注意等价性,关注参数的取值范围;还需掌握极坐标与直角坐标的互化.其次,懂技巧,利用两圆的公共点都在直线上,寻找参数的方程.最后,会解方程.24.(Ⅰ)f(x)=x−4,x≤−1,3x−2,−1<x≤32,−x+4,x>32,y=f(x)的图象如图所示.(Ⅱ)由f(x)的表达式及图象,当f(x)=1时,可得x=1或x=3;或x=5,当f(x)=-1时,可得x=13或x>5}.故f(x)>1的解集为{x|1<x<3}; f(x)<-1的解集为{x|x<13或1<x<3或x>5}.所以|f(x)|>1的解集为{x|x<13【解析】本题考查含有绝对值的函数的图象,解含有绝对值的不等式等知识.(Ⅰ)利用零点分区间法,先化简函数y=f(x),再画出y=f(x)的图象;(Ⅱ)由y=f(x)的图象,可得不等式|f(x)|>1的解集.【备注】本题易错点有两处:一是用零点分区间法时,化简函数y=f(x)出错,导致所画的图象出错;二是不会利用图象的对称性来判断y=|f(x)|的图象,绕了一大弯,重新求解不等式.为避免出错,只需化简认真,图象用活,便可轻松破解。
2021年普通高等学校招生全国统一考试〔新课标1卷〕文一、选择题:每题5分,共60分1、集合A{xx3n2,nN},B{6,8,10,12,14},那么集合AI B中的元素个数为〔A〕5〔B〕4〔C〕3〔D〕2uuur uuur2、点A(0,1),B(3,2),向量AC(4,3),那么向量BC〔A〕(7,4)〔B〕(7,4)〔C〕(1,4)〔D〕(1,4)3、复数z满足(z1)i 1i,那么z〔〕〔A〕2i〔B〕2i〔C〕2i〔D〕2i4、如果3个正整数可作为一个直角三角形三条边的边长,那么称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,那么这3个数构成一组勾股数的概率为〔〕〔A〕311〔D〕1〔B〕〔C〕20 105105、椭圆E的中心为坐标原点,离心率为1,E的右焦点与抛物线C:y28x的焦点重合,2A,B是C的准线与E的两个交点,那么AB〔A〕3〔B〕6〔C〕9〔D〕126、?九章算术?是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问〞积及为米几何?〞其意思为:“在屋内墙角处堆放米〔如图,米堆为一个圆锥的四分之一〕,米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?〞1斛米的体积约为立方尺,圆周率约为3,估算出堆放的米约有〔〕〔A〕14斛〔B〕22斛〔C〕36斛〔D〕66斛7、{a n}是公差为1的等差数列,S n为{a n}的前n项和,假设S84S4,那么a10〔〕1719〔C〕10〔D〕12〔A〕〔B〕228、函数f(x)cos(x)的局部图像如下图,那么f(x)的单调递减区间为〔〕〔A〕(k 13Z ,k),k 44〔B〕(2k 1,2k3),k Z〔C〕(k1,k3),k Z〔D〕(2k1,2k3),kZ 4444449、执行右面的程序框图,如果输入的t n〔〕,那么输出的〔A〕5〔B〕6〔C〕7〔D〕82x12,x110、函数f(x),log2(x1),x1且f(a)3,那么f(6a)〔A〕7〔B〕5〔C〕3〔D〕1 444411、圆柱被一个平面截去一局部后与半球〔半径为r〕组成一个几何体,该几何体的三视图中的正视图和俯视图如下图,假设该几何体的外表积为16 20,那么r( )A〕1B〕2C〕4D〕812、设函数y f(x)的图像与y2xa的图像关于直线y x对称,且f(2) f(4) 1,那么a( )〔A〕1〔B〕1〔C〕2〔D〕4二、填空题:本大题共4小题,每题5分13、数列a n中a12,a n12a n,S n为a n的前n项和,假设S n126,那么n.14.f x ax3x 1的图像在点1,f1的处的切线过点2,7,那么a.x y2015.假设x,y满足约束条件x2y102x y20,那么z=3x+y的最大值为.16.F是双曲线C:x2y21的右焦点,P是C左支上一点,A0,66,当APF周8长最小时,该三角形的面积为.三、解答题17.〔本小题总分值12分〕a,b,c分别是ABC内角A,B,C的对边,sin2B2sinAsinC.〔I〕假设a b,求cosB;〔II〕假设B90o,且a2,求ABC的面积.18.〔本小题总分值12分〕如图四边形ABCD为菱形,G为AC与BD交点,BE平面ABCD,〔I〕证明:平面AEC平面BED;〔II〕假设ABC 120o,AEEC,三棱锥E ACD的体积为6,求该三棱锥的侧面积.319.〔本小题总分值12分〕某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x〔单位:千元〕对年销售量y〔单位:t〕和年利润z〔单位:千元〕的影响,对近8年的宣传费x i和年销售量y i i 1,2,L,8数据作了初步处理,得到下面的散点图及一些统计量的值.〔I〕根据散点图判断,y a bx与y c d x,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型〔给出判断即可,不必说明理由〕;〔II〕根据〔I〕的判断结果及表中数据,建立y关于x的回归方程;〔III〕这种产品的年利润z与x,y的关系为z y x,根据〔II〕的结果答复以下问题:(i〕当年宣传费x=49时,年销售量及年利润的预报值时多少?ii〕当年宣传费x为何值时,年利润的预报值最大?20.〔本小题总分值12分〕过点A1,022且斜率为k的直线l与圆C:x2y31 uuuuruuur交于M,N两点.〔I〕求k的取值范围;〔II〕假设OM ON 12,其中O为坐标原点,求MN.21.〔本小题总分值12分〕设函数fx e2x alnx.〔I〕讨论fx的导函数fx的零点的个数;〔II〕证明:当a0时f2 x2aaln.a请考生在22、23、24题中任选一题作答,如果多做,那么按所做的第一题计分,做答时请写清题号〔本小题总分值10分〕选修4-1:几何证明选讲如图AB是e O直径,AC是e O切线,BC交e O与点E.〔I〕假设D为AC中点,证明:DE是e O切线;〔II〕假设OA3CE,求ACB的大小.23.