图形的旋转--知识讲解
- 格式:doc
- 大小:170.00 KB
- 文档页数:7
图形的旋转说课稿【图形的旋转说课稿】一、教学目标1. 知识与技能:学生能够理解图形的旋转概念,掌握图形旋转的基本规律和方法。
学生能够应用图形旋转的知识解决相关问题,提高问题解决能力。
2. 过程与方法:通过引导学生观察实际生活中的图形旋转现象,培养学生的观察和分析能力。
通过合作学习和小组讨论,培养学生的合作与沟通能力。
3. 情感态度与价值观:培养学生对几何学的兴趣,激发学生对数学的探索欲望。
培养学生的创新思维和问题解决能力,培养学生的耐心和细致的态度。
二、教学重点1. 理解图形的旋转概念。
2. 掌握图形旋转的基本规律和方法。
三、教学难点1. 运用图形旋转的知识解决相关问题。
2. 培养学生的创新思维和问题解决能力。
四、教学过程1. 导入(10分钟)教师通过展示一张旋转的图片,引发学生对图形旋转的思考,激发学生的学习兴趣。
2. 概念讲解(15分钟)(1)教师通过示意图和实物演示,向学生介绍图形旋转的概念。
(2)教师引导学生观察旋转图形的特点,如旋转中心、旋转角度等。
(3)教师讲解图形旋转的基本规律和方法,如顺时针旋转、逆时针旋转等。
3. 案例分析(20分钟)(1)教师给出一些旋转图形的案例,让学生通过观察和分析,找出旋转的规律。
(2)教师引导学生运用图形旋转的知识解决相关问题,如旋转后的图形位置、旋转后的图形面积等。
4. 合作探究(20分钟)(1)学生分成小组,进行合作探究活动。
(2)每个小组选择一个图形,通过旋转图形的方法,探究旋转后的特点和规律。
(3)小组成员之间进行交流和讨论,共同解决问题。
5. 总结归纳(10分钟)教师引导学生总结归纳图形旋转的基本规律和方法,帮助学生理清思路。
6. 拓展应用(15分钟)(1)教师给出一些拓展应用题,让学生运用图形旋转的知识解决问题。
(2)学生独立完成拓展应用题,并相互交流和讨论答案。
7. 作业布置(5分钟)教师布置相关的练习题作为课后作业,巩固学生对图形旋转的理解和掌握程度。
⼈教数学五年级下-知识讲解图形旋转的意义及旋转⽅向和旋转⾓度图形旋转的意义及旋转⽅向和旋转⾓度问题导⼊结合钟⾯,填⼀填。
从“12”到“1”,指针绕点O按顺时针⽅向旋转了30°;从“1”到“”,指针绕点O按顺时针⽅向旋转了60°;从“3”到“6”,指针绕点O按顺时针⽅向旋转了°;从“6”到“12”,指针绕点O按顺时针⽅向旋转了°。
过程讲解1.解题思路分析根据从“12”到“1”,指针绕点O按顺时针⽅向旋转了30°可以知道钟⾯上以点O为顶点的⼀⼤格间的夹⾓是30°,所以绕点O按顺时针⽅向旋转了60°要⾛过两⼤格,也就是从“1”到“3”;从“3”到“6”指针⾛过3⼤格,是90°;从“6”到“12”指针⾛过6⼤格,是180°。
2.解决问题从“1”到“3”,指针绕点O按顺时针⽅向旋转了60°;从“3”到“6”,指针绕点O按顺时针⽅向旋转了90°;从“6”到“12”,指针绕点O按顺时针⽅向旋转了180°。
3.理解旋转的意义时钟的指针绕点O从“12”到“1”、到“3”、到“6”、到“9”、到“12”……不停地转动,这种运动现象就是旋转。
4.感知⽣活中的旋转现象上⾯3种运动现象都属于旋转。
5.认识旋转的三要素确认物体旋转时,应抓住旋转的三要素:旋转点(或旋转中⼼)、旋转⽅向和旋转⾓度。
如下图所⽰:6.明确旋转的叙述⽅法在叙述物体旋转时,应说出旋转点(或旋转中⼼)、旋转⽅向和旋转⾓度,即要说出物体是绕哪个点按什么⽅向旋转了多少度。
归纳总结1.旋转的意义:物体绕着某⼀点或轴运动,这种运动现象称为旋转。
2.旋转的三要素:(1)旋转点:物体旋转时所绕的点(或轴),也叫旋转中⼼;(2)旋转⽅向:顺时针⽅向或逆时针⽅向;(3)旋转⾓度:对应线段的夹⾓或对应顶点与旋转点连线的夹⾓的度数。
