直流锅炉的启动系统介绍
- 格式:pdf
- 大小:140.90 KB
- 文档页数:3
直流锅炉启动控制系统介绍2016.51带循环泵的启动系统1.1系统介绍对于配置带循环泵的启动锅炉,在锅炉的启动及低负荷运行阶段,炉水循环确保了在锅炉达到最低直流负荷之前的炉膛水冷壁的安全性。
当锅护负荷大于最低直流负荷时,一次通过的炉膛水冷壁质量流速能够对水冷壁进行足够的冷却。
启动系统主要由除氧器、给水泵、大气式扩容器、集水箱、启动循环泵、启动分离器等组成,具体流程图见图3在炉水循环中,由分离器分离出来的水往下流到锅炉启动循环泵的人口,通过泵提高压力来克服系统的流动阻力和省煤器最小流量控制阀(V-507)的压降,水冷壁的最小流量是通过省煤器最小流量控制阀来实现控制的,即使当一次通过的蒸汽量小于此数值时,炉膛水冷壁的质量流速也不能低于此数值。
炉水再循环提供了锅炉启动和低负荷时所需的最小流量,选用的循环泵能提供锅炉冷态和热态启动时所需的体积流量,在启动过程中,并不需要像简单疏水扩容器系统那样往扩容器进行连续地排水。
循环泵的设计必须提供足够的压头来建立冷态和热态启动时循环所需的最小流量。
从控制阀出来的水通过省煤器,再进人炉膛水冷壁,总体流程如图2所示,在循环中,有部分的水蒸气产生,然后此汽水混合物进人分离器,分离器布置靠近炉顶,这样可以提供循环泵在任何工况下(包括冷态启动和热态再启动)所需要的净吸压头,分离器的较高的位置同样也提供了在锅炉初始启动阶段汽水膨胀时疏水所需要的静压头。
在图3所示启动系统图中,循环泵和给水泵是申联布置,这样的布且具有以下优点:(1)进人循环泵的水来自下降管或锅炉给水管或同时从这两者中来; 这样的布置使得在各个启动过程中,总是有水流过循环泵,泵的流量恒定,无须设置任何最小流盆的泵循环回路及其必须的控制设备;(2)锅炉给水的欠熔可增加循环泵的净吸压头;当分离器由湿态转向干态时,疏水流量为0,但此时循环泵能从给水管道中得到足够的流量,可保证分离器平滑地从干态转向湿态,无须在此时进行循环泵的关停操作。
600MW机组锅炉启动系统施晶一、概述直流锅炉靠给水泵的压力,使锅炉中的水、汽水混合物和蒸汽一次通过全部受热面。
超临界直流锅炉在启动前必须由锅炉给水泵建立一定的启动流量和启动压力,强迫工质流经受热面。
由于直流锅炉没有汽包作为汽水分离的分界点,水在锅炉管中加热、蒸发和过热后直接向汽轮机供汽。
因此,直流锅炉必须设置一套特有的启动系统,以保证锅炉启、停过程中或低负荷运行过程中水冷壁的安全和正常供汽。
1、启动压力直流锅炉的启动压力指锅炉启动前在水冷壁系统中建立的初始压力,它的选取与下列因素有关:(1)、受热面的水动力特性。
随着压力的提高,能改善或避免水动力不稳定,减轻消除管间脉动。
(2)、汽水膨胀现象。
启动压力越高,汽水比体积差越小,汽水膨胀越小,可以缩小启动分离器的容量。
(3)、给水泵的电耗。
启动压力越高,启动过程中给水泵的电耗越大。
为了水动力稳定,避免脉动,希望启动压力高,但从减少给水泵电耗方面考虑,启动压力又不宜过高。
由于我厂锅炉采用了螺旋管圈水冷壁,启动压力对水动力影响很小,因此可选用零压力启动。
我厂锅炉启动系统采用了足够容量的排放阀(3A阀),可满足汽水膨胀时的排放控制。
2、启动流量直流锅炉的启动流量直接影响锅炉启动的安全性和经济性。
启动流量越大,工质流经受热面的质量流速越共,对受热面的冷却,改善水动力特性有利,但工质损失及热量损失也相应增加,同时启动系统的设计容量也要加大。