〔本小题总分值10分〕选修4-4:坐标系与参数方程xOy中,直线C1:x2,圆C2:x 22在直角坐标系1y21,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.〔I〕求C1,C2的极坐标方程.〔II〕假设直线C3的极坐标方程为π,C3的交点为M,N求C2MN的面积.R,设C2424.〔本小题总分值10分〕选修4-5:不等式选讲函数f x x12x a,a0.〔I〕当a1时求不等式f x1的解集;〔II〕假设f x的图像与x轴围成的三角形面积大于6,求a的取值范围.一、DACCBBB〔8〕D〔9〕C〔10〕A 〔11〕B 〔12〕C二、 填空〔13〕6 〔14〕1〔15〕4〔16〕126三、17、解:〔I 〕由及正弦定理可得b 2=2ac.2又a=b ,可得cosB=ac 2 b 2 = 1⋯⋯6分2ac 4〔II 〕由〔I 〕知b 2=2ac.因B=90o ,由勾股定理得a 2 c 2=b 2.故a 2c 2=2ac ,的c=a=18、解:〔I 〕因四形因BE ⊥平面ABCD,所以2.所以△ABC 的面 1. ⋯⋯12分ABCD 菱形,所以 AC ⊥BD.AC ⊥BE,故AC ⊥平面BED.又AC 平面AEC,所以平面 AEC ⊥平面BED. ⋯⋯5分II 〕AB=x ,在菱形ABCD 中,又∠ABC=120o ,可得AG=GC=3x ,GB=GD=x.因AE ⊥EC,所以在Rt △AEC 中,可的EG=3x .2 22由BE ⊥平面ABCD,知△EBG 直角三角形,可得BE=2x .2由得,三棱E-ACD 的体V EACD= 1×1 AC ·GD ·BE=6x 3 63 2243故x =2⋯⋯9分从而可得AE=EC=ED=6 .所以△EAC 的面 3,△EAD 的面与△ECD 的面均5.故三棱E-ACD 的面3+2 5.⋯⋯12分19、解:〔I 〕由散点可以判断, y=c+dx 适宜作年售量y 关于年宣 x 的回方程式型.〔II 〕令wx ,先建立y 关于w 的性回方程式.由于8)(w iw)(y i y)))i1y,d=8268,cdw56368i1 (w i w)所以y 关于w 的性回方程)68w ,因此y 关于x 的回方程)y100.668 x〔Ⅲ〕〔i 〕由〔II 〕知,当x =49,年售量)68,y 的y年利z 的) ⋯⋯9分49〔ii 〕根据〔II 〕的果知,年利 z 的)x .z=0.2(100.6+68x)-x=-x所以当)x,即x,z 取得最大.2故年宣千元,年利的最大.⋯⋯12分20、解:〔I 〕由,可知直l 的方程ykx 2k 3 11.因l 与C 交于两点,所以k 2 1.1解得4 74 7 .3k3所以k 的取范(47,47).⋯⋯5分3 3〔II 〕Mx 1,y 1,N(x 2,y 2).将ykx 1代入方程(x2)2 (y 3)2 1,整理得(1 k 2)x24(1 k)x 7 0. 所以x 1 x 24(1 k 2),x 1x 27 2.1 k 1 kOMONc 1x 2 y 1y 21k 2x 1x 2kx 1x 214k1 k 8. 1k2由可得4k1k8=12,解得k=1,所以l 的方程是y=x+1.1 k2故心C 在l 上,所以MN2.⋯⋯12分21、解:〔I 〕fx 的定域0,,fx2e2xa(x0).x当a ≤0,f x0,fx没有零点;当a0,因e2x增,a减,所以fx在0,增,又fa 0,x当b 足0<b <a且b <1,f(b)0,故当a <0fx 存在唯一零点.⋯⋯6分44〔II 〕由〔I 〕,可f x 在0,的唯一零点x 0,当x 0,x 0,fx <0;当x x0,,fx>0.故f x在0,减,在x0,增,所以x x0,f x取得最小,最小f x0.由于2e2x0a0,所以f x0a2ax0a1n 22a a1n2.x02x0a a故当a0,f x2a a1n 2.⋯⋯12分a23、解:〔I〕因x cos,ysin,所以C1的极坐方程cos2,C2的极坐方程22cos4sin40.⋯⋯5分〔II〕将代入22cos4sin40,得23240,解得4122,22.故122,即MN2由于C2的半径1,所以1⋯⋯10分C2MN的面.224、解:〔I〕当a1,f x1化x12x11>0.当x1,不等式化x4>0,无解;当1<x<1,不等式化3x2>0,解得2<x<1;x13当1≤x<2.,不等式化-x+2>0,解得所以f x1的解集2.⋯⋯5分︱<<x x23x<112a,x〔II〕由可得,fx3x12a,1xa,x1<a. 2a,x所以函数 f x的像与x成的三角形的三个丁点分2a1,B 22A,02a1,0,Ca,a1,△ABC的面a1.33由得2a12>6,故a>2. 3所以a的取范2,.⋯⋯10分。
2024年高考文科数学全国甲卷+答案详解(试题部分)一、单选题1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =( ) A .{}1,2,3,4B .{}1,2,3C .{}3,4D .{}1,2,92.设z =,则z z ⋅=( ) A .-iB .1C .-1D .23.若实数,x y 满足约束条件43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,则5z x y =−的最小值为( )A .5B .12C .2−D .72−4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A .2−B .73C .1D .295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .236.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( ) A .4B .3C .2D7.曲线()631f x x x =+−在()0,1−处的切线与坐标轴围成的面积为( )A .16BC .12D. 8.函数()()2e e sin x xf x x x −=−+−在区间[ 2.8,2.8]−的大致图像为( )A .B .C .D .9.已知cos cos sin ααα=−πtan 4α⎛⎫+= ⎪⎝⎭( )A.1 B.1 CD.110.