自动变速器动力传递路线分析
- 格式:doc
- 大小:300.50 KB
- 文档页数:10
丰田U340E自动变速器动力传递路线
1.倒挡动力传递路线
倒挡时,倒挡离合器C3接合,驱动后排太阳轮顺时针旋转,则后排行星轮逆时针旋转;低/倒挡制动器B3工作,固定后排行星架/前排齿圈,后排行星轮驱动后排内齿圈逆时针旋转,则前排行星架/后排齿圈反向减速输出。
2、D1挡动力传递路线
在D位1挡,前进离合器C1接合,驱动前排太阳轮顺时针旋转,前排行星轮逆时针旋转,前排行星架与车体相连,运动阻力较大,可暂时视为固定,则前排内齿圈有逆时针旋转的趋势;此时,低挡单向离合器F2锁止,防止前排内齿圈逆时针旋转,则行星轮逆时针旋转的同时带动前行星架绕前排内齿圈顺时针旋转,即前行排星架/后排内齿圈同向减速输出。
3、 D2挡动力传递路线
在D2挡,前进离合器接合C,驱动前排太阳轮;2挡制动器B2工作,单向离合器F1锁止,单向固定后排太阳轮,则前排行星架/后排内齿圈同向减速输出。
4、D3挡动力传递路线
在D 3挡,前进离合器C1接合,驱动前排太阳轮;直接挡离合器C2
接合,驱动后排行星架/前排齿圈。
因行星齿轮机构中有两个部件被同时驱动,则整个行星齿轮机构以一个整体旋转,为直接传动挡。
在D3挡时,制动器B2仍处于接合状态,但因单向离合器F1处于超越(打滑)状态,它在此时不起作用。
在D3挡没有单向离合器参与动力传递,故有发动机制动。
5.D4挡动力传递路线
在D4挡时,直接挡离合器C2接合,驱动后排行星架/前排齿圈;超速/2挡制动器B1工作,固定排太阳轮,则前行排星架/后排内齿圈同向增速输出。
同理,D4挡有发动机制动。
AL4双向串联式自动变速器动力传递路线分析在上一期中介绍了丰田辛普森式行星齿轮机构的换档原理,辛普森式行星齿轮机构(两个行星排)只能实现三个前进档,为了实现四档传动,还需要一个超速排。
所以近年来,一种称为辛普森式改进式行星齿轮机构广泛应用(称为双向串联式更准确一些),他利用实现两个行星排实现四个前进档传动。
这种双向串联式行星齿轮机构广泛应用于东风雪铁龙公司AL4自动变速器、一汽/海南马自达FN4A-EL 自动变速器,北京现代伊兰特F4A42自动变速器。
AL4自动变速器是由法国PSA集团(即Peugeot SA 标致集团)与雷诺公司联合开发设计的横置、少维护、电子控制自动变速器,具有4个前进挡和一个倒挡,目前主要装备在雪铁龙公司XSARA、XANTLA第二阶段车的XU汽、柴油发动机和神龙公司生产的TU5JP/K发动机上。
在我国,该自动变速器主要用于神龙公司生产的富康988、浪潮、爱丽舍、赛纳及毕加索等乘用车上。
不同车型装用的AL4自动变速器的机械构造基本相同,只是电控系统有所不同。
AL4双向串联式行星齿轮机构有两个行星排,第一排的齿圈与第二排的行星架连接,称为前齿圈后行星架组件;第一排的行星架与第二排的齿圈连接,称为前行星架后齿圈组件,这个组件被作为输出。
结构如下图所示:AL4双向串联式行星齿轮机构图离合器C1:连接输入轴与后排太阳轮;离合器C2:连接输入轴与前齿圈后行星架组件;制动器B1:制动后排太阳轮;制动器B2:制动前齿圈后行星架组件;制动器B3:制动前太阳轮;输出部件:前行星架后齿圈组件作为输出部件;AL4自动变速器一档工作:一档时,离合器C1接合、制动器B3制动;AL4自动变速器一档工作输入轴顺转->离合器C1->后太阳轮顺转->后排齿圈与输出连接,在汽车没有起步前输出不转,即后排齿圈暂时是不转的->后排行星架在后太阳轮驱动下顺转->前排齿圈顺转->因为制动器B3固定了前排太阳轮,前排齿圈的顺转驱动前行星架顺转->前行星架顺转输出动力,汽车起步。