但流量过小,受热面冷却和水动力稳定就得不到保证,因此,选用启动流量的原则是在保证受热面得到可靠冷却和工质流动稳定的条件下,尽可能选择得小一些。
我厂锅炉启动流量为35%BMCR。
3、汽水膨胀现象直流锅炉的启动过程中工质加热、蒸发和过热三个区段是逐步形成的。
启动初期,分离器前的受热面都起加热水的作用,水温逐渐升高,而工质相态没有发生变化,锅炉出来的是加热水,其体积流量基本等于给水流量。
随着燃料量的增加,炉膛温度提高,换热增强,当水冷壁内某点工质温度达到饱和温度时,开始产生蒸汽,但在开始蒸发点到水冷壁出口的受热面中的工质仍然是水。
超临界直流锅炉启动系统详解一、超临界锅炉设置启动系统的目的超临界锅炉的启动系统是超临界机组的一个重要组成部分。
由于超临界锅炉没有固定的汽水分离点,在锅炉启动过程中和低负荷运行时,给水量会小于炉膛保护及维持流动稳定所需的最小流量,因此必须在炉膛内维持一定的工质流量以保护水冷壁不致过热超温。
设置启动系统的主要目的就是在锅炉启动、低负荷运行及停炉过程中,通过启动系统建立并维持炉膛内的最小流量,以保持水冷壁水动力稳定和传热不发生恶化,特别是防止发生亚临界压力下的偏离核态沸腾和超临界压力下的类膜态沸腾现象,保护炉膛水冷壁,同时满足机组启动及低负荷运行的要求。
二、启动系统的构成启动系统及容量的确定,是根据锅炉最低直流负荷、机组运行方式、质量流速的选取、以及工质的合理利用等因素确定的,本文介绍最低直流负荷(即本生点)为30%BMCR,采用带并联布置的再循环泵和大气式疏水扩容器的内置式启动分离启动系统,包括启动分离器、再循环泵、贮水箱、水位控制阀、截止阀、管道及附件等。
启动系统的主要管道包括:过冷水管道(383),循环泵入口管道(380),循环泵出口管道(381),高水位控制管道(341),循环泵再循环管道(382)及暖管系统管道(384)等。
启动系统中设置有循环泵,通过循环泵建立有效的工质循环,保持炉膛所需的最小流量。
给水经省煤器和炉膛加热后,工质流入汽水分离器,经汽水分离后的热水被循环泵重新送入省煤器。
采用循环泵可减少工质损失及热量损失,提高电厂的经济性,同时可减少启动时对锅炉的热冲击。
启动系统简图如下图所示。
本系统采用四只启动分离器,在锅炉启动过程中和低负荷运行时可进行有效的汽水分离。
启动分离器为圆柱形筒体结构,直立式布置。
封头采用球形结构。
筒体及封头材料均为SA335 P91。
分离器按全压设计,并充分考虑了由于内压力、温度及外载变化引起的疲劳。
分离器的设计除考虑汽水的有效分离外,还充分考虑了启动时的汽水膨胀现象。
锅炉启动系统培训教材一、概述启动系统是为解决直流锅炉启动和低负荷运行而设置的功能组合单元,它包括启动分离器、启动循环泵及其它汽侧和水侧连接管、阀门等。
其作用是在水冷壁中建立足够高的质量流量,实现点火前循环清洗,保护蒸发受热面,保持水动力稳定,还能回收热量,减少工质损失。
启动系统按正常运行时须切除和不切除分为两类,即外置式和内置式。
二、启动分离器和贮水箱本锅炉启动分离器系统为内置式。
锅炉负荷小于30%B-MCR直流负荷时,分离器起汽水分离作用,分离出的蒸汽进入过热器,水则通过连接管进入贮水箱,贮水箱中的水由二只水位控制阀控制排入扩容器或与给水混合后进行再循环,以保证水冷壁中的最小流量为30%BMCR。
锅炉在30%BMCR负荷以上运行时,分离器呈干态运行,只作为一个流通元件,分离器按锅炉全压设计。
启动分离器为立式筒体,共四只,布置在锅炉前部的上方,分离器设计压力29.6MPa,设计温度是440℃,分离器外径为Ø762mm,壁厚为120mm(理论计算最小壁厚为113.46mm),筒身高度为2600mm,材料为15CrMoG。