元调复习专题5—图形的旋转,平移和轴对称★核心知识梳理1、 图形的平移(经过平移所得的图形与原来的图形的对应线段_________,对应角_________,连接各组对应点的线段_________.2、轴对称图形,轴对称(1)轴对称与轴对称图形(2)轴对称的性质:连接任意一对对应点的线段被对称轴______________.3、图形的旋转(1)旋转定义:(2)旋转性质:(3)中心对称定义:(4)中心对称性质:★典型例题讲解一、几何变换与角度问题例1.如图,矩形ABCD ,∠DAC=650,点E 是CD 上一点,BE 交AC 于点F,将△BCE 沿BE 折叠,点C 恰好落在AB 边上的点C’处,求∠AFC’的度数。
练习.1.如图,△COD 是△AOB 绕点O 顺时针旋转40°后得到的图形,若点C 恰好落在AB 上,且∠AOD 的度数为90°,则∠B 的度数是 .二、几何变换中线段计算与证明例2:如图,P 是等边三角形ABC 内一点,PA=2,PB=2√3,PC=4,求△ABC 的边长练习:1.如上图 在Rt △ABC 中,∠C=90°,AC=1,BC=,点O 为Rt △ABC 内一点,连接A0、BO 、CO ,且∠AOC=∠COB=BOA=120°,(1)求∠ABC 和∠A′BC 的度数;(2)求OA+OB+OC 的值.2.如图1,在△ABC 中,AB=AC=13,BC=10,把△ABC 绕点A 旋转到△ADE 的位置,DE 交BC 于点M ,连接AM .(1)求证:∠AMB=∠AME ;(2)如图2,AD 交BC 于H ,在边AE 上取一点G ,使DH=EG,连接GC ,求点A 到直线CG 的距离3.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014= .三、几何变换与点的坐标例3.在平面直角坐标系中,O为原点,点A(-2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF 绕点O顺时针旋转,得正方形OE’D’F’,记旋转角为α.(Ⅰ)如图①,当α=90°,求AE’,BF’ 的长;(Ⅱ)如图②,当α=135°,求证AE’ =BF’,且AE’ ⊥BF’;(Ⅲ)若直线AE’与直线BF’相交于点P,求点P的纵坐标的最大值(直接写出结果即可)练习:1.点A的坐标为(2,0),把点A绕着坐标原点旋转135º到点B,那么点B的坐标是_________ .2.如图,直线443y x=-+与x轴、y轴分别交于A、B两点,把AOB△绕点A顺时针旋转90°后得到AO B''△,则直线A B'的解析式是.3.(2013•武汉)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.四、综合题例4. (2015•连云港)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD 面积之和的最大值,并简要说明理由.练习:(2015北京东城)已知:Rt△A′BC′和Rt△ABC重合,∠A′C′B=∠ACB=90°,∠BA′C′=∠BAC=30°,现将Rt△A′BC′绕点B按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C′C和线段AA′相交于点D,连接BD.(1)当α=60°时,A’B 过点C,如图1所示,判断BD和A′A之间的位置关系,不必证明;BA C (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.【典型练习基础篇】一、选择题:( ) 1.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是A .60ºB .90ºC .72ºD .120º()2.如图,△ABC 绕A 按逆时针方向旋转一定的角度后成为△AB′C′.则下列等式中:①BC=B′C′;②∠BAB′=∠CAC′;③∠ABC=∠AB′C′; ④△ABB′≌△ACC′.其中正确的结论有( )A .1个B .2个C .3个D .4个( )3.在“线段、等腰三角形、等边三角形、矩形、菱形、圆”这几个图形中,既是中心对称图形,又是轴对称图形的个数是 A .6个 B .5个 C .4个 D .3个( )4.在图形旋转中,下列说法错误的是A.图形上各对应点的旋转角度相同;B.对应点到旋转中心距离相等;C.由旋转得到的图形也一定可以由平移得到;D.