自动变速器动力传递路线分析(一)基本单级与双级行星齿轮机构传动分析内容简介:自动变速器得齿轮机构多数为行星齿轮机构,由两个到三个行星排,利用多个离合器与制动器,实现某些元件作为输入,制动某些元件,组合出不同得传动比,从而实现换档过程。
而行星齿轮机构因为有齿轮得公转与自转,配合不同行星排组合、不同离合器与制动器组合,传动过程复杂。
本站文章来源于汽车维修与保养、汽车维修技师等杂志发表得自动变速器传动路线原理,其中加入了本站站长对自动变速器得理解与认知!自动变速器液力变矩器、齿轮变速机构、液压控制系统与电子控制系统组成、其中齿轮变速机构分为固定平行轴式与行星齿轮式两种、除本田自动变速器采用固定平行轴式外,多数自动变速器齿轮变速机构采用行星齿轮式、行星齿轮机构利用两个到三个行星排,配合多个离合器、制动器与单身离合器,组合出不同得传动比,从而实现换档过程、行星齿轮机构可分为单级行星齿轮机构与双级行星齿轮机构。
ﻫ一单排单级行星齿轮机构得传动规律分析:ﻫ最简单得行星齿轮机构由一个太阳轮、一个内齿圈与一个行星架与多个行星齿轮组成,但就是用于传递动力得有太阳轮、齿圈与行星架,也就就是说,行星齿轮机构得三个构件就是太阳轮、齿圈与行星架。
结构如图所示:1-太阳轮;2-行星齿轮;3-齿圈;4-行星架ﻫ单级行星齿轮机构图1 单级行星齿轮机构太阳轮、齿圈与行星架齿数得规律ﻫ在单级行星齿轮机构中,太阳轮与齿圈得齿数就是可以数出来得,而行星架得齿数就是多少呢?其中得原理计算我不写了,写了相信也没有人瞧得,我就直接说结论吧:行星架得齿数=太阳轮齿数+齿圈得齿数;也说就是说行星架齿数>行星架齿数>太阳轮齿数。
2单级行星齿轮机构太阳轮、齿齿圈与行星架运动方向规律总结想想,如果让太阳轮顺转,将带动行星齿轮绕行星齿轮轴逆转,若此时将行星架固定不动,行星齿轮得逆转将带动齿圈逆转。
也就就是说,若将行星架固定,太阳轮与齿圈得运动方向相反。
自动变速器动力传递路线分析(一)基本单级和双级行星齿轮机构传动分析内容简介:自动变速器的齿轮机构多数为行星齿轮机构,由两个到三个行星排,利用多个离合器和制动器,实现某些元件作为输入,制动某些元件,组合出不同的传动比,从而实现换档过程。
而行星齿轮机构因为有齿轮的公转和自转,配合不同行星排组合、不同离合器和制动器组合,传动过程复杂。
本站文章来源于汽车维修与保养、汽车维修技师等杂志发表的自动变速器传动路线原理,其中加入了本站站长对自动变速器的理解和认知!自动变速器液力变矩器、齿轮变速机构、液压控制系统和电子控制系统组成。
其中齿轮变速机构分为固定平行轴式和行星齿轮式两种。
除本田自动变速器采用固定平行轴式外,多数自动变速器齿轮变速机构采用行星齿轮式。
行星齿轮机构利用两个到三个行星排,配合多个离合器、制动器和单身离合器,组合出不同的传动比,从而实现换档过程。
行星齿轮机构可分为单级行星齿轮机构和双级行星齿轮机构。
一单排单级行星齿轮机构的传动规律分析:最简单的行星齿轮机构由一个太阳轮、一个内齿圈和一个行星架和多个行星齿轮组成,但是用于传递动力的有太阳轮、齿圈和行星架,也就是说,行星齿轮机构的三个构件是太阳轮、齿圈和行星架。
结构如图所示:1-太阳轮;2-行星齿轮;3-齿圈;4-行星架单级行星齿轮机构图1 单级行星齿轮机构太阳轮、齿圈和行星架齿数的规律在单级行星齿轮机构中,太阳轮和齿圈的齿数是可以数出来的,而行星架的齿数是多少呢?其中的原理计算我不写了,写了相信也没有人看的,我就直接说结论吧:行星架的齿数=太阳轮齿数+齿圈的齿数;也说是说行星架齿数>行星架齿数>太阳轮齿数。
