旋转结构(学生用)
- 格式:doc
- 大小:443.50 KB
- 文档页数:2
小学二年级旋转教案旋转1、让学生通过生活中例子初步感知旋转这中生活中常见的现象。
2、通过学生的操做体会旋转,培养学生动手实践的能力3、培养学生的应用数学的意识。
感知旋转1、观察电风扇、风车等旋转的物体2、请同学们用手比划一下它们是怎么动的。
3、举生活中有没有象这样子的一些运动呢,请呢举例子说明。
象这样的一类的现象我们把它叫做什么什么呢!判断:哪些物体的运动属于旋转。
1、展示两类按照不同方向旋转的物体,让学生进行分类。
2、说说你为什么要这样分。
3、出示钟面,让学生观察,秒针是怎么样旋转的。
4、给旋转按不同的旋转方向起个名字。
小结:象这样一类跟秒针一样从左往右转动的叫作顺时针转动,而跟它相反的转动叫逆时针旋转。
1、完成43页第三题。
2、自己表演一个旋转。
让你手里的东西旋转起来。
3、按照指示按照不同方向转动。
4、动手完成课本42页做做一做。
1、出示紫荆花图,让学生想想它是怎么样被创造出来的!2、用旋转创造出美丽的图案。
人教课标版实验教科书小学数学二年级下册第41-43页的“平移和旋转”。
平移和旋转是新课程新增的一个内容。
图形的平移和旋转,对于学生建立空间观念,掌握变换的数学思想方法有很大的作用。
从儿童空间知觉的认知发展来说,是从静态的前、后、左、右的空间知觉进入感悟平移和旋转这一动态的空间知觉。
物体的平移和旋转在学生的生活中并不陌生,但作为数学概念则是第一次和学生见面。
因此本课教学应从大量感性、直观的生活实例入手,让学生在以往生活经验的基础上感知平移和旋转的运动特征,然后通过观察思考,操作验证的学习方法掌握平移的方法,为今后学习平行线和推导基本平面图形面积的计算公式等几何知识作铺垫。
学生对平移和旋转的现象,在生活中已经有了一些感性的认识,只是不知道这两个专门术语,也不会有意识地体会平移和旋转的特点。
从学生喜闻乐见的生活情景中引导学生感知平移和旋转的特点,这样能激发学生的学习兴趣。
由于本学段的学生正处在直观形象思维阶段,他们观察图形的平移常常会被表面现象所迷惑。
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时教学设计一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第1课时主要介绍了图形的旋转性质和旋转的表示方法。
本节课的内容是学生在学习了图形的平移和翻转的基础上进行的,是进一步研究图形变换的重要内容。
通过本节课的学习,学生能够理解图形旋转的性质,掌握旋转的表示方法,并能够运用旋转性质解决一些实际问题。
二. 学情分析九年级的学生已经掌握了图形的平移和翻转的知识,具备了一定的图形变换的基础。
但是,对于图形的旋转性质和旋转的表示方法可能还比较陌生,需要通过本节课的学习来掌握。
同时,学生对于实际问题中图形的旋转可能还缺乏一定的理解和应用能力,需要通过实例分析和练习来提高。
三. 教学目标1.了解图形旋转的性质,能够用语言和符号表示图形的旋转。
2.能够运用图形旋转的性质解决一些实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.图形旋转的性质的理解和运用。
2.旋转的表示方法的掌握。
五. 教学方法采用问题驱动法和案例教学法进行教学。
通过提出问题,引导学生思考和探索,通过分析实例,使学生理解和掌握图形旋转的性质和表示方法。
六. 教学准备1.多媒体教学设备。
2.图形旋转的实例和练习题。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如旋转门的开关,引出图形的旋转的概念,激发学生的兴趣。
2.呈现(10分钟)通过PPT或者黑板,呈现图形旋转的性质和表示方法,引导学生观察和思考,让学生用自己的语言表达对图形旋转的理解。
3.操练(10分钟)让学生分组合作,通过实际操作,如剪切和拼接纸片,来验证图形旋转的性质,并能够用语言和符号表示图形的旋转。