旋转不改变图形的大小、形状( )5.在平面直角坐标系中,已知点C (0,3),D (1,7),将线段CD 绕点M (3,3)旋转180°后,得到线段AB ,则线段AB 所在直线的函数解析式是A .y=3x+15B .y=3x-15C .y=15x-3D .y=-15x+3( )6. 在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC=5,BD=4.则下列结论错误的是A .AE ∥BC ;B .∠ADE=∠BDC ; C .△BDE 是等边三角形;D . △ADE 的周长是9二、填空题7.如图,将Rt △ABC 绕直角顶点C 点逆时针旋转得到△A'CB',若∠A'CB=160º,则此图形旋转角是 度.第7题 第8题 第9题8.如图,在Rt △ABC 中,∠ACB=90°,∠B=60°,BC=2,△A′B′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为9.如图,P 是正三角形ABC 内的一点,且PA=6,PB=•8,•PC=10,若将△PAC 绕点A 逆时针旋转后,•得到△P •′AB ,•则点P •与点P •′之间的距离为_____,∠APB=_______°.10.若点(a +l ,3)与点(-2,b -2)关于x 轴对称,则点P(-a ,b)关于原点的对称点坐标是 .三、解答题第1题图 第2题图第5题图 第6题图11.(1)点(1,2)绕原点O 逆时针旋转90°得到的点的坐标是 ;(2)直线y=2x 绕原点O 逆时针旋转90°得到的直线解析式是 ;(3)求直线y=2x+3绕原点O 逆时针旋转90°得到的直线解析式.12.(2015•武汉)如图,已知点A (﹣4,2),B (﹣1,﹣2),平行四边形ABCD 的对角线交于坐标原点O .(1)请直接写出点C 、D 的坐标;(2)写出从线段AB 到线段CD 的变换过程;(3)直接写出平行四边形ABCD 的面积.13.如图,正方形ABCD 和平行四边形CPEF ,点P 在射线AB 上,点E 在边AD 上,作FG ⊥AD 于G 。
《10.3.1图形的旋转》数学教案
标题:《10.3.1图形的旋转》数学教案
一、教学目标:
1. 理解图形旋转的概念,掌握旋转的性质。
2. 能够通过实际操作,熟练掌握图形旋转的方法。
3. 培养学生的空间想象能力和动手能力。
二、教学重点与难点:
重点:理解并掌握图形旋转的概念和性质。
难点:通过实际操作,熟练掌握图形旋转的方法。
三、教学过程:
1. 导入新课
以生活中的实例引入旋转概念,如风车的转动、陀螺的旋转等。
2. 新课讲解
(1) 介绍旋转的基本概念:定义、元素、基本性质等。
(2) 举例说明,让学生理解和记忆旋转的基本概念和性质。
(3) 详细解释旋转中心、旋转角度和旋转方向三个要素对图形旋转的影响。
3. 实践操作
(1) 教师演示如何使用工具(如直尺、圆规)进行图形的旋转操作。
(2) 学生模仿教师的操作,进行图形的旋转练习。
4. 巩固提高
(1) 设计一些简单的习题,让学生在课堂上完成,检查他们是否掌握了图形旋转的方法。
(2) 对于错误或不准确的答案,教师应及时给予纠正和指导。
5. 小结
总结本节课学习的内容,强调图形旋转的重要性和应用。
6. 作业布置
布置一些相关的课后作业,以便学生巩固所学知识。
四、教学反思:
对本次教学活动的效果进行反思和评估,包括教学方法、教学内容、学生反馈等方面,以便于下次教学时进行改进。
图形的旋转说课稿一、教学目标1. 知识目标:学生能够理解图形的旋转概念,掌握旋转图形的方法和规律。
2. 能力目标:学生能够运用旋转图形的方法解决与旋转相关的问题。
3. 情感目标:培养学生对几何学的兴趣,培养学生观察、分析和解决问题的能力。
二、教学重难点1. 教学重点:旋转图形的概念、方法和规律。
2. 教学难点:运用旋转图形的方法解决与旋转相关的问题。
三、教学准备1. 教学工具:投影仪、电脑、黑板、彩色粉笔、几何工具箱。
2. 教学材料:教材《几何》第三册、练习册、实物图形。