2 单级行星齿轮机构太阳轮、齿齿圈和行星架运动方向规律总结想想,如果让太阳轮顺转,将带动行星齿轮绕行星齿轮轴逆转,若此时将行星架固定不动,行星齿轮的逆转将带动齿圈逆转。
也就是说,若将行星架固定,太阳轮和齿圈的运动方向相反。
还是太阳轮顺转带动行星齿轮绕行星齿轮轴逆转。
RE4F04B自动变速器动力传递路线分析杨亚敏有必要,车辆中最多可注册多个钥匙。
对于应急钥匙数,可以在一个车辆中注册与无钥匙操作遥控器相同的钥匙数;更换KOS-ECU 或无钥匙操作遥控器丢失或增加时,必须使用MUT-III 注册所有无钥匙操作遥控器的ID 代码。
(1)危险警告灯的闪烁次数(开锁门时);(2)车门自动解锁(驻车挡,携带无钥匙操作遥控器);(3)蜂鸣器的取消与设置,即蜂的作用如表2所示,不同挡位时各换挡执行元件的状态如表3所示。
1.N、P挡动力传递路线N 、P 挡动力传递路线如图3所示。
在N位置,没有离合器工作,所以来自输入轴的动力没有传至输出轴。
P位置与N位置相似,离合器不工作。
驻车制动爪与驻车制动齿轮接合,机械地阻止输出轴转动。
以锁止传动系统。
2.D、3、2位1挡动力传递路线D、3、2位1挡动力传递路线如图4所示,输入轴动力直接传至后太阳轮,前进挡离合器接合,前进挡单向离合器锁止,低速挡单向离合器锁止,则后排内齿圈/前排行星架连接为一体且被低速挡单向离合器单向固定于离合器壳体不能转动。
在后排行星齿轮机构中,太阳轮驱动,内齿圈固定,则行星架同向减RE4F04B自动变速器为电控4挡自动变速器。
换挡执行元件包括4个离合器、1个制动带、1个多片式制动器和2个单向离合器。
RE4F04B自动变速器的基本参数如表1所示,内部总体构造如图1所示。
表1 RE4F04B自动变速器的基本参数RE4F04B自动变速器动力传递路线如图2所示,各离合器及制动器1.制动带伺服活塞2.倒挡离合器鼓3.变矩器壳体 4.油泵 5.制动带 6.倒挡离合器 7.高速挡离合器 8.前行星齿轮 9.低速挡单向离合器 10.后行星齿轮 11.前进挡离合器 12.超越离合器13.低速挡和倒挡制动器 14.输出齿轮 15.惰轮16.前进挡单向离合器 17.减速小齿轮 18.主减速齿轮 19.差速器壳 20.输入轴 21.液力变矩器鸣器的响应;(4)锁止器的锁止时间,如在关闭发动机熄火后关闭车门在多长时间内自动锁门。
ZF公司6HP-26型自动变速器动力传递路线分析6HP-26是ZF公司的一款全电控6速自动变速器,主要装配在宝马7系和奥迪A6轿车上,该自动变速器是基于一种所谓的“莱佩莱捷”理念而研发的,具体一点讲,自动变速器的机械部分是由1组太阳轮常固定的行星齿轮机构和1组传统的拉维娜式行星齿轮机构组合而成的,通过5个执行元件的有机组合,形成车辆的6个前进挡和1个倒挡。
各执行元件的功能如表1所列。
表1 6HP-26型自动变速器执行元件的功能离合器名称功能A 1/2/3挡离合器主要负责前行星齿轮机构行星架与后拉维娜式行星齿轮机构小太阳轮的连接与释放,当A离合器结合时,1/2/3挡才可能实现。
B 3/5挡和倒挡离合器主要负责前行星齿轮机构行星架与后拉维娜式行星齿轮机构大太阳轮的连接与释放,当B离合器结合时,3/5挡和倒挡才可能实现。
C 2/6挡制动器主要负责后拉维娜式行星齿轮机构大太阳轮与自动变速器壳体的连接与释放,当C制动器结合时,大太阳轮被制动,2/6挡才可能实现。
D 1挡和倒挡制动器主要负责后拉维娜式行星齿轮机构共用行星架与自动变速器壳体的连接与释放,当D制动器结合时,共用行星架被制动,1挡和倒挡才可能实现。