4.巩固(10分钟)让学生独立完成一些图形旋转的练习题,巩固所学知识,并能够运用旋转性质解决一些实际问题。
5.拓展(5分钟)通过一些拓展问题,如旋转后的图形与原图形的大小和形状是否发生变化,来进一步深化学生对图形旋转性质的理解。
第1课时旋转(1)教学内容教科书P83~84例1、例2及“做一做”,完成教科书P85“练习二十一”中第1~3题。
教学目标1.进一步认识图形的旋转,明确含义,感悟其特征及性质。
会运用数学语言简单描述旋转运动的过程。
2.经历观察实例、操作想象、语言描述等活动,培养学生的推理能力。
积累几何活动经验,发展空间观念。
3.体验数学与生活的联系,学会用数学的眼光观察、思考生活,感受数学的美,体会数学的应用价值。
教学重点通过多种学习活动沟通联系,理解旋转的含义,初步感悟旋转的性质。
教学难点用数学语言描述物体的旋转过程。
教学准备课件,三角尺。
教学过程一、认识旋转要素1.课件出示生活实例,引出研究问题。
师:同学们,你们见过这些现象吗?仔细观察。
师:你们看见了什么?【学情预设】学生可能会说,看见风车在旋转,时钟转动起来等等。
师:看一看这些物体的运动,用我们学过的知识描述一下它们在做怎样的运动。
【学情预设】学生对图形的旋转已经具有了一定的认识,能够比较准确地感知生活中简单的旋转现象,并能对其进行判断。
仅有少数学生能够判断“道闸挡车杆的运动”和“秋千运动”是旋转现象,说明学生对旋转角度不是360°及比较复杂的旋转现象还不能做出正确判断。
师:这些物体的运动,都可以称为旋转运动。
在二年级的时候我们已经初步学习了生活中的旋转现象,能举几个例子吗?学生举例。
师:我也收集了一些生活中的实例,大家一起来看看。
选择一个你喜欢的,说说它是怎样旋转的。
◎教学笔记【教学提示】学生在回答“旋转”时,最好让学生对着具体的物体比画一下是怎样旋转。
课件展示生活中的动态旋转现象。
师:通过刚才的观察,你认为什么样的运动是旋转?学生简单描述后,教师板书课题:旋转(1)。
【设计意图】由于在第一阶段学习时,具体实例多是物体围绕一个点或一个轴做整圆周运动,所以部分学生形成了认识上的误区,认为只有转一圈才是旋转,所以本节课从学生的问题入手,选取学生熟悉的但又有争议的实例作为研究旋转现象的素材,有意识地引导学生探讨:“荡秋千属于平移还是旋转?”学生有明显的争议,以此产生认知冲突,引发探究的欲望。
创意旋转结构教案教案标题:创意旋转结构教案教学目标:1. 学生能够理解和应用旋转结构的概念。
2. 学生能够运用创意思维和解决问题的能力设计和构建旋转结构。
3. 学生能够展示和解释他们的旋转结构设计。
教学重点:1. 旋转结构的概念和特点。
2. 创意思维和解决问题的能力的培养。
3. 设计和构建旋转结构的实践能力。
教学准备:1. 白板、黑板或投影仪。
2. 旋转结构的示例和图片。
3. 学生用于构建旋转结构的材料,如纸张、齿轮、橡皮筋等。
4. 计时器。
教学过程:引入(5分钟):1. 展示一些旋转结构的图片和示例,引起学生的兴趣。
2. 引导学生讨论旋转结构的特点和应用领域。
探究(15分钟):1. 分发材料给学生,让他们自由探索和构建旋转结构。
2. 提供一些设计挑战,如构建一个能够转动的风车或一个能够旋转的太阳系模型。
3. 鼓励学生尝试不同的材料和方法,培养他们的创意思维和解决问题的能力。
讨论(10分钟):1. 学生展示和解释他们设计的旋转结构。
2. 引导学生讨论他们在设计和构建过程中遇到的困难和解决方法。
3. 引导学生思考旋转结构的应用领域和可能的改进方向。
总结(5分钟):1. 总结旋转结构的概念和特点。
2. 强调创意思维和解决问题的重要性。
3. 鼓励学生继续探索和设计旋转结构。
作业(5分钟):1. 要求学生写一篇关于他们设计和构建旋转结构的经验和感想的作文。
2. 鼓励学生在作文中提出改进和扩展旋转结构的想法。
教学延伸:1. 邀请专业工程师或设计师来学校分享他们在旋转结构设计方面的经验和知识。