四、教学过程1. 导入(5分钟)通过展示一幅旋转图形的图片,引起学生对旋转图形的兴趣,激发他们的思量:“你们见过这样的图形吗?它是如何形成的?我们今天的课程将会揭开这个谜底。
”2. 概念讲解(10分钟)通过黑板上的示意图,向学生介绍旋转图形的概念:“旋转是指环绕一个点或者轴线进行转动,使图形在平面内改变位置但形状保持不变。
”然后给出几个示例,让学生观察并描述旋转图形的特点。
3. 方法演示(15分钟)通过投影仪展示旋转图形的实际操作过程,让学生观察并摹仿老师的操作。
首先,选择一个图形作为基准图形,然后确定旋转的中心点,并标记出旋转的角度和方向。
接下来,按照规定的角度和方向,将图形环绕中心点进行旋转,观察图形的位置和形状的变化。
4. 规律总结(15分钟)让学生根据实际操作的过程,总结旋转图形的规律。
引导学生发现旋转图形的主要特点:旋转先后图形的形状保持不变,旋转角度为正数时逆时针旋转,旋转角度为负数时顺时针旋转。
5. 练习巩固(20分钟)在黑板上出示一些旋转图形的题目,让学生根据已学的方法和规律解答。
教师可以选择不同难度的题目,逐步引导学生运用旋转图形的方法解决问题。
同时,鼓励学生积极参预讨论和分享解题思路。
6. 拓展延伸(10分钟)为了进一步巩固学生对旋转图形的理解和应用能力,教师可以提供一些拓展延伸的题目,要求学生运用旋转图形的方法解决更复杂的问题。
小学数学旋转知识点旋转是小学数学中的重要知识点之一,它涉及到图形的变化和几何形状的移动。
本文将介绍小学数学中的旋转知识点,包括旋转的定义、常见的旋转图形以及旋转的性质等内容。
一、旋转的定义旋转是指将一个图形按照一定的规则绕着某个点或轴线进行转动。
在小学数学中,我们主要关注的是二维图形的旋转。
图形的旋转可以保持其形状不变,只是改变了位置和方向。
二、旋转的基本要素在进行旋转操作时,需要确定以下几个基本要素:1. 旋转中心:即图形旋转的中心点,也可以看作是旋转的轴线。
旋转中心可以是图形自身内部的一个点,也可以是图形外部的一个点。
2. 旋转角度:表示图形旋转的角度。
通常用度数或弧度来衡量,比如90度、180度等。
3. 旋转方向:图形可以按顺时针或逆时针方向进行旋转。
三、常见的旋转图形在小学数学中,有几种常见的旋转图形,它们是:1. 旋转点:以一个点为中心,将整个图形按照一定的角度和方向进行旋转。
旋转后的图形与原图形形状相同,只是位置和方向发生了改变。
2. 旋转线:以一条线段为轴线,将整个图形按照一定的角度和方向进行旋转。
旋转线可以通过连接图形中的两个点来确定。
3. 旋转角:以一个角为中心,将整个图形按照一定的角度和方向进行旋转。
旋转角可以通过连接图形中的两条边来确定。
通过对以上旋转图形的学习,可以帮助学生理解旋转的概念和性质,并培养他们的几何思维能力。
四、旋转的性质旋转具有一些特殊的性质,它们可以帮助我们更好地理解旋转变化:1. 旋转不改变图形的大小:无论图形如何旋转,它们的大小不会发生改变。
2. 旋转不改变图形内部的相对位置关系:旋转只是改变了图形的位置和方向,而不会改变图形内部点的相对位置关系。
3. 旋转角度的关系:如果两个图形是同一图形通过旋转得到的,那么它们的旋转角度是相等的。
除了以上的性质外,旋转还有一些与其他几何变换(如平移、翻转)的关系,但这超出了小学数学的范围,在这里不做深入讨论。
五、旋转在小学数学中的应用旋转在小学数学中有着广泛的应用,它可以帮助我们解决一些几何问题。
旋转知识点归纳知识点1:旋转的定义及其有关概念在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度,这样的图形运动称为旋转,定点O 称为旋转中心,转动的角称为旋转角;如果图形上的点P 经过旋转到点P ',那么这两个点叫做这个旋转的对应点. 如图1,线段AB 绕点O 顺时针转动090得到B A '',这就是旋转,点O 就是旋转中心,A AO B BO '∠'∠,都是旋转角.说明: 旋转的范围是在平面内旋转,否则有可能旋转为立体图形,因此“在平面内”这一条件不可忽略.决定旋转的因素有三个:一是旋转中心;二是旋转角;三是旋转方向.知识点2:旋转的性质由旋转的定义可知,旋转不改变图形的大小和形状,这说明旋转前后的两个图形是全等的.