钢结构 第4章轴心受力构件
- 格式:ppt
- 大小:6.05 MB
- 文档页数:60
钢结构轴心受力构件在钢结构的世界里,轴心受力构件是其中一类至关重要的组成部分。
它们在建筑结构、桥梁工程以及各类工业设施中都扮演着不可或缺的角色。
那么,什么是钢结构轴心受力构件呢?简单来说,就是在承受外力作用时,构件的截面形心与外力的作用线重合,从而使构件沿着其轴线方向承受拉力或压力的钢结构部件。
钢结构轴心受力构件主要包括轴心受拉构件和轴心受压构件两种类型。
先来说说轴心受拉构件。
这类构件在实际应用中非常常见,比如钢结构中的吊车梁、屋架中的下弦杆等。
当构件受到拉力作用时,其内部的应力分布相对均匀,主要承受拉应力。
在设计轴心受拉构件时,我们需要重点考虑的是材料的抗拉强度。
因为一旦拉力超过了材料的抗拉极限,构件就会发生破坏。
为了保证轴心受拉构件的可靠性和安全性,我们在选材上要格外谨慎。
一般会选择高强度的钢材,以充分发挥其抗拉性能。
同时,在连接节点的设计上也不能马虎,要确保连接牢固,避免出现松动或断裂的情况。
接下来谈谈轴心受压构件。
轴心受压构件在钢结构中也有着广泛的应用,例如柱子、桁架中的受压弦杆等。
与轴心受拉构件不同,轴心受压构件的受力情况要复杂得多。
当受到压力作用时,构件可能会发生整体失稳或者局部失稳的现象。
整体失稳是指整个构件突然发生弯曲变形,失去承载能力。
而局部失稳则是指构件的某个局部区域出现了屈曲现象。
为了防止这些失稳情况的发生,我们在设计轴心受压构件时,需要考虑很多因素。
首先,要合理选择构件的截面形状和尺寸。
常见的截面形状有圆形、方形、矩形等。
对于较大的压力,通常会选择回转半径较大的截面形状,以提高构件的稳定性。
其次,要控制构件的长细比。
长细比是指构件的计算长度与截面回转半径的比值。
长细比越大,构件越容易失稳。
因此,在设计时要通过合理的布置和支撑,减小构件的计算长度,从而降低长细比。
此外,还需要考虑材料的抗压强度和屈服强度。
在实际工程中,为了提高轴心受压构件的稳定性,常常会采用一些加强措施,比如设置纵向加劲肋、横向加劲肋等。
第四章轴心受力构件§4-1 概述1、工程实例(假设节点为铰接,无节间荷载作用时,构件只受轴心力作用)(1)桁架(2)塔架(3)网架、网壳2、分类⑴按受力来分:①轴心受拉构件②轴心受压构件到某临界值时,理想轴心受压构件可能以三种屈曲形式丧失稳定。
(1) 弯曲屈曲构件的截面只绕一个主轴旋转,构件的纵轴由直线变为曲线,这是双轴对称截面构件最常见的屈曲形式。
如图4-2 (a)就是两端铰接工字形截面构件发生的绕弱轴的弯曲屈曲。
(2) 扭转屈曲失稳时构件除支承端外的各截面均绕纵轴扭转,图4-2 (b)为长度较小的十字形截面构件可能发生的扭转屈曲。
(3) 弯扭屈曲单轴对称截面构件绕对称轴屈曲时,在发生弯曲变形的同时必然伴随着扭转。
图4-2 (c)即T 形截面构件发生的弯扭屈曲。
图4-2 轴心受压构件的三种屈曲形式欧拉临界力和欧拉临界应力临界应力其中:——单位剪力时的轴线转角,;通常剪切变形的影响较小,忽略其对临界力或临界应力的影响。
E N E σ1222211γλπλπσ⋅⋅+⋅⋅==EAEAN cr cr1γ)(1GA βγ=这样,※上述推导基于材料处于弹性阶段,即,或。