2. 组织学生参观相关的展览或实地考察,了解更多关于旋转结构的实际应用。
评估:1. 观察学生在探究和讨论环节中的参与程度和表现。
2. 评价学生的作文,了解他们对旋转结构的理解和思考能力。
注意事项:1. 确保学生在构建旋转结构时的安全。
2. 鼓励学生尝试不同的设计和方法,不要限制他们的想象力和创意思维。
【导语】在⽣活中,有各种美丽的图案,其中有很多图案是由简单的图形经过平移或旋转得到的。
®⽆忧考⽹准备了以下内容,希望对你有帮助!篇⼀ 教学⽬标: 1.进⼀步认识图形的旋转,探索图形旋转的特征和性质。
2.通过观察、想象、分析和推理等过程,独⽴探究、增强空间观念。
3.让学⽣体会图形变换在⽣活中的应⽤,利⽤图形变换进⾏图案设计,感受图案带来的美感和数学的应⽤价值。
教学重点: 理解、掌握旋转现象的特征和性质。
教学难点: 理解、掌握旋转现象的特征和性质。
教学过程: ⼀、情景导⼊ 1.教师⽤课件演⽰:(1)钟表的转动;(2)风车的转动。
提问:观察课件的演⽰,你看到了什么? 学⽣在交流汇报时可能会说出 (1)钟表上的指针和风车都在转动; (2)钟表上的指针和风车都是绕着⼀点转动; (3)钟表上的指针沿着顺时针⽅向转动,风车沿着逆时针⽅向转动。
教师:像钟表上指针和风车都绕着⼀个点或⼀个轴转动的这种现象就是旋转。
(板书课题:图形的旋转变换) 2.提问:旋转现象有⼏种情况? ⽣回答后板书。
3.师:在⽇常⽣活中你在哪些地⽅见到过旋转现象?学⽣⾃⼰举例说⼀说。
⼆、新课讲授 出⽰课本第83页例题1的钟⾯。
(1)观察,描述旋转现象。
观察:出⽰动画(指针从12指向1),请同学们仔细观察指针的旋转过程。
提问:谁能⽤⼀句话完整地描述⼀下刚才的这个旋转过程? (教师引导学⽣叙述完整) 观察:出⽰动画(指针从1指向3)。
提问:这次指针⼜是如何旋转的? 观察:出⽰动画(指针从3指向6)。
同桌互相说⼀说指针⼜是如何旋转的? 提问:如果指针从“6”继续绕点O顺时针旋转180°会指向⼏呢? (2)教师:根据我们刚才描述的旋转现象,想想看,要想把⼀个旋转现象描述清楚,应该从哪些⽅⾯去说明? ⼩结:要把⼀个旋转现象描述清楚,不仅要说清楚是什么在旋转,运动起⽌位置,更重要的是要说清楚旋转围绕的点,⽅向以及⾓度。
专题7类比探究—图形旋转中三角形相似题型知识归纳图形的类比探究常以三角形、四边形为背景,与翻折、旋转相结合,考查三角形全等或相似的性质与判定,难度较大.此类题目第一问相对简单,后面的问题需要结合第一问的方法进行类比解答.根据其特征大致可分为:几何变换类比探究问题、旋转综合问题、翻折类问题等。
本专题主要对类比探究—图形旋转中三角形相似题型进行总结,对其解法进行归纳总结,所选题型为近几年期末考试中的常考题型。
知识点睛(1)类比探究属于几何综合题,类比(类比字母,类比辅助线,类比思路)是解决此问题的主要方法,做好类比需要把握变化过程中的不变特征.(2)类比探究问题中常见结构举例①旋转结构②中点结构(类)倍长中线平行夹中点中位线方法总结(1)类比探究是一类共性条件与特殊条件相结合,由特殊情形到一般情形(或由简单情形到复杂情形)逐步深入,解决思想方法一脉相承的综合性题目,常以几何综合题为主.(2)解决类比探究问题的一般方法:①根据题干条件,结合分支条件先解决第一问;②用解决第一问的方法类比解决下一问,整体框架照搬.整体框架照搬包括照搬字母,照搬辅助线,照搬思路。
(3)用铅笔做讲义第1,2题,并将计算、演草保留在讲义上,先看知识点睛,再做题,思路受阻时(某个点做了2~3分钟)重复上述动作,若仍无法解决,课堂重点听.常考题型专练一、解答题1.在△ABC中,AB=AC,∠BAC=α,点P为线段CA延长线上一动点,连接PB,将线段PB绕点P逆时针旋转,旋转角为α,得到线段PD,连接DB,DC.(1)如图1,当α=60°时,①求证:PA=DC;②求∠DCP的度数;(2)如图2,当α=120°时,请直接写出PA和DC的数量关系.(3)当α=120°时,若AB=6,BP=31,请直接写出点D到CP的距离为.2.