GPS理论与应用第一章 绪论
- 格式:ppt
- 大小:10.45 MB
- 文档页数:39
教案2013~2014学年第一学期课程名称卫星导航定位学院、部测绘工程学院系(实验室) 海洋技术授课班级海洋111主讲教师周立职称教授使用教材GPS测量原理及应用淮海工学院测绘工程学院二○一三年八月前言GPS定位与导航课程教案GPS定位与导航课程教案1、GPS定位技术的优点引出本次课教学目的与意义2、GPS静态应用3、GPS动态应用1多媒体讲解2问题教学导引3示例说明4交互讨论提问?讨论?建立地球空间框架监测地球动力系统大地测量定位精密工程测量与变形监测工程测量定位放样精密授时服务气象信息测量导航定位航空摄影测量地理信息数据采集姿态、时间与速度测量精细农业资源管理科学考察旅游探险讨论?示例示例4、GPS 应用产值(示例讲述)5、GPS 在国外应用概述作业、讨论题、思考题:1、试比较传统的土地资源调查方法与利用RTK GPS 进行土地资源调查的优缺点。
2、试比较利用GPS 测量定位技术与常规方法进行地质调查、地形测量、地籍测量的区别,并说明各自的优缺点。
(作业)课后小结:本课次主要讲述了GPS 在测绘、地理信息系统等各领域的广泛应用,示例讲授交互讨论效果较好,有条件可安排放像、参观、实现:实时 4A 服务 随时(anytime) 随地(anywhere)GPS定位与导航课程教案1、图解阐述GPS 系统构成(空间部分、地面控制部分及用户设备部分)2、GPS 星座构成(配置、分布、周期、寿命等)3、GPS 卫星结构[关键]:高稳定原子频标4、GPS 卫星功能、分类、性能5、几种卫星定位系统的比较(列表说明)6、由图解说明地面控制系统构成及作用1多媒体讲解 2图解说明 3 问题教学导引 4 对比讨论5示例分析7、对比分析载波L1/L2、C/A 码、P 码含义、特性及功能(列表)8、由图解说明GPS 接收机原理及结构(硬件与软件)空间部分控制部分用户部分 GGGG监控主注夏威夷科罗卡瓦加兰夏威夷 科罗拉多主控站卡瓦加兰迭哥加西亚阿松森监控站注入站提问GPS 定位方便,那组成如何?信号通道变频 器电源频率综合基准频率前置放大 器频率变换 器信号解扩解调D(t)伪码 测量载波相位 测量显示器C/A码发生器P 码发生器控制信号GPS 天线存储器CPU数据输出GPS定位与导航课程教案1、 协议天球坐标的相关概念(图示讲述)如:天轴、天极、天球、赤道、黄道、春分点、秋分点、岁差和章动、极移、回归年等2、地球坐标系统1多媒体讲解2举例图解说明 3问题教学导引 4启发式讲解 5交互式讨论作业、讨论题、思考题:1、简述地心空间直角坐标系、参心空间直角坐标系、站心空间直角坐标系概念及异同点?(作业)2、解释大地坐标系、平面直角坐标系概念 课后小结:学生已经学习了大地测量学基础,有了大地坐标系统的初步知识,虽然本节内容有一定难度,特别是WGS-84坐标到地方坐标的转换过程作为重点,通过多次重复讲解并举例,要求同学们理解掌握。
GPS测量原理及应用各章知识点总结桂林理工大学测绘08-1 JL(纯手打)第一章绪论1、GPS系统是以卫星为基础的无线电导航定位系统,具有全能性、全球性、全天候、连续性和实时性的导航、定位和定时的功能。
能为各个用户提供三维坐标和时间。
2、GPS卫星位置采用WGS-84大地坐标系3、GPS经历了方案论证、系统论证、生产试验三个阶段。
整个系统包括卫星星座、地面监控部分、用户接收机部分。
4、GPS基本参数为:卫星颗数为21+3,卫星轨道面个数为6,卫星高度为20200km,轨道倾角为55度,卫星运行周期为11小时58分,在地球表面任何时刻,在高度较为15度以上,平均可同时观测到6颗有效卫星,最多可以达到9颗。
5、应用双定位系统的优越性:能同时接收到GPS和GLONASS卫星信号的接收机,简称为双系统卫星接收机。
(1)增加接收卫星数。
这样有利于在山区和城市有障碍物遮挡的地区作业(2)提高效率。
观测卫星数增加,所以求解整周模糊度的时间缩短,从而减少野外作业时间,提高了生产效率。
(3)提高定位的可靠性和精度。
因观测的卫星数增加,用于定位计算的卫星数增加,卫星几何分布也更好,所以提高了定位的可靠性和精度。
6、在GPS信号导航的定位时,为了解算测站的三维坐标,必须观测4颗(以上)卫星,称为定位星座。