由此得到如下性质:⑴经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同.⑵任意一对对应点与旋转中心的连线所成的角都是旋转角.⑶对应点到旋转中心的距离相等.⑷对应线段相等,对应角相等.例1 、如图2,D 是等腰Rt △ABC 内一点,BC 是斜边,如果将△ADB 绕点A 逆时针方向旋转到△C D A '的位置,则ADD '∠的度数是( )D A.25B.30 C.35 D.45分析:抓住旋转前后两个三角形的对应边相等、对应角相等等性质,本题就很容易解决.由△C D A '是由△ADB 旋转所得,可知△ADB ≌△C D A ',∴AD =D A ',∠DAB =∠AC D ',∵∠DAB +∠DAC =090,∴∠AC D '+∠DAC =090,∴∠045='D AD ,故选D.'图1 图2评注:旋转不改变图形的大小与形状,旋转前后的两个图形是全等的,紧紧抓住旋转前后图形之间的全等关系,是解决与旋转有关问题的关键.知识点3:旋转作图1.明确作图的条件:(1)已知旋转中心;(2)已知旋转方向与旋转角.2.理解作图的依据:(1)旋转的定义: 在平面内,将一个图形绕一个定点O 沿某个方向转动一个角度的图形变换叫做旋转;(2)旋转的性质:经过旋转,图形上的每一点都绕旋转中心沿相同的方向转动了相同的角度,任意一对对应点与旋转中心的连线所组成的角都是旋转角,对应点到旋转中心的距离相等.3.掌握作图的步骤:(1)分析题目要求,找出旋转中心、旋转角;(2)分析图形,找出构成图形的关键点;(3)沿一定的方向,按一定的角度,通过截取线段的方法,找出各个关键点;(4)连接作出的各个关键点,并标上字母;(5)写出结论.例2 如图3,小明将△ABC 绕O 点旋转得到△C B A ''',其中点C B A '''、、分别是A 、B 、C 的对应点.随即又将△ABC 的边AC 、BC 及旋转中心O 擦去(不留痕迹),他说他还能把旋转中心O 及△ABC 的位置找到,你认为可以吗?若可以,试确定旋转中心及的位置;如不可以,请说明理由.分析:本题的关键是要学生先确定旋转中心的位置.根据“对应点到旋转中心的距离相等”这一特征,可推断出旋转中心是对应点连线(A A '和B B ')的垂直平分线的交点.这样旋转中心就可以确定了,从而△ABC 的位置也就可以确定了.解:连接A A ',B B ',分别作A A ',B B '的垂直平分线,相交于O 点,则O 点即为旋转中心.再作C '关于点的对应点,连接,则的位置就确定了.如图4所示.评注:旋转角相等及对应点到旋转中心的距离相等是解决这类问题的关键.考点4:钟表的旋转问题钟表的时针与分针每时每刻都以轴心为旋转中心作旋转运动,其中时针12小时旋转一周,A 图3 '则每小时旋转,301236000=这样时针每分钟旋转;5.00分针每小时旋转一周,则每分钟旋转.66036000= 例3 从1点到1点25分,分针转了多少度角?时针转了多少度角?1点25分时时针与分针的夹角是多少度?分析:从1点到1点25分,分针与时针都转了25分钟,所以分针旋转的角度为,15025600=⨯时针旋转的角度为;5.12255.000=⨯1点整的时候,分针与时针的夹角为030,分针与时针分别同时旋转0150与05.12后,分针与时针的夹角为.5.1075.12301500000=--解:分针旋转的角度为;15025600=⨯时针旋转的角度为;5.12255.000=⨯分针与时针的夹角为.5.1075.12301500000=--评注:(1)时针每分钟旋转05.0;(2)分针每分钟旋转.60这两个条件是旋转问题中的隐含条件,也是解决此类问题的突破口解读生活中的旋转一. 旋转及其基本性质1.旋转的概念在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.2.旋转的基本性质(1) 旋转前后两个图形的对应点到旋转中心的距离相等;(2) 对应点与旋转中心的连线所成的角彼此相等.3.理解旋转中的不变量图形旋转的主要因素是旋转的方向和旋转的角度,图形在旋转过程中,图形中的每一点都按同样的方向旋转了相同的角度.