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,Rt△ABC绕点C按顺时针方向旋转得到Rt△A′B′C,A′C与AB交于点D.(1)如图1,当A′B′∥AC时,过点B作BE⊥A′C,垂足为E,连接AE.①求证:AD=BD;②求S△ACE S△ABE的值;(2)如图2,当A′C⊥AB时,过点D作DM∥A′B′,交B′C于点N,交AC的延长线于点M,求DN NM的值.3.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.4.在△ABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.(1)观察猜想如图1,当α=60°时,的值是,直线BD与直线CP相交所成的较小角的度数是.(2)类比探究如图2,当α=90°时,请写出的值及直线BD与直线CP相交所成的小角的度数,并就图2的情形说明理由.(3)解决问题当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时的值.5.已知,ABC中,AB=AC,∠BAC=2α°,点D为BC边中点,连接AD,点E为线段AD上一动点,把线段CE 绕点E顺时针旋转2α°得到线段EF,连接FG,FD.(1)如图1,当∠BAC=60°时,请直接写出BFAE的值;(2)如图2,当∠BAC=90°时,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请写出正确的结论,并说明理由;(3)如图3,当点E在AD上移动时,请直接写出点E运动到什么位置时DFDC的值最小.最小值是多少?(用含α的三角函数表示)6.在ABC ∆中,CA CB =,(0180)ACB αα∠=<<.点P 是平面内不与A ,C 重合的任意一点,连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,CP 点M 是AB 的中点,点N 是AD 的中点.(1)问题发现,如图1,当60α=时,MN PC 的值是,直线MN 与直线PC 相交所成的较小角的度数是;(2)类比探究,如图2,当120α=时,请写出MN PC的值及直线MN 与直线PC 相交所成的较小角的度数,并就图2的情形说明理由;(3)解决问题,如图3,当90α=时,若点E 是CB 的中点,点P 在直线ME 上,MN =请直接写出点B ,P ,D 在同一条直线上时PD 的长.7.如图(1),在矩形ABCD中,AD=nAB,点M,P分别在边AB,AD上(均不与端点重合),且AP=nAM,以AP和AM为邻边作矩形AMNP,连接AN,CN.【问题发现】(1)如图(2),当n=1时,BM与PD的数量关系为,CN与PD的数量关系为.【类比探究】(2)如图(3),当n=2时,矩形AMNP绕点A顺时针旋转,连接PD,则CN与PD之间的数量关系是否发生变化?若不变,请就图(3)给出证明;若变化,请写出数量关系,并就图(3)说明理由.【拓展延伸】(3)在(2)的条件下,已知AD=4,AP=2,当矩形AMVP旋转至C,N,M三点共线时,请直接写出线段CN的长8.(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D是线段AB上一动点,连接BE.填空:①BEAD的值为;②∠DBE的度数为.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D是线段AB上一动点,连接BE.请判断BEAD的值及∠DBE的度数,并说明理由.(3)拓展延伸如面3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.。