E 4/5/6挡离合器主要负责输入轴与后拉维娜式行星齿轮机构共用行星架的连接与释放,当E离合器结合时,4/5/6挡才可能实现。
1 1挡动力传递路线分析如图1所示,1挡时,A离合器结合,输入轴的的动力传递到前齿圈,经减速后从行星架传递到拉维娜式行星齿轮机构的小太阳轮,由于D制动器结合,共用行星架被制动,拉维娜式行星齿轮机构变成了一个单一定轴齿轮系,具体的动力传递方向是:输入轴顺时针旋转→小太阳轮顺时针旋转→小行星齿轮逆时针旋转→大行星齿轮顺时针旋转→齿圈和输出轴顺时针旋转,通过分析可以发现,这种自动变速器的1挡动力传递与普通拉维娜式行星齿轮变速器的相同。
图1 1挡动力传递路线2 2挡动力传递路线分析如图2所示,2挡时,D制动器释放而C制动器进入结合状态,拉维娜式行星齿轮机构的大太阳轮被制动,大行星齿轮围绕着大太阳轮开始自转和公转,由于公转运动状态的形成,与1挡时单一自传相比,大行星齿轮的转速加快,齿圈与输入轴的速度得到提高。
自动变速器动力传递路线分析(十九)福特S―MAX采用AWF21自动变速器,它是福特公司与日本Aisin Warner 公司共同研发的新一代电控6速自动变速器。
其结构紧凑,质量轻(总质量94kg)。
运用高精度液压离合器控制系统使变速器换挡平顺。
它的变速机构由两组行星齿轮组组成,一组为简单的行星齿轮组,另一组为拉威那式行星齿轮组。
在其TCM内部有TR开关。
安装在变速器壳体上,并通过高速CANBUS系统进行多路传输信息。
它采用先进换挡技术、自适应策略配合驾驶员操作及车辆运行环境的变化。
其换挡执行元件使用3组多片式离合器、1组多片式制动器、1个制动带及1组滚柱式单向离合器来对行星齿轮组进行控制。
一、行星齿轮机构与换挡执行元件AWF21自动变速器动力传递路线如图1所示。
它采用前、后两个行星齿轮组,前面的是一个单排单级行星齿轮机构,福特原资料称其为减速排行星齿轮组;后面的是一个拉威那式行星齿轮机构,后排行星齿轮组的齿圈是动力输出端。
变速器内各换挡执行元件的作用见表1,不同挡位时各换挡执行元件的状态见表2,不同挡位的传动比见表3。
二、动力传递路线分析1、1挡(D1挡)动力传递路线1挡动力传递路线如图2所示,为了便于理解,现将减速行星齿轮组和拉威那行星齿轮组的状态分别说明如下:(1)减速行星齿轮组:动力由涡轮轴传至减速行星齿轮组内齿圈,太阳轮固定,则行星架同向减速输出;离合器C1工作,将减速行星齿轮组的行星架和拉威那行星齿轮组后排太阳轮连接在一起,将涡轮轴动力经减速行星齿轮组减速后传至拉威那行星齿轮组后排太阳轮。
(2)拉威那行星齿轮组:动力由拉威那行星齿轮组后排太阳轮输入;单向离合器F1锁止,单向固定拉威那行星齿轮组共用行星架,拉威那行星齿轮组后排是一个双级行星齿轮机构,则共用齿圈同向减速输出。
各齿轮的旋转状态是后排太阳轮顺时针旋转。
短行星齿轮逆时针旋转,长行星齿轮顺时针旋转,因长行星齿轴与齿圈是内啮合,则齿圈也是顺时针旋转。
内容简介:在有几期,分别介绍了丰田辛普森式自动变速器、马自达FN4A-EL双向串联式自动变速器、雪铁龙AL4双向串联式自动变速器、日产RE4F02A单向串联式自动变速器的动力传递路线。
这些变速器应用的都是单级行星齿轮机构,而本期介绍的大众01M、01N 自动变速器采用的是拉威娜式行星齿轮机构,有一个双级行星排和一个单级行星排组成。
通过对大众01M、01N自动变速器动力传递路线的分析,希望读者对双级行星排的动力传递有所了解,为分析其它变速器的动力传递路线打下基础。
在有几期,分别介绍了丰田辛普森式自动变速器、马自达FN4A-EL双向串联式自动变速器、雪铁龙AL4双向串联式自动变速器、日产RE4F02A单向串联式自动变速器的动力传递路线。
