环形跑道
- 格式:doc
- 大小:194.00 KB
- 文档页数:11
行程问题——环形跑道环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。
1、相遇问题:题型特点:甲、乙两人同时从同地反向出发。
解题规律:两人相遇时一起走一圈(跑道周长).之后每见面一次,就一起走1圈;见面n次,两人一起走n个周长。
2、追及问题:题型特点:甲、乙两人同时从同地同向出发。
解题规律:开始出发时由于速度不同两人之间的距离会越来越远,之后快的会追上慢的,此时快的人比慢的人多走1圈(路程差为跑道周长)。
之后每追上一次,就多走1圈;追上n次,快的就比慢的多走n个周长。
3、需要处理的问题:a、环形跑道中速度、时间、路程之间的关系处理。
b、多次追及问题的处理.c、不同地点出发的追及问题。
1、一个圆形荷花池的周长为400米,甲、乙两人绕荷花池顺时针跑步.甲每分钟跑250米,乙每分钟跑200米,现在甲在乙后面50米,甲第二次追上乙需要多少分钟?2、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑140米,两人同时反向出发,经过几分钟两人相遇?3、上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,小亚第一次追上小胖时,小胖跑了多少米?4、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第2次追上晶晶时,冬冬跑了多少圈?5、甲、乙二人骑自行车从环形公路上的同一地点出发,背向而行。
现在已知甲走一圈的时间为75分钟,如果在出发后第50分钟甲、乙两人相遇,那么乙走一圈的时间是多少分钟?6、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。
现在已知甲走一圈的时间是70 分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟?7、两名运动员在湖的周围环形道上练习长跑.甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过几分钟两人相遇?8、在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲的速度是多少米/秒?9、环形跑道的周长是800米,甲乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米。
环形跑道中的相遇问题与追及问题以及综合题型一、环形路线中同地出发的环形相遇问题周期性:1、环形跑道中的相遇问题:路程和:每相遇一次,两人合走一圈;环形跑道一周的长=速度和×相遇时间2、相遇时间:毎隔相同时间,相遇1次;相遇时间=环形跑道一周的长÷速度和3、第n次相遇所花的时间=相遇一次的时间×n某点与出发点之间的距离:1、看一个运动对象,根据运动时间求出路程;2、用带余除法求圈数,看余数;3、看小圈。
1.一条环形跑道长500米,萱萱每分钟跑260米,小明每分钟跑240米,两人同时同向出发,经过多长时间两人相遇?2.环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?3.阳光小学圆形操场跑道的周长是1000米,小光与小阳同时同地背向而行.小光每分钟走56米,小阳每分钟走44米.经过多少分钟两人第一次相遇?经过多少分钟两人第六次相遇?4.小光和小阳在周长为2000米的环形跑道上同时同地背向而行.小光的速度是200米/分,小阳的速度是300米/分.经过多少分钟两人第一次迎面相遇?经过多少分钟两人第五次迎面相遇?5.小美的速度是4米/秒,小爱的速度是3米/秒。
跑道一圈长度是350米,那么她俩从同一地点同时反向出发,经过多长时间她们第4次相遇?第10次呢?6.阿呆、阿瓜两人在周长为600米的环形跑道上同时同地背向而行。
阿呆的速度是70米/分,阿瓜的速度是50米/分.两人第三次迎面相遇时,阿呆距离出发点多少米?7.高老师、张老师两人在周长为560米的环形跑道上同时同地背向而行。
高老师的速度是60米/分,张老师的速度是80米/分.两人第五次迎面相遇时,高老师距离出发点多少米?8.小美和小爱沿着周长为350米的操场跑,小美的速度是4米/秒,小爱的速度是3米/秒,若两人同时从同一点出发,背向而行,那两人第一次相遇的地点距离出发点有多远?9.周长为400米的圆形跑道上,有相距100米的A、B两点,甲乙两人分别从A、B两点同时相背而行,速度分别是2米/秒和3米/秒.请问:多少秒后两人第三次相遇?二、环形路线中同地出发的追及问题周期性:1、路程差:每追及一次,路程相差一圈;2、追及时间:每隔相同时间,追及1次;3、第n次追及所花的时间=追及一次的时间 x n某点与出发点之间的距离:1、看一个运动对象,根据运动时间求出路程;2、用带余除法求圈数,看余数;3、看小圈。
环形跑道公式跑步是最古老的运动形式,追溯到古埃及、古希腊时期,甚至脊椎动物出现的早期,都有某种形式的跑步运动。
跑步在古代几乎没有严格的规定,大家都可以随意跑,但在近代,跑步变得越来越规范,出现了环形跑道,并且提出了环形跑道公式。
首先,环形跑道的起源可以追溯到19世纪90年代,这个时期,环形跑道的设计主要是为了解决竞技马拉松的运动路线问题。