专题一旋转中的几何模型模型一 “手拉手”模型模型特征:两个等边三角形或等腰直角三角形或正方形共顶点.模型说明:如图1,△ABE,△ACF都是等边三角形,可证△AEC≌△ABF.如图2,△ABD,△ACE都是等腰直角三角形,可证△ADC≌△ABE.如图3,四边形ABEF,四边形ACHD都是正方形,可证△ABD≌△AFC.图1 图2 图3等腰图形有旋转,辩清共点旋转边,关注三边旋转角,全等思考边角边。
1【问题提出】(1)如图①,△ABC,△ADE均为等边三角形,点D,E分别在边AB,AC上.将△ADE绕点A沿顺时针方向旋转,连结BD,CE.在图②中证明△ADB≅△AEC.[学以致用](2)在(1)的条件下,当点D,E,C在同一条直线上时,∠EDB的大小为度.[拓展延伸](3)在(1)的条件下,连结CD.若BC=6,AD=4直接写出△DBC的面积S的取值范围.【思路点拨】(1)根据“手拉手”模型,证明△ADB≅△AEC即可;(2)分“当点E在线段CD上”和“当点E在线段CD的延长线上”两种情况,再根据“手拉手”模型中的结论即可求得∠EDB的大小;(3)分别求出△DBC的面积最大值和最小值即可得到结论2已知正方形ABCD和等腰直角三角形BEF,BE=EF,∠BEF=90°,按图1放置,使点F在BC上,取DF的中点G,连接EG,CG.(1)探索EG,CG的数量关系和位置关系并证明;(2)将图(1)中△BEF绕点B顺时针旋转45°,再连接DF,取DF中点G(见图2),(1)中的结论是否仍然成立?证明你的结论;(3)将图(1)中△BEF绕点B顺时针转动任意角度(旋转角在0°到90°之间),再连接DF,取DF中点G(见图3),(1)中的结论是否仍然成立?证明你的结论.【思路点拨】(1)首先证明B、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG= GF=CG,得到∠EGF=2∠EDG,∠CGF=2∠CDG,从而证得∠EGC=90°;(2)首先证明△FEG≌△DHG,然后证明△ECH为等腰直角三角形.可以证得:EG=CG且EG⊥CG;(3)首先证明:△BEC≌△FEH,即可证得:△ECH为等腰直角三角形,从而得到:EG=CG且EG⊥CG.【解题过程】针对训练11已知ΔABC是等边三角形,AD⊥BC于点D,点E是直线AD上的动点,将BE绕点B顺时针方向旋转60°得到BF,连接EF,CF,AF.(1)问题发现:如图1,当点E在线段AD上时,且∠AFC=35°,则∠FAC的度数是;(2)结论证明:如图2,当点E在线段AD的延长线上时,请判断∠AFC和∠FAC的数量关系,并证明你的结论;(3)拓展延伸:若点E在直线AD上运动,若存在一个位置,使得ΔACF是等腰直角三角形,请直接写出此时∠EBC的度数.2已知四边形ABCD是正方形,将线段CD绕点C逆时针旋转α(0°<α<90°),得到线段CE,联结BE、CE、DE. 过点B作BF⊥DE交线段DE的延长线于F.(1)如图,当BE=CE时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,∠BEF的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出∠BEF的度数;(3)联结AF,求证:DE=2AF.模型二 对角互补模型对角互补模型的特征:外观呈现四边形,且对角和为180°。
旋转中的几何模型模型一角含半角模型模型特征:角含半角模型,顾名思义即一个角包含着它的一半大小的角。
它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。
解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。