这些变速器应用的都是单级行星齿轮机构,而本期介绍的大众01M、01N自动变速器采用的是拉威娜式行星齿轮机构,有一个双级行星排和一个单级行星排组成。
通过对大众01M、01N自动变速器动力传递路线的分析,希望读者对双级行星排的动力传递有所了解,为分析其它变速器的动力传递路线打下基础。
拉威娜式行星齿轮机构特点:拉威娜式行星齿轮机构1 有两个行星排,其中一个是单级行星排:单级行星排:大太阳轮、长行星齿轮、行星架和齿圈;大太阳轮与长行星齿轮啮合,长行星齿轮与齿圈啮合。
拉威娜式行星齿轮机构单级行星排图另一个是双级行星排:小太阳轮、短行星齿轮、长行星齿轮、行星架和齿圈;小太阳轮和短行星齿轮啮合,短行星齿轮与长行星齿轮啮合、长行星齿轮与齿圈啮合。
拉威娜式行星齿轮机构双级行星排图2 两个行星排共用齿圈和行星架;大众01M、01N拉威娜式自动变速器执行元件图:大众01M、01N拉威娜式自动变速器执行元件位置图离合器C1:连接输入与小太阳轮;离合器C2:连接输入与大太阳轮;离合器C3:连接输入与行星架;制动器B2:制动大太阳轮;制动器B1:制动行星架;单向离合器F:对行星架的顺转解锁,对行星架的逆转锁止;输出:齿圈作为输出件;1 大众01M、01N自动变速器一档动力传递路线:D位一档:离合器C1接合,单向离合器F锁止;大众01M、01N自动变速器一档动力传递图(没有发动机制动作用)离合器C1接合后,输入轴通过离合器C1将动力传递给小太阳轮,小太阳轮、行星架和齿圈组成的是双级行星排,所以小太阳轮力图驱动行星架逆转,被单向离合器F锁止,行星架不能逆转,所以齿圈在太阳轮的驱动下顺转输出动力。
自动变速器动力传递路线分析(十四)4L60E自动变速器广泛应用于通用公司生产的后驱车辆上,品牌包括别克、凯迪拉克、雪佛兰、旁帝克,在我国生产的金杯通用雪佛兰开拓者4.3就装用该型自动变速器,其主要技术参数见表1。
4L60E自动变速器动力传递路线示意图见图1,不同挡位时。
各换挡执行元件的状态见表2。
一、D位1挡动力传递路线D位1挡动力传递路线如图2所示,在D位1挡,前进挡离合器接合,前进挡单向离合器锁止。
动力由输入轴传入前排太阳轮;低速单向离合器锁止,单向固定后排行星架/前排齿圈;动力由前排行星架/后排齿圈同向减速输出。
1挡时,前进挡单向离合器和低速单向离合器锁止是动力传递不可缺少的条件,故没有发动机制动。
二、D位2挡动力传递路线D位2挡动力传递废呷缤?所示,在D位2挡,前进挡离合器接合,前进挡单向离合器锁止,动力由输入轴传入前排太阳轮;2~4挡制动带工作,固定后排太阳轮;动力由前排行星架/后排齿圈同向减速输出。
2挡时,前进挡单向离合器锁止是动力传递不可缺少的条件,故没有发动机制动。
三、D位3挡动力传递路线D位3挡动力传递路线如图4所示,在D位3挡,前进挡离合器接合,前进挡单向离合器锁止,动力由输入轴传入前排太阳轮;同时3~4挡离合器工作,动力由输入轴传至前排齿圈;因前排行星齿轮机构中太阳轮和内齿圈同时被驱动,则整个行星齿轮机构以一个整体转动,传动比为1:1。
同理,在D位3挡没有发动机制动。
四、D位4挡动力传递路线D位4挡动力传递路线如图5所示,在D位4挡,3~4挡离合器接合,动力由后排行星架输入2~4挡制动带工作。
固定后排太阳轮;动力由前排行星架/后排齿圈同向增速输出。
因4挡时,没有单向离合器参与动力传递,故有发动机制动。