图形在旋转后点的位置改变,但线段的长度不变,对应点到旋转中心的距离不变,每对对应点与旋转中心连线所成的角都相等.总结:旋转过程中,每一个点都绕旋转中心沿相同的方向旋转了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.二. 旋转前后两个图形的比较图形是由点组成的,图形中的主要元素有线段和角,也有一些其他可度量的元素,所以从这两个方面加以分析.旋转的特点有以下几个方面:(1) 旋转前后两个图形的形状和大小没有发生改变,位置发生了改变;(2) 对应线段相等,对应角相等;(3) 每对对应点与旋转中心连线所成的角都是相等的,它们都是旋转角.三. 旋转作图1.旋转作图的依据是:图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点到旋转中心的距离相等.2.旋转作图的条件(1) 图形原来所在的位置;(2)旋转中心;(3)图形旋转的方向;(4)图形的旋转角度.3.旋转作图的具体步骤为:(1) 分析题目的要求,找出旋转中心、旋转角;(2) 分析所作的图形,找出构造图形的关键点;(3) 沿一定的方向,按一定的角度,通过攫取线段的方法,旋转各个关键点。
《旋转的应用》课堂笔记
一、旋转对称图形的概念
1.旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重
合,这种图形叫做旋转对称图形。
2.旋转对称图形的性质:旋转对称图形具有旋转不变性和对称性,即旋转前
后图形的形状和大小保持不变,只改变位置和方向。
二、如何判断一个图形是否为旋转对称图形
1.观察图形的形状和大小是否在旋转前后保持不变。
2.观察旋转前后图形的位置和方向是否发生变化。
3.判断旋转中心是否存在,以及旋转角度是否为360°的整数倍。
三、旋转对称图形的应用
1.在几何中,可以利用旋转对称图形的性质证明一些几何定理和性质。
2.在生活中,很多机械零件和建筑物都是利用旋转对称设计的,如螺旋桨、
圆形屋顶等。
3.在艺术中,旋转对称可以创造出很多美丽的图案和造型,如旋转对称的花
朵、旋转对称的舞蹈动作等。
四、注意事项
1.要注意区分旋转对称图形与其他图形变换的不同之处,如平移、翻折等。
2.在进行旋转对称图形的判断时,要注意观察图形是否具有旋转不变性和对
称性,并确定旋转中心和旋转角度。
3.在实际应用中,要注意选择合适的旋转中心和旋转角度,以达到预期的效
果。
《图形的旋转》说课稿(精选6篇)《图形的旋转》说课稿(精选6篇)作为一位兢兢业业的人民教师,可能需要进行说课稿编写工作,说课稿有助于顺利而有效地开展教学活动。
那么什么样的说课稿才是好的呢?以下是小编收集整理的《图形的旋转》说课稿,希望能够帮助到大家。
《图形的旋转》说课稿篇1一、说教学内容北师大版小学数学第七册第四单元第一节《图形的旋转》二、教材的地位和作用我在尊重教材的基础上,,让学生在充分的经历与欣赏中感悟旋转;同时针对学生思维活跃的特点,引导学生对比图形旋转前后的变化,以渗透刚体变换的思想。
三、说教学目标知识目标:了解一个简单图形经过旋转形成复杂图案的过程,并能在方格纸上将简单图形旋转90度,运用旋转设计图案。
能力目标:运用观察、操作、归纳、联想等思维方法培养学生抽象思维能力,发展空间观念。
情感目标:感悟数学的美,培养学生学习数学的兴趣和热爱生活的情感。
教学难点:认识图形的旋转,解一个简单图形经过旋转形成复杂图案的过程,能在方格纸上将简单图形旋转90度。
教学难点是:能在方格纸上将简单图形旋转90度,并运用旋转设计图案。
三、说教法与学法学习本单元前,学生只初步感受到了生活中的平移和旋转现象,接触了两种图形变换方式:对称、平移。
本课是把学生的视角引入到第三种图形变换——旋转,意在通过欣赏、探索、创作等一系列活动,使学生体验到简单图形变成复杂图案的过程,理解旋转的中心点、方向、角度不同,形成的图案也不同,进一步发展学生的空间观念,为今后继续学习图形变换奠定基础。
四年级学生,形象思维在其认知过程中仍占主导地位。