1综合与实践:如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF= 45°,连接EF,求证:DE+BF=EF.李伟同学是这样解决的:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,再证明△GAF≌△EAF,可得结论.(1)如图2,在四边形ABCD中,AD∥BC AD>BC,∠D=90°,AD=CD=10,且∠BAE= 45°,DE=4,求BE的长;(2)类比(1)证明思想完成下列问题:在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),在旋转过程中,等式BD2+CE2=DE2始终成立,请说明理由.2如图,△ABC中,AB=AC,∠BAC=90°,点D、E在BC边上,∠DAE=45°,将△ACE绕点A顺时针旋转90°得△ABF.(1)求证:BF⊥BC;(2)连接DF,求证:△ADF≌△ADE;(3)若BD=3,CE=4,则DF=,四边形AFDE的面积=.针对训练13如图,在正方形ABCD中,点E、F分别在边BC、CD上,且∠EAF=45°,分别连接EF、BD,BD与AF、AE分别相交于点M、N(1)求证:EF=BE+DF为了证明“EF=BE+DF”,小明延长CB至点G,使BG=DF,连接AG,请画出辅助线并按小明的思路写出证明过程.(2)若BE=2,DF=3,请求出正方形ABCD的边长.(3)请直接写出线段BN、MN、DM三者之间的数量关系4如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题:①如图2,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是AB的中点,且∠DCE=45°,求DE的长;②如图3,在△ABC中,∠BAC=45°,AD⊥BC,BD=4,CD=6,则△ABC的面积为(直接写出结果,不需要写出计算过程).拓展类型 构造旋转模型解题方法指导:若一个图形中含有相等的线段和特殊的角度,通常是以等线段的公共端点为旋转中心进行旋转,使得相等的边重合,得出特殊的图形.1请阅读下列材料:问题:如图1,在等边△ABC内有一点P,且PA=2,PB=3,PC=1,求∠BPC的度数和等边△ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠BPC =∠AP′B=150°,进而求出等边△ABC的边长为7,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA= 5,BP=2,PC=1.求∠BPC的度数和正方形ABCD的边长.2如图1,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD且EB⊥GD;(2)若AB=2,AG=2,求BE的长;针对训练25以△ABC的AB、AC为边作△ABD和△ACE,且AE=AB,AC=AD,CE与BD相交于M,∠EAB=∠CAD=α.(1)如图1,若α=40°,求∠EMB的度数;(2)如图2,若G、H分别是EC、BD的中点,求∠AHG的度数(用含α式子表示);(3)如图3,连接AM,直接写出∠AMC与α的数量关系是.6在△ABC中,∠BAC=90°,AC=AB,点D为直线BC上的一动点,以AD为边作△ADE (顶点A、D、E按逆时针方向排列),且∠DAE=90°,AD=AE,连接CE.(1)如图1,若点D在BC边上(点D与B、C不重合),①求证:△ABD≌△ACE;②求证:DE2=BD2+CD2(2)如图2,若点D在CB的延长线上,若DB=5,BC=7,则△ADE的面积为.(3)如图3,若点D在BC的延长线上,以AD为边作等腰Rt△ADE,∠DAE=90°,连结BE,若BE=10,BC=6,则AE的长为.巩固练习1已知在△ABC中,BC=4。
水龙头的转动;钟摆的运动;荡秋千运动。
a.2b.3c.4d.5②教科书第56页练习1,2,3。
义; (3) 能够准确指出旋转中心、旋转角、旋转的对应点。
让学生从数学的角度认识现实生活,从而内化旋转的定义,为活动2的顺利进行打好基础。
活动2 请大家在硬纸板上,挖一个三角形洞,再挖一个小洞o 作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形洞(△abc),然后围绕o 转动硬纸板,再描出这个挖掉的三角形洞(△a′b′c′),移开硬纸板。