设αβ、是两个平面,m n 、是两条直线,且m αβ=.下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A .32BCD二、填空题12.函数()sin f x x x =在[]0,π上的最大值是 . 13.已知1a >,8115log log 42a a −=−,则=a . 14.曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,则a 的取值范围为 . 三、解答题15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=−. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =−−+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x −<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴. 19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于AB 、两点,若2AB =,求a 的值. 20.实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.2024年高考文科数学全国甲卷+答案详解(答案详解)一、单选题1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =( ) A .{}1,2,3,4 B .{}1,2,3C .{}3,4D .{}1,2,9【答案】A【解析】根据题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=, 则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=. 故选A2.设z =,则z z ⋅=( ) A .-i B .1C .-1D .2【答案】D【解析】根据题意得,z =,故22i 2zz =−=. 故选D3.若实数,x y 满足约束条件43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,则5z x y =−的最小值为( )A .5B .12C .2−D .72−【答案】D【解析】实数,x y 满足43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,作出可行域如图:由5z x y =−可得1155y x z =−,即z 的几何意义为1155y x z =−的截距的15−, 则该直线截距取最大值时,z 有最小值,此时直线1155y x z =−过点A , 联立43302690x y x y −−=⎧⎨+−=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭,则min 375122z =−⨯=−. 故选D.4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A .2− B .73C .1D .29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【解析】方法1:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选D方法2:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=. 故选D方法3:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选D5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解. 【解析】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选B6.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( )A.4 B .3 C .2 D 【答案】C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【解析】根据题意,()10,4F −、()20,4F 、()6,4P −,则1228F F c ==,110PF =,26PF ,则1221064a PF PF =−=−=,则28224c e a ===. 故选C.7.曲线()631f x x x =+−在()0,1−处的切线与坐标轴围成的面积为( )A .16B C .12D . 【答案】A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =−−=−,故切线的横截距为13,纵截距为1−,故切线与坐标轴围成的面积为1111236⨯⨯=故选A.8.函数()()2e e sin x xf x x x −=−+−在区间[ 2.8,2.8]−的大致图像为( )A .B .C .D .【答案】B【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【解析】()()()()()22e e sin e e sin x x x xf x x x x x f x −−−=−+−−=−+−=,又函数定义域为[]2.8,2.8−,故该函数为偶函数,AC 错误, 又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=−+−>−+−=−−>−> ⎪ ⎪⎝⎭⎝⎭, D 错误.故选B.9.已知cos cos sin ααα=−πtan 4α⎛⎫+= ⎪⎝⎭( )A .1B .1CD .1【答案】B 【分析】先将cos cos sin αα−α弦化切求得tan α,再根据两角和的正切公式即可求解.【解析】因为cos cos sin ααα=−11tan =−α,tan 1⇒α=,所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪−α⎝⎭, 故选B.10.