因此,要本着“边操作边感悟”的原则,让学生在经历中体会旋转的三要素,感受图形旋转带来的变换美。
四、说教学准备图片、小黑板、方格纸、自制风车五、流程设计:(一)游戏激趣,感受图形的旋转此环节通过创设情景,初步感受旋转。
利用学生比较喜欢的情景,即风车,美丽的图形等引入,极大地激发了学生的学习热情。
图形的平移和旋转知识点讲解:平移的概念:平移,是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
平移的条件:确定一个平移运动的条件是平移的方向和距离。
平移特征:1、平移前后图形的形状、大小不变,只是位置发生改变。
2、新图形与原图形的对应点所连的线段平行且相等(或在同一直线上)。
3、新图形与原图形的对应线段平行且相等,对应角相等。
旋转的概念:在平面内,把一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
在画旋转图形时,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。
旋转的特征:1、对应点到旋转中心的距离相等。
2、对应点与旋转中心所连线段的夹角等于旋转角。
3、旋转前、后的图形全等。
旋转三要素:①旋转中心②旋转方向③旋转角度课堂练一练一.涂色1、把图形向右平移7格后得到的图形涂上颜色。
2、把图形向左平移5格后得到的图形涂上颜色。
二、利用平移知识画图或填空1.画出小船向右平移6格后的图形2.、画出向右平移6格后的图形3、(1)小汽车向()平移了()格。
(2)小船向()平移了()格。
(3)小飞机向()平移了()格。
4、(1)绕O点顺时针旋转 90度。
(2)向右平移5格一、连一连。
升旗时国旗的运动时针的运动在算盘上拨珠平移电梯的运动风扇叶片的运动火车的运动光盘在电脑里的运动旋转把握汽车的方向盘二、操作。
1、向( )平移了( )格。
2、把上面的小船图向上平移5格3、把上图中的三角形绕垂足顺时针旋转180°一、看图填一填。
1、长方形向()平移了()格。
2、六边形向()平移了()格。
3、五角星向()平移了()格。
二、从镜子中看到的左边图形的样子是什么?画“√”镜子三、按要求操作。
1、把图中长方形向上平移2格;2、把图中三角形向右平移3格;3、把图中平行四边形向左平移5格。
数学五年级上册旋转知识点在五年级的数学课程中,旋转是一个重要的几何概念。
它涉及到图形在平面上围绕某一点进行转动,形成一个新的图形。
以下是关于五年级上册数学中旋转知识点的详细讲解:旋转的定义与特点旋转是一种几何变换,它将一个图形的每个点按照相同的方向和角度绕一个固定点(称为旋转中心)进行转动。
旋转具有以下特点:1. 旋转后,图形的形状和大小不变。
2. 旋转前后的图形是全等的。
3. 旋转中心是图形上所有点旋转的共同点。
旋转的三要素1. 旋转中心:图形旋转时所围绕的固定点。
2. 旋转方向:可以是顺时针或逆时针。
3. 旋转角度:图形旋转的度数,通常用度数(°)表示。
旋转的分类1. 全旋转:图形绕旋转中心旋转360°。
2. 半旋转:图形绕旋转中心旋转180°。
3. 四分之一旋转:图形绕旋转中心旋转90°。
旋转的性质1. 旋转后的图形与原图形关于旋转中心对称。
2. 旋转后的图形与原图形的对应点之间的连线段长度相等,且连线段与旋转中心的连线段垂直。
旋转的应用旋转在日常生活中有着广泛的应用,例如:- 时钟的指针转动。
- 门的开合。
- 风车的旋转。
练习题1. 一个正方形绕其一个顶点旋转90°后,它的位置和形状会如何变化?2. 如果一个图形绕某点顺时针旋转了45°,那么逆时针旋转多少度可以使图形回到原来的位置?通过以上知识点的学习和练习,学生可以更好地理解旋转这一概念,并能够将其应用到实际问题中。
希望这些内容能够帮助学生深入理解五年级上册数学中关于旋转的知识点。
图形的旋转--知识讲解
【学习目标】
1、掌握旋转的概念,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中
心连线所成的角彼此相等的性质;
2、能够按要求作出简单平面图形旋转后的图形,并能利用旋转进行简单的图案设计.