从水平烟道出口集箱出来的介质由6根下倾15°的切向引入管引入分离器内。
在分离器的底端轴向布置有一根出口导管,将分离出来的水引至贮水箱;在分离器的上端轴向也布置有1根出口导管,将蒸汽引至顶棚过热器入口集箱。
图2-3-1 启动分离器贮水箱共一只,也为立式筒体,外径为Ø762mm,壁厚为120mm,高度为21000mm,材料为SA-335P12,在其下部共有4根径向导管分两层引入四只分离器的疏水。
通过水位控制阀的控制,贮水箱内保持一定的水位,为分离器提供稳定的工作条件。
贮水箱悬吊于锅炉顶部框架上,下部装有导向装置,以防其晃动。
三、启动系统本锅炉启动系统为内置式带再循环泵系统。
启动系统是为了满足锅炉在启动过程中和低负荷以再循环方式运行,此时工质流程是:水从省煤器入口集箱进入,经过省煤器、炉膛到汽水分离器,经汽水分离后,分离下来的水通过分离器下部的贮水箱由再循环泵再次送入省煤器,分离出来的蒸汽进入顶棚包墙系统,然后依次流经一级过热器、二级分隔屏过热器和末级过热器,最后由主汽管道引出。
HG195225.4-YM1型锅炉启动系统1.概述启动系统是为解决直流锅炉启动和低负荷运行而设置的功能组合单元,它包括启动分离器、炉循环泵及其它汽侧和水侧连接管、阀门等。
其作用是在水冷壁中建立足够高的质量流量,实现点火前循环清洗,保护蒸发受热面,保持水动力稳定,还能回收热量,减少工质损失。
启动系统按正常运行时须切除和不切除分为两类,即外置式和内置式。
2.结构特点我公司锅炉的启动系统为内置式,结构简单,易于控制。
容量为35%B-MCR,以与锅炉水冷壁最低质量流量相匹配。
启动分离器(如图3-7)为圆形筒体结构,直立式布置,内设有阻水装置和消旋器。
分离器的分离原理为:蒸汽由周向的六根引入管进入分离器,由于这六根管成切向布置,蒸汽在分离器中高速旋转,水滴因所受离心力大被甩向分离器内壁流下,经底部的轴向引出管引出,饱和蒸汽则由顶部的轴向引出管引出。
该型式除有利于汽水的有效分离,防止发生分离器蒸汽带水现象以外,还有利于渡过汽水膨胀期。
启动系统组成(如图3-8)1)四只汽水分离器(布置于炉前标高57.672m处)及其引入引出管系统。
分离器外径为φ660mm,壁厚为82mm,高度为4m,材料为SA-335 P22。
2)一只立式贮水箱。
其外径为φ660mm,壁厚为82mm,高度为18m,材料为SA-335 P22。
3)由贮水箱底部引出的启动再循环泵入口管道及溢流总管。
4)通往循环泵的入口管道及出口管道上的水位调节阀及截止阀。
循环泵出口管道到贮水箱上的最小流量再循环管道及流量测量装置。
5)通往扩容器的高容量溢流管和低容量溢流管,各装有一调节阀(一大一小)及截止阀。
6)溢流管暖线管(热备用管)。
7)启动再循环泵。
8)锅炉疏水扩容器。
9)自省煤器入口到循环泵入口管道的过冷水连接管,流量约为1-2%的泵流图3-8 启动循环系统流程3.主要部件和管道的用途1)分离器及其引入与引出管系统:启动期间由水冷壁出口集箱引出的两相介质由引出管引至四只汽水分离器。
超临界锅炉启动控制系统1.概述直流锅炉没有汽包,启动时间因而可以大大缩短。
直流锅炉在进行滑压参数启动时,锅炉和汽轮机在同一时间内对参数的要求不同,锅炉要求有一定的启动流量和启动压力;汽机在启动时主要暖机和冲转,对蒸汽的压力和流量要求不高,因此直流锅炉安装了带有分离器的启动旁路系统。
启动旁路系统的启动过程如下:1.1循环冲洗:主要清洗沉积在受热面上的杂质、盐分和因腐蚀生成的氧化铁。