五、手动3挡动力传递路线手动3挡动力传递路线如图6所示,在手动3挡,前进挡离合器接合,同时超越离合器接合,动力由输入轴传入前排太阳轮;同时3~4挡离合器工作,动力由输入轴传至前排齿圈;因前排行星齿轮机构中太阳轮和内齿圈同时被驱动,则整个行星齿轮机构以一个整体转动,传动比为1:1。
自动变速器动力传递路线分析(一)2007/4/12/09:55 来源:汽修之家一.自动变速器动力传递概述自动变速器由液力元件、变速机构、控制系统、主传动部件等几大部分组成。
变速机构可分为固定平行轴式、行星齿轮式和金属带式无级自动变速器(CVT)三种。
我国在用的车辆中,大多数自动变速器都采用行星齿轮式变速机构,这也是本文重点分析的对象。
行星齿轮机构一般由2个或2个以上行星齿轮组按不同的组合方式构成,其作用是通过对不同部件的驱动或制动,产生不同速比的前进挡、倒挡和空挡。
换挡执行元件的作用是约束行星齿轮机构的某些构件,包括固定并使其转速为0,或连接某部件使其按某一规定转速旋转。
通过适当选择行星齿轮机构被约束的基本元件和约束方式,就可以得到不同的传动比,形成不同的挡位。
换挡执行元件包括离合器、制动器和单向离合器3种不同的元件,离合器的作用是连接或驱动,以将变速机构的输入轴(主动部件)与行星齿轮机构的某个部件(被动部件)连接在一起,实现动力传递。
制动器的作用是固定行星齿轮机构中的某基本元件,它工作时将被制动元件与变速器壳体连接在一起,使其固定不能转动。
单向离合器具有单向锁止的特点,当与之相连接的元件的旋转趋势使其受力方向与锁止方向相同时,该元件被固定(制动)或连接(驱动);当受力方向与锁止方向相反时,该元件被释放(脱离连接)。
由此可见,单向离合器在不同的状态下具有与离合器、制动器相同的作用。
由以上介绍可知,掌握不同组合行星齿轮机构的运动规律是自动变速器故障诊断的基础。
二.单排单级行星齿轮机构1.单排单级行星齿轮机构的传动比最简单的行星齿轮机构由一个太阳轮、一个内齿圈和一个行星架组成,我们称之为一个单排单级行星排,如图1所示。
由于单排行星齿轮机构具有两个自由度,为了获得固定的传动比,需将太阳轮、齿圈或行星架三者之一制动(转速为0)或约束(以某一固定的转速旋转),以获得我们所需的传动比;如果将三者中的任何两个连接为一体,则整个行星齿轮机构以同一速度旋转。
目前,在有关自动变速器的资料中,有关传动比的计算公式有以下几个:(n1-nH)/(n3-nH)=-Z3/Z1 式(1)式中:n1-太阳轮转速;nH-行星架转速;n3-内齿圈转速;Z1-太阳轮齿数;Z3-内齿圈齿数n1+αn2-(1+α)n3=0 式(2)式中:n1-太阳轮转速;n2-内齿圈转速;n3-行星架转速;α=内齿圈齿数/太阳轮齿数=Z2/Z1 Z2=Z1+Z3 式(3)式中:Z1-太阳轮齿数;Z2-行星架假想齿数;Z3-内齿圈齿数下面对这3个公式的原理与推导过程作以介绍,这也是本文后面对不同型号自动变速器速比计算方法的基础。
定轴轮系齿轮传动比计算公式为i=(-1)m(所有的从动齿轮数乘积)/(所有的主动齿轮数乘积)=(-1)mZn/Z1,它对行星齿轮机构是不适用的。
因为在行星齿轮机构中,星轮在自转的同时,还随着行星架的转动而公转,这使得定轴轮系传动比的计算方法不再适用。
我们可以用“相对速度法”或“转化机构法”对行星齿轮机构的传动比进行分析,这一方法的理论依据是“一个机构整体的绝对运动并不影响其内部各构件间的相对运动”,这就好象手表表针的相对运动并不随着人的行走而变化一样,这一理论是一位名叫Willes的科学家于1841年提出的。
假定给整个行星轮系加上一个绕支点O旋转的运动(-ω),这个运动的角速度与行星架转动的角速度(ω)相同,但方向相反,这时行星架静止不动,使星轮的几何轴线固定,我们就得到了一个定轴轮系,这样就能用定轴轮系的方法进行计算了。