设αβ、是两个平面,m n 、是两条直线,且m αβ=.下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α, 当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确; ②,若m n ⊥,则n 与,αβ不一定垂直,②错误;③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ=,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误; ①③正确, 故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A .32BC.2D【答案】C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可. 【解析】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==. 根据余弦定理可得:22294b a c ac ac =+−=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=, 因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +. 故选C. 二、填空题12.函数()sin f x x x =在[]0,π上的最大值是 . 【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【解析】()πsin 2sin 3f x x x x ⎛⎫==− ⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤−∈−⎢⎥⎣⎦,当ππ32x −=时,即5π6x =时,()max 2f x =.答案为:2 13.已知1a >,8115log log 42a a −=−,则=a . 【答案】64【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解. 【解析】由题28211315log log log 4log 22a a a a −=−=−,整理得()2225log 60log a a −−=, 2log 1a ⇒=−或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==答案为:64.14.曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,则a 的取值范围为 .【答案】()2,1−【分析】将函数转化为方程,令()2331x x x a −=−−+,分离参数a ,构造新函数()3251,g x x x x =+−+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【解析】令()2331x x x a −=−−+,即3251a x x x =+−+,令()()32510,g x x x x x =+−+>则()()()2325351g x x x x x =+−=+−',令()()00g x x '=>得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==−,因为曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,所以等价于y a =与()g x 有两个交点,所以()2,1a ∈−.答案为:()2,1− 三、解答题15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=−. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.【答案】(1)153n n a −⎛⎫= ⎪⎝⎭(2)353232n⎛⎫− ⎪⎝⎭ 【分析】(1)利用退位法可求公比,再求出首项后可求通项; (2)利用等比数列的求和公式可求n S .【解析】(1)因为1233n n S a +=−,故1233n n S a −=−,所以()12332n n n a a a n +=−≥即153n n a a +=故等比数列的公比为53q =,故1211523333533a a a a =−=⨯−=−,故11a =,故153n n a −⎛⎫= ⎪⎝⎭.(2)根据等比数列求和公式得5113353523213n nnS ⎡⎤⎛⎫⨯−⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==− ⎪⎝⎭−. 16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离. 【答案】(1)见详解;【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作FO AD ⊥,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V −−=即可求解. 【解析】(1)因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ; (2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM 中点,所以OB =ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,等体积法可得M ABF F ABM V V −−=,2112333F ABM ABM V S FO −=⋅=⋅=△,2222222cos2FA AB FBFAB FAB FA AB+−+−∠===∠=⋅11sin 222FAB S FA AB FAB =⋅⋅∠==△,设点M 到FAB 的距离为d ,则1133M FAB F ABM FAB V V S d d −−==⋅⋅==△解得d =M 到ABF17.已知函数()()1ln 1f x a x x =−−+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x −<恒成立.