当省煤器入口和分离器出口水的电导率<1μS/cm或含铁量<100mg/kg时,清洗完成。
1.2锅炉点火及分离器升压:清洗完成后,启动燃油系统,启动二次风机使通风量维持在37%MCR;调节给水使工质流量维持在25%MCR,锅炉点火后,工质温度逐渐升高,当工质开始汽化时,体积将突然增加,使分离器前受热面出口温度也达到饱和温度,此时便打开相应的阀门以维持分离器储水箱水位。
当分离器有蒸汽发生时,便将相应的阀门投入自动运行,调整燃油控制阀以及主蒸汽压力调节阀等,使锅炉升压,将压力控制在要求的范围内。
1.3汽轮机冲转、暖机:当分离器压力上升到一定值后,对蒸汽管道进行预热,当汽轮机前蒸汽参数达到规定数值时,就可以将燃油系统过渡到给煤系统,对汽轮机进行冲转、暖机、升速、同步以及升负荷等。
1.4直流运行:2.直流炉的启动、运行过程锅炉给水泵阀门编号描述①锅炉给水调节阀………………………………给水流量控制②启动分离器贮水罐溢流调节阀………………贮水罐水位控制③高压汽机旁路阀……………………………主蒸汽压力控制④低压汽机旁路阀……………………………再热蒸汽压力控制锅炉给水泵1) 低压管路清洗①确认各阀门状态(开或闭);②开启冷凝水泵;③启动主汽机和锅炉给水泵动力汽机,并向各汽机送汽用于密封;④冷凝器抽为真空;⑤清洗冷凝器和除氧器之间的低压管路;⑥持续清洗直至冷凝器入口水混浊度低于 3 ppm 。
锅炉给水泵2) 炉前段清洗①确认各阀门状态(开或闭);②清洗高压加热器段管路。
超临界直流锅炉启动特点及启动系统1.直流锅炉与汽包锅炉的启动区别汽包锅炉有自然循环锅炉和强制循环锅炉。
自然循环锅炉蒸发受热面内的工质流动依靠下降管中的水和上升管(水冷壁)中的汽水混合物之间的密度差产生的压力差进行循环流动。
强制循环锅炉蒸发受热面内的工质除了依靠水和汽水混合物的密度差以外,主要依靠炉水循环泵的压头进行汽水循环流动。
自然循环锅炉和强制循环锅炉均带有一个很大的汽包对汽水进行分离,汽包作为分界点将锅炉受热面分为加热蒸发受热面和过热受热面两部分。
直流锅炉是靠给水泵的压力,使锅炉中的工质,水、汽水混合物和蒸汽一次通过全部受热面。
它只有互相连接的受热面,而没有汽包。
自然循环锅炉在点火前锅炉上水至汽包低水位,此时水冷壁中的水处于静止状态,锅炉点火后,水冷壁吸收炉膛辐射热,水温升高,水循环开始建立。
随着燃料量的增加,蒸发量增大,水循环加快,受热强的水冷壁管内工质流速增加。
因此,启动过程水冷壁冷却充分,运行安全。
强制循环锅炉在锅炉上水后点火前,循环泵就开始工作,水冷壁系统建立了循环流动,从而保证了水冷壁在启动过程中的安全。
直流锅炉在启动前必须由锅炉给水泵建立一定的启动流量和启动压力,强迫工质流经受热面。
只有这样才能在启动过程中使受热面得到冷却。
但是,直流锅炉不像汽包锅炉那样有汽包作为汽水固定的分界点,水在锅炉管中加热、蒸发千口过热后直接向汽轮机供汽,而在启停或低负荷运行过程中有可能提供的不是合格蒸汽,可能是汽水混合物,甚至是水。
因此,直流锅炉必须配套一个特有的启动系统,以保证锅炉启停和低负荷运行期间水冷壁的安全和正常供汽。
2.直流锅炉启动特点启动压力启动压力一般指启动前在锅炉水冷壁系统中建立的初始压力。
它的选择除与锅炉型式有关,还与下列因素有关:1)受热面内的水动力特性直流炉蒸发受热面内的水动力特性与其工作压力有关,随着压力的提高,能改善或避免水动力不稳定性,减轻或消除管间脉动。
2)工质膨胀现象启动压力越高,汽水比容差越小,工质膨胀量越小,这样启动分离器的容量可以相对选择的小一些。