7、PRN----------卫星所采用的伪随机噪声码8、在导航定位测量中,一般采用PRN编号。
9、用于捕获信号和粗略定位的为随机码叫做C/A码(又叫S码),用于精密定位的精密测距码叫P码10、GPS系统中各组成部分的作用:卫星星座1、向广大用户发送导航定位信息。
2、接收注入站发送到卫星的导航电文和其他相关信息,并通过GPS信号电路,适时的发送给广大用户。
3、接收地面主控站通过注入站发送到卫星的调度命令,适时的改正运行偏差和启用备用时钟等。
地面监控系统地面监控系统包括1个主控站,3个注入站和5个监测站。
1、监测和控制卫星上的设备是否正常工作,以及卫星是否一直沿着预定轨道运行。
GPS测量原理及应用各章知识点总结桂林理工大学测绘08-1 JL(纯手打)第一章绪论1、GPS系统是以卫星为基础的无线电导航定位系统,具有全能性、全球性、全天候、连续性和实时性的导航、定位和定时的功能。
能为各个用户提供三维坐标和时间。
2、GPS卫星位置采用WGS-84大地坐标系3、GPS经历了方案论证、系统论证、生产试验三个阶段。
整个系统包括卫星星座、地面监控部分、用户接收机部分。
4、GPS基本参数为:卫星颗数为21+3,卫星轨道面个数为6,卫星高度为20200km,轨道倾角为55度,卫星运行周期为11小时58分,在地球表面任何时刻,在高度较为15度以上,平均可同时观测到6颗有效卫星,最多可以达到9颗。
5、应用双定位系统的优越性:能同时接收到GPS和GLONASS卫星信号的接收机,简称为双系统卫星接收机。
(1)增加接收卫星数。
这样有利于在山区和城市有障碍物遮挡的地区作业(2)提高效率。
观测卫星数增加,所以求解整周模糊度的时间缩短,从而减少野外作业时间,提高了生产效率。
(3)提高定位的可靠性和精度。
因观测的卫星数增加,用于定位计算的卫星数增加,卫星几何分布也更好,所以提高了定位的可靠性和精度。
6、在GPS信号导航的定位时,为了解算测站的三维坐标,必须观测4颗(以上)卫星,称为定位星座。
7、PRN----------卫星所采用的伪随机噪声码8、在导航定位测量中,一般采用PRN编号。
9、用于捕获信号和粗略定位的为随机码叫做C/A码(又叫S码),用于精密定位的精密测距码叫P 码10、GPS系统中各组成部分的作用:卫星星座1、向广大用户发送导航定位信息。
2、接收注入站发送到卫星的导航电文和其他相关信息,并通过GPS信号电路,适时的发送给广大用户。
3、接收地面主控站通过注入站发送到卫星的调度命令,适时的改正运行偏差和启用备用时钟等。
地面监控系统地面监控系统包括1个主控站,3个注入站和5个监测站。
1、监测和控制卫星上的设备是否正常工作,以及卫星是否一直沿着预定轨道运行。
GPS测量原理及其应用第一章绪论一:全球导航卫星系统GNSS美国的GPS系统,俄罗斯的GLONASS系统,欧盟的伽利略(GALILEO)系统和中国的北斗二号卫星导航定位系统。
二:GPS系统组成合各部分的作用包括三大部分:空间部分——GPS卫星星座;地面控制部分——地面监控系统;用户设备部分——GPS信号接收机。
GPS工作卫星及其星座的作用:1)提供星历和时间信息2)发射伪距和载表信息,提供其他辅助信息地面监控系统的作用:1)监测卫星是否正常工作2)跟踪计算卫星的轨道参数并发送给卫星3)保持各颗卫星时间同步GPS接收机的作用:接受GPS卫星发射的无线电信号,获得必要的信息并经数据处理完成定位工作。
三:GPS系统的特点定位精度高;观测时间段;测站间无需通视;可提供三维坐标;操作简便;全天候作业;功能多、应用广第二章坐标系统和时间系统各时间系统的应用1)恒星时:以春分点为参考点,由春分点的周日视运动所定义的时间系统为恒星时系统。
恒星时在天文学中有着广泛的应用。
2)平太阳时MT:以平太阳为参考点,由平太阳的周日视运动所定义的时间系统为平太阳时系统,平太阳时与日常生活中使用的时间系统是一致的。
3)世界时UT:以平子夜为零时起算的格林尼治平太阳时定义为世界时UT,用于天球坐标系与地球坐标系之间的转换计算。
4)原子时:这一时间尺度被广泛用于动力学作为时间单位。
5)协调世界时:既保持时间尺度的均匀性,又能近似地反映地球自转的变化。
第三章卫星运动基础及GPS卫星星历一:人造卫星所受的作用力有地球对卫星的引力,太阳、月亮对卫星的引力,大气阻力,太阳光压,地球潮汐力等。