【答案】(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性; (2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x −−++>即可.【解析】(1)()f x 定义域为(0,)+∞,11()ax f x a x x'−=−= 当0a ≤时,1()0ax f x x −'=<,故()f x 在(0,)+∞上单调递减;当0a >时,1,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减. 综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;0a >时,()f x 在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增,在10,a ⎛⎫ ⎪⎝⎭上单调递减. (2)2a ≤,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x −−−−=−−+−≥−++,令1()e 21ln (1)x g x x x x −=−++>,下证()0g x >即可.11()e 2x g x x −'=−+,再令()()h x g x '=,则121()e x h x x−'=−,显然()h x '在(1,)+∞上递增,则0()(1)e 10h x h ''>=−=,即()()g x h x ='在(1,)+∞上递增,故0()(1)e 210g x g ''>=−+=,即()g x 在(1,)+∞上单调递增, 故0()(1)e 21ln10g x g >=−++=,问题得证18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴. (1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y += (2)见解析【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程. (2)设:(4)AB y k x =−,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y −,结合韦达定理化简前者可得10Q y y −=,故可证AQ y ⊥轴.【解析】(1)设(),0F c ,由题设有1c =且232b a =,故2132a a −=,故2a =,故b = 所以椭圆方程为22143x y +=. (2)直线AB 的斜率必定存在,设:(4)AB y k x =−,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=−⎩可得()2222343264120k x k x k +−+−=, 故()()422Δ102443464120k k k =−+−>,故1122k −<<,又22121222326412,3434k k x x x x k k −+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=− ⎪⎝⎭−,故22223325252Q y y y x x −−==−−, 所以()1222112225332525Q y x y y y y y x x ⨯−+−=+=−− ()()()12224253425k x x k x x −⨯−+−=−()222212122264123225825834342525k k x x x x k k k k x x −⨯−⨯+−++++==−− 2222212824160243234025k k k k k x −−+++==−,故1Q y y =,即AQ y ⊥轴.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值. 【答案】(1)221y x =+ (2)34a =【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩C 的直角方程. (2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值; 法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【解析】(1)由cos 1ρρθ=+,将cos x ρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+. (2)对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+. 法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R . 将其代入221y x =+中得()221)210s a s a +−+−=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=−−=−,且()()22Δ818116160a a a =−−−=−>,故1a <,12AB s s ∴=−2=,解得34a =. 法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +−+−=,()22Δ(22)41880a a a =−−−=−+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=−=−,则AB =2=, 解得34a = 20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.【答案】(1)见解析(2)见解析【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【解析】(1)因为()()2222222022a b a ab b a b b a −+=−−++=≥, 当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;(2)222222222222()a b b a a b b a a b a b −+−≥−+−=+−+ 22222()()()()(1)326a b a b a b a b a b a b =+−+≥+−+=++−≥⨯=。