问题:线段oa 与线段oa′间有什么关系? ∠aoa′与∠bob′间有什么关系? δabc 与δa′b′c′形状和大小有什么关系?学生动手实践,教师利用几何画板操画图形的旋转变换后,指出进一步探究的方向.组织学生交流,得出正确结论。
学生独立进行数学实验,按照教师提出的探究方向度量、分析、归纳、抽象概括出图形旋转的特征:1.对应点到旋转中心的距离相等;2.对应点与旋转中心连线的夹角(旋转角)彼此相等;3.旋转变换前后的图形全等。
在活动2中教师应关注学生通过动手实验后发现的“新大陆”,即图中所存在的线段、角的相等关系,并对其中正确的发现予以肯定,鼓励学生课后进行论证.同时还应明确指出问题中涉及的是旋转变换的本质特征,应重点掌握。
通过设置数学实验让学生进行独立的探究学习,促使学生主动参与数学知识的“再发现”,培养学生动手实践能力,观察、分析、比较、抽象、概括的思维能力。
活动32.如教科书图23.1-4,e 是正方形abcd 中cd 边上任意一点,以点a为中心,把δade 顺时针旋转90°,画出旋转后的图形.2.巩固练习:①随堂练习1,2,3.②教科书第58页1,2,3.③动手操作:请设计一个绕一点旋转60°后能与自身重合的图形.在学生归纳出图形旋转的特征后,教师提出相关的数学问题. 学生独立思考、分析、解答问题. 在本次活动中,教师应重点关注: (1) 学生画出图形后,能否准确地运用旋转的基本特征表达出画图的理论依据; (2) 学生画图的不同方法。
旋转结构(旋转的思考层次)
1.如图,E,F分别是正方形ABCD的边AB,BC上的点,且BE=CF,连接CE,DF,将△DCF 绕着正方形的中心O按顺时针方向旋转到△CBE的位置,则旋转角为( )
A.30°
B.45°
C.60°
D.90°
2.如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针
旋转90°得到△DEC,若点F是DE的中点,连接AF,则AF=( )
A. B.5 C. D.
3.如图,在等边三角形ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是( )
A.18
B.19
C.20
D.21
4.如图,将矩形ABCD绕点A旋转至矩形的位置,此时的中点恰好与点D重合,交CD于点E.若AB=3,则△AEC的面积为( )
A.3
B.1.5
C.
D.
第1题图第2题图第3题图第4题图
5.如图,已知,将△AOB绕着点O逆时针旋转,使点A旋转到点
的位置,则图中阴影部分的面积为( )
A. B. C. D.
6.如图,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积为24,则AC的长为( )
A. B. C. D.5
7.如图,在等腰直角三角形ABC中,AC=BC,∠ACB=90°,D,E是AB边上的两点,且AD=6,BE=8,∠DCE=45°,则DE的长为( )
A.14
B.9
C.10
D.11
第5题图第6题图第7题图第8题图
8.如图,在Rt△ABC中,∠BAC=90°,AC=AB=4,D,E分别是AB,AC的中点.
若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≦180°),
记直线BD1与CE1的交点为P.设BC的中点为M,则线段PM的长为( )
A. B. C.2 D.4
9.如图,两块完全相同的含30°角的直角三角板ABC和A′B′C′重合在一起,将三角板A′B′C′绕其顶点C′按逆时针方向旋转角α().下列结论:
①当α=30°时,A′C与的交点恰好为的中点;
②在旋转过程中,存在某一时刻,使得AA′=BB′;
③在旋转过程中,始终存在AA′⊥BB′.其中正确结论的序号是( )
A.①②
B.②③
C.①③
D.①②③。