(二)初始缺陷对轴心受压构件稳定承载力的影响 1. 残余应力的影响残余压应力对压杆弯曲失稳的影响: 对弱轴的影响比对强轴的影响要大的多。
稳定应力上限,弱轴:强轴:其中:,0<<1.0。
2.初弯曲的影响图4-3 考虑初弯曲的压力—挠度曲线图示压力—挠度曲线有如下特点:1有初弯曲时,挠度v 不是随着N 按比例增加;N 较小时,挠度增加较慢,N 趋于时,挠度增加较快,并趋向于无限大;2相同压力N 的作用下,压杆的初挠度值越大,杆件的挠度也越大;Ecr N EAlEI N =⋅=⋅=2222λππEcr cr E AN σλπσ=⋅==22pcr f E≤⋅=22λπσpp f E λπλ=≥322kEx crx ⋅⋅=λπσkEycry⋅⋅=22λπσ翼缘宽度翼缘弹性区宽度=k k E N3由于有的存在,轴心压杆的承载力总是低于,因此是弹性压杆承载力的上限。
14.1轴心受力构件的截面形式4.2轴心受力构件的强度和刚度计算4.2.1 轴心受力构件的强度计算4.2.2 轴心受力构件的刚度计算4.3 轴心受压构件的整体稳定4.3.1 轴心受压构件的弹性弯曲屈曲4.3.2 轴心受压构件的弹塑性弯曲屈曲4.3.3初始缺陷对压杆稳定承载力的影响4.3.4 轴心受压构件的整体稳定计算24.4 实腹式轴心受压构件的局部稳定4.4.1 薄板屈曲(1) 薄板的弹性屈曲(2) 薄板的弹塑性屈曲4.4.2 受压构件局部稳定计算4.4.2.1 确定板件宽厚比(高厚比)限值的准则4.4.2.2 板件宽厚比(高厚比)限值4.4.2.3受压构件的腹板不满足高厚比限值时的处理例题-格构柱例题-轴压柱,截面削弱34.5.2 格构式轴压构件的整体稳定计算(1) 格构式构件绕实轴的整体稳定计算(2) 格构式构件绕虚轴的整体稳定计算①换算长细比②格构式构件绕虚轴的整体稳定计算4.5.3 格构式轴心受压构件分肢的稳定(1) 缀条柱(2) 缀板柱4.5.1 格构式轴心受压构件的截面形式与组成4.5 格构式轴压构件44.5.4 格构式轴心受压构件缀材计算(1) 缀材面承担的剪力①单缀条强度设计值的调整②斜缀条承受的轴向力(2) 缀条设计(3) 缀板设计③斜缀条整体稳定计算④缀条与分肢连接焊缝计算⑤缀条与分肢连接形式(4) 横隔设置①缀板受力②缀板与分肢连接③缀板线刚度54.6 轴心受压构件截面设计4.6.1 实腹式轴心受压构件截面设计4.6.2 格构式轴心受压构件截面设计(3) 截面验算(1) 确定截面所需的面积、回转半径、截面高度、截面宽度等(2) 确定型钢号或组合截面各板件尺寸(1) 根据绕实轴的稳定性确定分肢截面尺寸(2) 根据虚轴和实轴的等稳性确定分肢的间距(3) 截面验算(4)缀材设计7轴心受力构件:承受通过构件截面形心轴线的轴向力作用的构件。
(轴心受拉构件和轴心受压构件)截面形式型钢截面组合截面热轧型钢截面冷弯薄壁型钢截面实腹式组合截面格构式组合截面4.1轴心受力构件的截面形式应用:屋架、托架、塔架和网架、工作平台和其它结构的支柱等8实腹式构件:格构式构件:优点:构造简单、制造方便,整体受力和抗剪性能好缺点:截面尺寸大时钢材用量较多。