【要点梳理】
要点一、旋转的概念
将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转.定点称为旋转中心,旋转的角度称为旋转角.
要点诠释:旋转的三要素:旋转中心、旋转方向和旋转角度;
图形的旋转不改变图形的形状、大小.
要点二、旋转的性质
一个图形和它经过旋转所得到的图形中:
(1)对应点到旋转中心的距离相等;
(2)两组对应点分别与旋转中心连线所成的角相等.
要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.
要点三、旋转的作图
在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.
要点诠释:
作图的步骤:
(1)连接图形中的每一个关键点与旋转中心;
(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);
(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;
(4)连接所得到的各对应点.
【典型例题】
类型一、旋转的概念与性质
1.(优质试题春•内江期末)如图所示,△ABC直角三角形,延长AB到D,使BD=BC,在BC上取BE=AB,连接DE.△ABC顺时针旋转后能与△EBD重合,那么:
(1)旋转中心是哪一点?旋转角是多少度?
(2)AC与DE的关系怎样?请说明理由.
【思路点拨】(1)由条件易得BC和BD,BA和BE为对应边,而△ABC旋转后能与△EBD重合,于是可判断旋转中心为点B;根据旋转的性质得∠ABE等于旋转角,从而得到旋转角度;(2)根据旋转的性质即可判断AC=DE,AC⊥DE.
【答案与解析】
解:(1)∵BC=BD,BA=BE,
∴BC和BD,BA和BE为对应边,
∵△ABC旋转后能与△EBD重合,
∴旋转中心为点B;
∵∠ABC=90°,
而△ABC旋转后能与△EBD重合,
∴∠ABE等于旋转角,
∴旋转角是90度;
(2)AC=DE,AC⊥DE.理由如下:
∵△ABC绕点B顺时针旋转90°后能与△EBD重合,
∴DE=AC,DE与AC成90°的角,即AC⊥DE.
【总结升华】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
举一反三
【变式】如图所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.
【答案】下面给出几种解法:
解法一:连接OA、OB、OC即可.如图甲所示;
解法二:在AB边上任取一点D,将D分别绕点O旋转120°和240°得到D1、D2,连接OD、OD1、OD2即得,如图乙所示.
解法三:在解法二中,用相同的曲线连结OD、OD1、OD2即得如图丙所示
2. 如图,将图(1)中的正方形图案绕中心旋转180°后,得到的图案是( )
【答案】C.
【解析】抓住图形特征,观察图中的每个小的图形绕中心点旋转180°后能否与自身重合.
【总结升华】在解题的过程中,可看出如果选取的基本图形不同,可得到不同的形成过程,甚至所选取的基本图形相同,也有不同的形成过程,因此分析图案的形成过程旨在了解图形的变化规律,而不必强求分析的一致性.
类型二、旋转的作图
3.我们学习过:在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动叫做旋转,这个定点称为旋转中心.
(1)如图①,△ABC≌△DEF.△DEF能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由;
(2)如图②,△ABC≌△MNK.△MNK能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由.(保留必要的作图痕迹)
【答案与解析】
解:(1)能.
(2)能.
点O2就是所求作的旋转中心.
【总结升华】考查了旋转变换的作图.关键是明确旋转中心与对应点的所连线段相等的性质,故作对应点连线的垂直平分线.
4.(优质试题•南宁)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).
【思路点拨】(1)根据题意画出△ABC关于y轴对称的△A1B1C1即可;(2)根据题意画出△ABC绕着点B
顺时针旋转90°后得到△A2BC2,线段BC旋转过程中扫过的面积为扇形BCC2的面积,即1
4
圆的面积,求
出即可.
【答案与解析】
解:(1)如图所示,画出△ABC关于y轴对称的△A1B1C1;
(2)如图所示,画出△ABC绕着点B顺时针旋转90°后得到△A2BC2,
由勾股定理得,
线段BC旋转过程中所扫过得面积S=π2
1
4
⨯=.
【总结升华】此题考查了作图﹣旋转变换,对称轴变换,以及扇形面积,作出正确的图形是解本题的关键.
举一反三
【高清课堂:高清ID号:388634 关联的位置名称(播放点名称):经典例题5-6】
【变式1】如图,画出ABC
∆绕点O逆时针旋转100︒所得到的图形.
【答案】。