用转速n代替角速度ω,nbsp; 利用定轴轮系传动比计算公式有:i13H=n1H/n3H=(n1-nH)/(n3-nH)=(-1)1Z2Z3/Z1Z2=-Z3/Z1式(4)如果把α=Z2/Z1代入原公式(4)中,可得到式(2)或式(3)。
由此可见,这3个公式其实是同一个公式的不同表达方式。
2.单排单级行星齿轮机构行星架的假想齿数在式(4)中,假设固定内齿圈,使n3=0,代入式(5)得式(6):n1/nH=(Z1+Z3)/Z1 式(5)又:i1H=n1/nH=ZH/Z1 式(6)联解式(5)、(6)可得出:ZH=Z1+Z3即“行星架的假想齿数是太阳轮齿数和内齿圈齿数之和”,注意,这一结论只适用于单级行星齿轮机构,在双级行星齿轮系就不适用了。
3.单排单级行星齿轮机构运动状态分析(1)太阳轮固定(n1=0),行星架驱动,内齿圈输出:将n1=0代入式(4),有i=nH/n3=Z3/(Z1+Z3),传动比小于1,即为同向增速运动。
(2)太阳轮固定(n1=0),内齿圈驱动,行星架输出:将n1=0代入式(4),有i=n3/nH=(Z1+Z3)/Z3,传动比大于1,即为同向减速运动。
(3)齿圈固定(n3=0),行星架驱动,太阳轮输出:将n3=0代入式(4),有i=nH/n1=Z1/(Z1+Z3),传动比小于1,即为同向增速运动。
(4)齿圈固定(n3=0),太阳轮驱动,行星架输出:将n3=0代入式(4),有i=n1/nH=(Z1+Z3)/Z1,传动比大于1,即为同向减速运动。
(5)行星架固定(nH=0),齿圈驱动,太阳轮输出:将nH=0代入式(4),有i=n3/n1=-Z1/Z3,传动比小于1,且为负值,即为反向增速运动。
(6)行星架固定(nH=0),太阳轮驱动,齿圈输出:将nH=0代入式(4),有i=n1/n3=-Z3/Z1,传动比大于1,且为负值,即为反向减速运动。
现将单排单级行星齿轮机构在不同状态下的旋转速度和方向总结于表2。
三.单排双级行星齿轮机构1.单排双级行星齿轮机构的传动比单排双级行星齿轮机构与单排单级行星齿轮机构相比,多了一只啮合齿轮, 如图2所示。
同样根据转换法,对于多级啮行星齿轮系,我们通过单排单级行星齿轮机构传动比的计算公式,可以推出如下公式:iGKH=nGH/nKH=(nG-nH)/(nK-nH)=(-1)m(从G到K所有的从动齿轮数乘积)/(从G到K所有的主动齿轮数乘积),(式中m为从G到K啮合齿轮的对数)式(7)对于单排双级行星齿轮机构,m=2,从式(7)我们可以得出单排双级行星齿轮机构的运动方程式为:i13H=n1H/n3H=(nnH)/(n3-nH)=(-1)2Z2Z3/Z1Z2=Z3/Z1 式(8)2.单排双级行星齿轮机构行星架的假想齿数在式(8)中,假设固定内齿圈,使n3=0,代入式(8)得式(9):n1/nH=(Z3-Z1)/Z1 式(9)又:i1H=n1/nH=ZH/Z1 式(10)联解式(9)、(10)可得出:ZH=Z3-Z1即单排双级行星齿轮机构中,行星架的假想齿数是内齿圈齿数减去太阳轮齿数。
可见,单排双级行星齿轮机构的速比计算公式和行星架的假想齿数与单排单级行星齿轮机构是不同的,这一点在本文后面不同车型自动变速器复杂行星齿轮机构传动比的计算时非常重要。
3.单排双极行星齿轮机构运动状态分析对于单排双级行星齿轮机构,有Z3>Z1,(Z3-Z1)<Z3,但(Z3-Z1)与Z1的大小比较不确定,所以在下面的旋转规律分析中,有些条件不具备的情况没有列出增速还是减速。