大学文科数学试题(附答案)一、 判断题(对画“√”,错画“×”, 共6题,每题3分,共18分)1.任意修改收敛数列{}n a 的前100项,数列{}n a 仍收敛,且极限不变. ( )2.若0lim[()()]0x x f x g x →−=,则必有00lim ()lim ()x x x x f x g x →→=. ( )3.函数()f x 在某个区间上的极大值一定大于极小值. ( )4.当0→x 时,无穷小量34x x −+是关于x 的4阶无穷小量. ( )5.概率的公理化定义虽然不能用来直接确定事件的概率,但它给了概率所必须满足 的最基本规律,为建立严格的概率理论提供了坚实的基础. ( )6.微分方程xyx y dx dy tan +=的通解是Cx x y =sin . ( ) 二、填空题(共6题,每题3分,共18分)1.已知(sin )cos 12x f x =+,则(cos )2xf =___________.2.直线L 与x 轴平行且与曲线y x e x=−相切,则切点坐标为_____________.3.已知()f x 的一个原函数是2x e −,则'()=xf x dx ⎰________________________.4.利用定积分的几何意义,计算0=⎰_________(0)a >,这个结果表示的是________________________的面积.5.函数1xy x =的极大值点是 ,极大值为 .6.三台机器在一天内正常工作的概率分别为:第一台0.9,第二台0.7,第三台0.6,且它们发生故障是相互独立的,则三台机器同时发生故障的概率________. 三、计算题(要求有计算过程,共6题,每题4分,共24分)1.102030(1)(35)lim (611)n n n n →∞−+−;2.301lim sin 3x x x →+;3.152lim ()1xx x x −→+∞++; 4. 设()y y x =是方程cos()0x y e xy +−=所确定的隐函数,求0x dy =;5.; 6.dxxee⎰1|ln|.四、应用题(共3题,第1题7分,第2题8分,第3题10分,共25分)1.把长度为l的线段分成两段,分别围成正方形和圆形,问如何分该线段可以使得正方形和圆的面积之和最小(即求此时正方形的周长和圆的周长)?2.求曲线3(03)y x x=≤≤分别绕x轴和y轴旋转所得到的旋转体的体积.3.甲、乙、丙三个分厂生产同一批次规格相同的灯管,产量之比为1:2:1.已知甲、乙、丙三个分厂产品的合格率依次是0.93,0.92,0.98.现任取一灯管,求(1) 取到不合格灯管的概率;(2) 若取到不合格灯管,求它是由乙分厂生产的概率.五、问答题(共3题,每题5分,共15分)1.叙述函数)(xfy=在],[ba上的拉格朗日中值定理的作用与几何意义,并画出几何示意图.2.简述古典概型的特点,并举一个古典概型在教育系统的应用实例.3.微分方程研究的内容是什么?举几个微分方程在现实应用中的成功实例.大学文科数学试题 答案一、判断题(对画“√”,错画“×”, 共6题,每题3分,共18分) 1.√ 2.× 3.× 4.× 5.√ 6.√ 二、填空题(共6题,每题3分,共18分)1.22sin 2x; 2. ()01,−; 3.22(21)x x e C −−++; 4. 24a π,半径为a 的四分之一的圆的面积; 5. 1,ee e ; 6. 0.012.三、计算题(要求有计算过程, 共6题,每题4分,共24分)1. 203036;2. 16; 3. 5e −; 4. dx −;5. ln 1|C −+;6. 22e−.四、应用题(共3题,第1题7分,第2题8分,第3题10分,共25分) 1. 正方形的周长为44lπ+,圆的周长为4l ππ+. 2.(1)3326021877x V y dx x dx πππ===⎰⎰; (2)22727237295y V x dy y dy πππ===⎰⎰. 3.(1)令B 为任取一件为不合格灯管,i A 分别为任取一件为甲、乙、丙分厂生产的灯管1,2,3i =, 则由全概率公式得)(B P =31()(|)i i i P A p B A ==∑0.250.070.50.080.250.020.0625⨯+⨯+⨯=.(2)利用贝叶斯公式 31()()(|)(|)()()(|)i i i i i i i P A B P A P B A P A B P B P A P B A ===∑, 1,2,3i =. 计算得2(|)P A B =0.50.08=64%0.0625⨯.五、问答题(共3题,每题5分,共15分)1.拉格朗日中值定理是联系函数局部性质与整体性质的纽带.其几何意义是:联结两点的一条光滑曲线上至少存在一条切线与这两点的连线平行(示意图从略).2. 古典概型的特点是:有限性(每次试验有有限个样本点);等可能性(每次试验,每个样本点出现的可能性相同).例如,主考教师从装有n道题的袋中随机抽一题进行测试,就属于古典概型.3. 微分方程研究含有未知函数的导数或微分的方程,然后从中求得这个未知函数.19世纪,天文学家利用微分方程发现海王星,20世纪,科学家利用微分方程推断出阿尔卑斯山肌肉丰满的冰人的遇难时间,如今微分方程更是广泛用于预测人口数量,进行天气预报等方面,这些都是微分方程的成功应用实例.。