二体问题是忽略所有的摄动力,仅考虑地球质心引力研究卫星相对于地球的运动,在天体力学中,称之为二体运动。
二:GPS卫星星历分为预报星历和后处理星历。
三:GPS卫星广播星历预报参数(p40)第四章GPS卫星的导航电文和卫星信号一:GPS卫星的导航电文(简称卫星电文)是用户用来定位和导航的数据基础。
《GPS定位原理及应用》授课教案第一章绪论1。
1 GPS卫星定位技术的发展1。
1.1 早期的卫星定位技术1、无线电导航系统1)罗兰——C:工作在100KHZ,由三个地面导航台组成,导航工作区域2000KM,一般精度200-300M.2)Omega(奥米茄):工作在十几千赫。
由八个地面导航台组成,可覆盖全球。
精度几英里。
3)多卜勒系统:利用多卜勒频移原理,通过测量其频移得到运动物参数(地速和偏流角),推算出飞行器位置,属自备式航位推算系统。
误差随航程增加而累加。
缺点:覆盖的工作区域小;电波传播受大气影响;定位精度不高2、早期的卫星定位技术卫星三角网:以人造地球卫星作为空间观测目标,由地面观测站对其进行摄影测量,测定测站至卫星的方向,来确定地面点的位置的三角网。
卫星测距网:用激光技术测定测站至卫星的距离作为观测值的网则称为卫星测距网。
20世纪60~70年代,美国国家大地测量局在英国和德国测绘部门协助下,建立了一个共45个点的全球卫星三角网,点位精度5米。
卫星三角网的缺点:易受卫星可见条件和天气条件影响,费时费力,定位精度低。
1。
1。
2 子午卫星导航(多普勒定位)系统及其缺陷多普勒频移:多普勒效应是为纪念Christian Doppler而命名的,他于1842年首先提出了这一理论。
他认为电磁波频率在电磁源移向观察者时变高,而在波源远离观察者时变低.因此可利用频率的变化多少来确定距离的变化量。
多普勒效应的一个常被使用的例子是火车,当火车接近观察者时,其汽鸣声会比平常更刺耳.你可以在火车经过时听出刺耳声的变化。
同样的情况还有:警车的警报声和赛车的发动机声。
子午卫星导航系统(NNSS):将卫星作为空间动态已知点,通过在测站上接受子午卫星发射的无线电信号,利用多普勒定位技术,进行测速、定位的卫星导航系统。
子午卫星导航系统的优点:经济快速、精度均匀、不受天气和时间的限制,且可获得测站的三维地心坐标。
子午卫星导航系统的缺点:由于卫星数量少,故不能实时定位、定位时间长、定位精度也低。
基于GPS的车辆跟踪系统设计与实现第一章:绪论随着社会的发展和科技的进步,人们对物质生活和社会安全的需求越来越高。
车辆监控系统应运而生,成为重要的技术手段,在车辆管理、货物跟踪等方面发挥着重要的作用。
基于GPS(全球定位系统)的车辆跟踪系统具有定位精度高、实时性好、成本低等优点,因此被广泛应用在车辆管理中。
本文将介绍基于GPS的车辆跟踪系统的设计与实现,为车辆管理提供一种可靠、高效、便捷的技术手段。
第二章:综述2.1 GPS技术原理GPS是由美国政府建立的全球定位系统,利用星载高精度原子钟不断发射的微波信号与地面上的用户设备之间进行测距,从而实现定位的一种技术手段。
GPS系统主要由控制段、空间段和用户段构成,其中空间段是由一系列的卫星组成,控制段主要包括监测站和控制中心,用户段则是由接收机、计算机和显示器组成。
2.2 车辆跟踪系统应用现状目前,车辆跟踪系统已广泛应用在物流、公交、出租车、救护等领域。
在物流方面,运用该系统可以实现货物实时跟踪,提高运输效率和安全性;在公交方面,该系统可以提高车辆运营效率和路线规划,并为乘客提供准确信息;在出租车方面,该系统可以提高租车公司的管理水平,避免盗车等安全问题;在救护方面,该系统可以快速、准确的定位救护车并提供前方路况预警等服务。
第三章:系统设计3.1 系统总体设计基于GPS的车辆跟踪系统主要由以下部分组成:车载终端、服务器、客户端、数据库等。
车载终端主要负责车辆位置的获取和传输,服务器主要负责信息的储存和处理,客户端则是用户使用系统的接口。
3.2 系统硬件设计车载终端主要由GPS天线、GPS接收机、无线通信模块、微处理器、电源管理器等部分组成。
其中GPS天线负责接收GPS信号,GPS接收机将信号转化为数字信号并进行解析,无线通信模块负责信息的传输,微处理器负责控制和处理车辆位置等信息,电源管理器则保证系统能够正常工作,保护电池充电和供电安全。
3.3 系统软件设计系统软件主要由车载软件、服务器软件和客户端软件组成。