(1)太阳轮固定(n1=0),行星架驱动,内齿圈输出:将n1=0代入式(8),有i=nH/n1=Z1/(Z1-Z1),传动比大于1且为正,即为同向减速运动。
(2)太阳轮固定(n1=0),内齿圈驱动,行星架输出:将n1=0代入式(8),有i=n1/nH=(Z3-Z1)/Z3,传动比小于1且为正,即为同向增速运动。
(3)齿圈固定(n3=0),行星架驱动,太阳轮输出:将n3=0代入式(8),有i=nH/n1=-Z1/(Z3-Z1),传动比为负,但是大于还是小于1不确定,故为反向运动。
(4)齿圈固定(n3=0),太阳轮驱动,行星架输出:将n3=0代入式(8),有i=n1/nH=-(Z3-Z1)/Z1,传动比为负,但是否大于或小于1不确定,故为反向运动。
(5)行星架固定(nH=0),齿圈驱动,太阳轮输出:将nH=0代入式(8),有i=n3/n1=Z1/Z3,传动比小于1,且为正值,即为同向增速运动。
(6)行星架固定(nH=0),太阳轮驱动,齿圈输出:将nH=0代入式(8),有i=n1/n3=Z3/Z1,传动比大于1,且为正值,即为同向减速运动。
现将单排双级行星齿轮机构的旋转速度和方向总结于表3。
对于单排双级行星齿轮机构,有Z3>Z1,(Z3-Z1)<Z3,但(Z3-Z1)与Z1的大小比较不确定,所以在下表的旋转规律中,有些条件不具备的情况没有列出增速还是减速。
四.复杂行星齿轮机构由以上行星齿轮机构传动比分析可知,简单的行星齿轮机构不能满足汽车行驶时对不同速比的要求,因此在实际应用中常常采用多个单排行星齿轮机构进行串、并联或换联主从动构件的方法组成更为复杂的行星齿轮机构,来满足汽车行驶挡位的需要。
将两个单排单级行星齿轮机构组合起来形成的双排单级行星齿轮机构,称为辛普森结构;将一个单排单级行星齿轮机构和一个单排双级行星齿轮机构或由两个单排双级行星齿轮机构按特定的方式组合起来,称为拉维那式行星齿轮机构。
以上介绍的是简单的行星齿轮机构的运动规律分析及传动比的计算方法,实际应用的复杂行星齿轮机构将在各车型动力传递分析中介绍。
赛欧AF13型自动变速器动力传递路线分析发布时间: 2009-12-02 11:59 | 编辑: 汽车乐 | 查看: 91次来源: 网络上海通用别克赛欧装备的AF13型自动变速器是日本Aisin AW公司生产的产品,该型自动变速器在Aisin AW公司内部的识别号为60-40LE。
AF13自动变速器的主要规格参数见表1。
AF13自动变速器采用拉维那式行星齿轮机构,它将一个单排单级行星齿轮机构和一个单排双级行星齿轮机构按特定的方式组合起来,如图1所示。
AF13自动变速器换挡执行元件包括4个离合器、2个制动器和2个单向离合器,换挡执行元件名称及作用见表2。
因资料来源不同,AF13自动变速器同一换挡执行元件可能有不同的名称,本文都有采用,只要其英文缩写一致就是同一元件。
由图1可知,AF13自动变速器前端(右侧)是一个单排双级行星齿轮机构,后端(左侧)是一个单排单级行星齿轮机构,它们共用一个行星架。
其前、后排太阳轮相连为一体,齿数不同,但是转速相同。
行星齿轮机构共有4个可运动部件,分别为:后排(小)内齿圈、大/小太阳轮(前/后一体)、前排(大)内齿圈、输出行星架(前/后共用,为动力输出部件),因输出行星架是动力输出端,它既不能固定也不能驱动。
在不同挡位,各部件的状态见表3。
原文网址:/20/n-37820.html赛欧AF13型自动变速器动力传递路线分析发布时间: 2009-12-02 11:59 | 编辑: 汽车乐 | 查看: 89次来源: 网络AF13自动变速器动力传递示意图如图2所示;不同挡位时,各换挡执行元件的状态见表4。