东莞理工学院(本科)清考试卷参考答案2010 --2011 学年第 二 学期《 大学文科数学 》清考试卷参考答案开课单位: 数学教研室 考试形式:闭、开卷,允许带 入场题序题序 一 二 总 分 得分得分 评卷人评卷人一、选择填空题 (共 70 分 每空2 分)1、设函数()24ln(1)f x x x =-+-,则函数()f x 的定义域为(的定义域为( C ); A) (1,2) , B) [1,2] , C) (1,2] , D) [1,2). 2、设()()2,cos f x x x x j ==,则()()2lim x f x Bpj ®=éùëû; A) 2cos4p , B) 0 , C) 12, D) 1. 3、设()()2,sin f x x x x j ==,(){}();f x C j ¢=éùëûA) sin 2x , B) 2sin x , C) 22cos x x , D) 2cos x . 4、极限2311lim()34x x Bx x ®-=+-; A) 12, B) 13, C) 0 , D) 1. 5.极限3331lim ()21x x x B x x ®¥-+=+-. A) 1, B) 32, C) 0, D) 23. 6.下列命题中正确的是( A ); A) 1lim sin 1x x x ®¥=, B) 01lim sin 1x x x ®= , C) 1lim sin 0x x x ®¥=, D) 0sin lim 0x xx®=. 7、若函数()11xf x x æö=+ç÷èø,则()()lim x f x B ®+¥=; A) 1, B) e , C) 1e , D) 0. 8、若函数()11xf x x æö=+ç÷èø,则()()0lim x f x A +®=; A) 1 , B) e , C) 1e, D) 0. 9、设()3f x x ax b =++,且()13f =,()0lim2x f x ®=,则()D; A) 2,0a b ==, B) 2,1a b =-=, C) 2,1a b ==-, D) 0,2a b ==. 10、设1()1xf x x-=+,则(0)()f A¢=; A) 2-, B) 1-, C) 0, D) 2. 11、曲线21y x =-+单调上升区间为( A ); A) (,0]-¥, B) (,1]-¥, C) [0,)+¥, D) [1,)+¥. 12、曲线2y x =在点(1,1)的切线方程为的切线方程为 ( C ); A) 1(1)y x -=--, B) 11(1)2y x -=- , C) 12(1)y x -=-, D) 11y x -=- . 13、若()551f x x x =+-,则(5)()fx =( D ); A) 0, B) 12, C) 24, D) 120. 14、当()x B=时,函数3()32f x xx =-+取得极大值,该极大值等于4;A) 1, B) 1-, C) 0, D) 3. 15.当1x =时,函数3()31f x x x =-+取得极小值,该极小值等于( B ). A) 0, B) 1-, C) 2-, D) 3-. 16、设函数()2sin ,0,3,0.x x f x x x ³ì=í<î 则()()0f x dx Cp=ò; A) 0, B) 1, C) 2 , D) 3. 17、设函数()2sin ,0,3,0.x x f x x x ³ì=í<î 则()()01f x dx C-=ò; A) 1-, B) 0, C) 1, D) 2-. 18、设函数()sin ,0,2,0.x x f x x x ³ì=í<î 则()()1f x dx Dp-=ò; A) 0, B) 1, C) 2, D) 3. 19、积分()32011dx Bx =+ò; A) 2p , B) 3p, C) 4p , D) 6p . 20.积分()()02cos x x dx Ap-=ò; A) 2p , B) 21p - , C) 22p -, D) 2p . 21、积分()0cos x xdx Cp=ò; A) 0, B) 1-, C) 2-, D) 3-. 22、积分()121;xe dx C+=òA) 2(1)e e -, B) 3e , C) 21(1)2e e -, D) 312e . 23、若11xke dx =ò,则数();k B=A) 1, B) 11e -, C) 1e , D) 11e +. 24.曲线2,y x y x==围成的平面图形的面积的( C ); A) 12, B) 13, C) 16, D) 112. 25、设矩阵101011001A-æöç÷=ç÷ç÷-èø,110011000B-æöç÷=-ç÷ç÷èø,则AB Aæöç÷=ç÷ç÷èø; A) 110011000-æöç÷-ç÷ç÷èø, B) 112011002--æöç÷-ç÷ç÷èø, C) 100110010æöç÷-ç÷ç÷-èø, D) 100110212æöç÷ç÷ç÷--èø. 26. 设矩阵101011001A-æöç÷=ç÷ç÷-èø,110011000B-æöç÷=-ç÷ç÷èø,则T TB A Cæöç÷=ç÷ç÷èø; A) 110011000-æöç÷-ç÷èø, B) 112011002--æöç÷-ç÷èø, C) 100110010æöç÷-ç÷ç÷-èø, D) 100110212æöç÷ç÷ç÷--èø. 27、设矩阵11201100Al-æöç÷=-ç÷ç÷èø,当()Dl=时,2A=;A) 2-, B) 1-, C) 1, D) 2. 28.设矩阵121021021Aæöç÷=ç÷ç÷èø,则()();r A=A) 0, B) 1, C) 2, D) 3. 29.设A 为三阶方阵,且3A =,则2();A D -=A) 6-, B) 6, C) 24, D) 24-. 30.设矩阵11001002A l -æöç÷=-ç÷ç÷èø,123x x x x æöç÷=ç÷ç÷èø,001b æöç÷=ç÷ç÷èø. 则当()Cl ¹时,线性方程组Ax b =有唯一解; A) 2-, B) 1-, C) 0, D) 1. 31、设向量12,x x 是线性方程组Ax b =的两个解,则()D 是线性方程组Ax b =的解; A) 12x x +, B) 12x x -, C) 122x x +, D) 122x x -. 32、设向量12,x x 是线性方程组Ax b =的两个解,则()A是线性方程组0Ax =的解; A) 12,x x - B) 12,x x + C) 122,x x + D) 122.x x -33、设矩阵110011001A l æöç÷=-ç÷ç÷-èø,当()Dl ¹时,矩阵A 可逆;可逆;A) 2,- B) 1,- C) 0, D) 1.34、设矩阵1237M æö=ç÷èø,1.M A -æö=ç÷èøA) 72,31-æöç÷-èø B) 73,21-æöç÷-èøC) 73,21æöç÷èø D) 12.37-æöç÷-èø35.设矩阵100020003M æöç÷=ç÷ç÷èø,则()1.M B -= A) 300020,001æöç÷ç÷ç÷èø B) 10001/20,001/3æöç÷ç÷ç÷èøC) 100020,003-æöç÷-ç÷-èø D) 10001/20.001/3-æöç÷-ç÷-èø二、填空题 (共 30 分 每空3 分)1.设函数()1arctan 2f x x=+,则函数()f x 的定义域为()\{2}x R Î-; 2.2. 若函数ln 55xx xy x e ==,则()5(1ln )xy x x ¢=+; 3.3. 若函数()1x f x e+=,则()()()1n x fx e+=; 4. 极限201cos 1lim ()2x x x ®-=; 5. 极限sin lim (1)x x x x ®+¥+=; 6.不定积分21ln 1(1ln )2x dx x C x +æö=++ç÷èøò; 7. 定积分()1122xdx -=ò; 8.设矩阵1101A æö=ç÷èø,则1001100;01A æö=ç÷èø9.行列式()12323112321=-; 10.齐次线性方程组12323320,0.x x x x x +-=ìïíï-=î的通解为12311;1x x c x -æöæöç÷ç÷=ç÷ç÷ç÷ç÷èøèø南京晓庄学院大学文科数学课程考试试卷2010 2010 –– 2011 2011 学年度第学年度第学年度第 一 学期学期 院(系)院(系) 级 共共 页 教研室主任审核签名:教研室主任审核签名: 院(系)领导审核签名:院(系)领导审核签名:院(系)领导审核签名: 命题教师:命题教师: 数信院公共教研室数信院公共教研室 校对人:校对人:校对人:班级 姓名 学号 得分序 号 一 二 三 四 总分得 分 阅卷人 复核人一、选择题(每小题3分,共15分) 1.下列函数为初等函数的是下列函数为初等函数的是( B ) ( B ) (A).sin 2x - (B). 2cos y x =-(C).ïîïíì=¹--=101112x x x x y (D).îíì³<+=001x x x x y2.当x →0时,与sin x 等价的无穷小是等价的无穷小是( A ) ( A )(A) 2x x + (B) x x sin (C) 3tan x (D) x 23设)0(f ¢存在,则0(0)()lim x f f x x®--=( D ) (A) )0(f ¢- (B) )0(2f ¢- (C) )0(2f ¢ (D) )0(f ¢ 4. 物体在某时刻的瞬时速度,等于物体运动在该时刻的(物体在某时刻的瞬时速度,等于物体运动在该时刻的( D D D ))(A)(A)函数值函数值函数值 (B) (B) (B)极限极限极限 (C) (C) (C) 积分积分积分 (D) (D) (D)导数导数导数 5.若)(x f 的导函数是x sin ,则)(x f 有一个原函数为(有一个原函数为( C C C )) (A) x cos 1+(B) sin x x + (C) sin x x - (D)x cos 1-二、填空题(每小题3分,共15分) 1. 设函数cos , 0() ,0x x f x x a x <ì=í-³î在0x =点连续,则=a ____1-_____.2. 设2)(x x f =, , 则则[()]f f x ¢= ____22x _ ____ .3.sin lim x x x®+¥= 04. . 曲线曲线1y x=在点(在点(1,1)1,1)1,1)处的法线方程为处的法线方程为处的法线方程为 y x = 5. (1cos )x dx -ò= sin x x c -+ .三、计算题(每小题5分,共40分) 1. 求函数21()ln(21)9f x x x=-+-的定义域的定义域..解:290x ->且210x ->,所以函数21()ln(21)9f x x x =-+-的定义域:132x << 2. 设ln(2)y x =-,求其反函数,求其反函数解:由2y e x =-得 2y x e =+所以函数ln(2)y x =-的反函数是:xe y +=2,(,)x Î-¥+¥3.求极限20(1)lim sin x x x e x®-解:20(1)lim sin x x x e x ®-=001lim lim sin x x x x e x x®®-=01lim 11x x e ®×=4.求极限30tan limx x xx ®-解:解:30tan limx x xx®-=22sec 1lim3x x x®-=222221cos sin 1lim lim 3cos 33x x xxx x x®®-==5. 已知2ln(1)ln y x x =+-,求dy 解:因为y ¢=2211x x x -+所以dy =221d (1)x x x x -+ 6求2cos x y e x =的微分y ¢解:y ¢=222cos sin x x e x e x -=2(2cos sin )xe x x -7. 求不定积分21xdx x -ò解:21x dx x -ò=211dxx x éù-=êúëûò211d d x x x x -òò=1ln x C x--+ 8. 求定积分21ln e x xdx ò解:21ln ex xdx ò=3311ln 39e x x xéù-êúëû =31(21)9e + 四、综合应用题(每小题10分,共30分)1. 证明方程012=-×xx 至少有一个小于1的正实数根的正实数根. .解:令()21xf x x =×-, ()010f =-< ,()110f =>, ()f x 闭区间[]0,1上连续,上连续,由根的存在性定理,有()0,1x Î,使得()0f x = , ,即即012=-×xx 至少有一个小于1的正实数根正实数根2. 欲做一个体积为72立方厘米的带盖箱子,其底面长方形的两边成一比二的关系,怎样做法所用的材料最省?解:设底面长方形的两边的边长为x 厘米,x 2厘米,则高为2362.72xx x =厘米厘米表面积x x x x x x x x S 21642).36.2(2).36.(2).2.(222+=++= 求导求导021682,=-=x x S所以在区间),0(+¥上只有唯一的驻点3=x又因为在实际问题中存在最值,所以驻点3=x 就是所求的最值点。