其中,环形跑道的最早的实现是格拉斯哥的一个环形跑道,这个环形跑道有一条直径约有2500英尺的路线,全部由草坪覆盖,在运动过程中,它能够和谐有序地运行。
现在,环形跑道的规模相对更大一点,不少环形跑道的直径都在5英里以上,用来满足不同程度的运动员。
在保证运动安全的情况下,以及考虑到路面材料的使用,环形跑道公式也就出现了。
首先,要保证运动安全,环形跑道的宽度和半径都是有规定的,根据《国际田径联合会竞技规则》,环形跑道的宽度当中,跑道的宽度规定在2.5米宽,中间的中央分割区有1.22米宽,而两边的行走路的宽度也有规定,规定为0.76米宽。
接着,在半径的规定上,根据联合会的规定,每米的半径宽度都要符合3.3米的规定。
最后,在路面材料的规定上,其实也有一定的要求,首先是塑胶跑道,塑胶跑道的主要特征就是耐磨,而且具有很好的抗滑性,让运动员的脚步可以放心地踏上。
另外,在跑道的外层,还要铺一层坚固的沥青路面,用以防止跑道出现水泥松脱等状况。
至此,完整的环形跑道公式就出现了,它主要由跑道宽度、半径和路面材料三个方面构成。
只要按照这些规定来建设,就可以为运动员们带来一个安全、舒适、规范、便利的跑步环境。
现如今,运动场馆中的环形跑道正在发挥着越来越重要的作用,不仅让运动员们可以安全、便捷的训练,同时也有利于国家的计划性竞技运动的规范和发展。
希望我们能够努力,利用环形跑道公式,为我们的体育事业发展贡献力量。
环形跑道追及问题解题技巧
1. 嘿,大家知道吗,环形跑道追及问题其实没那么复杂啦!就比如说啊,甲在跑道上拼命跑,乙在后面追,这时候咋办呢?关键就是要算出速度差呀!想想看,要是你追别人,是不是得看自己比别人快多少才能知道啥时候能追上呀!所以速度差很重要哦!
2. 哇塞,遇到环形跑道追及问题不要慌呀!可以先找关键信息呀!像甲和乙的起始位置,他们的速度。
就好像你找宝藏,得先知道宝藏大概在啥地方,还有怎么去找到它的线索嘛!比如说,甲在乙前面100 米,甲每秒跑5 米,乙每秒跑 7 米,这不就可以开始算啥时候能追上了嘛!
3. 嘿呀,解决环形跑道追及问题还有一个诀窍哦,就是要算时间呀!时间就像是一把钥匙,能打开解决问题的大门呢!比如甲跑一圈要 60 秒,乙跑一
圈要 50 秒,那等乙跑完一圈的时候甲跑了多少呢?好好想想这个问题呀,
是不是很有趣呢?
4. 哦哟,环形跑道追及问题可别想得太可怕啦!要把它当成一个有趣的挑战嘛!就好像打游戏,要一关一关过呀!比如甲已经跑了半圈,乙才开始追,那这难度不就增加啦,但咱不怕呀,肯定能算出乙啥时候追到的,对不对呀!
5. 哈哈,记住啦,解决环形跑道追及问题别忘了画图呀!这就跟画地图一样,有了地图你才能知道怎么走,哪里是近路呀!比如说画出甲、乙在跑道上的位置和跑的方向,那答案是不是就清晰很多啦!
6. 哎呀呀,环形跑道追及问题其实真的不难呀!只要掌握好方法,就像掌握了一把宝剑!比如看清楚是同向追还是反向追,这很关键哟!就好像走路,知道往哪个方向走才能到目的地嘛!好啦,大家一定要记住这些技巧哦!我的观点结论就是,环形跑道追及问题并不可怕,只要学会方法就能轻松解决!。
环形跑到问题1、知识点总结(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题【例题1】一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?黄莺和麻雀每分钟共行66+59=125(千米),那么周长跑道里有几个125米,就需要几分钟,即500÷(66+59)=4(分钟).【巩固】小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.⑴小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?⑵小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?⑴两人相遇,也就是合起来跑了一个周长的行程.小张的速度是500÷1-200=300(米/分).⑵在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是:500÷(300-200)=5(分).300×5÷500=3(圈).【例题2】上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?第一次追上时,小亚多跑了一圈,所以需要300÷(6-4)=150秒,小亚跑了6×150=900(米)。
小胖跑了4×150=600(米);第一次追上时,小胖跑了2圈,小亚跑了3圈,所以第二次追上时,小胖跑4圈,小亚跑6圈。
【巩固】一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?400÷(450-250)=2(分钟).【例题3】在300米的环形跑道上,田奇和王强同学同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?同向而跑,这实质是快追慢.起跑后,由于两人速度的差异,造成两人路程上的差异,随着时间的增长,两人间的距离不断拉大,到两人相距环形跑道的半圈时,相距最大.接着,两人的距离又逐渐缩小,直到快的追上慢的,此时快的比慢的多跑了一圈.背向而跑即所谓的相遇问题,数量关系为:路程和÷速度和=相遇时间.同向而行2分30秒相遇,2分30秒=150秒,两个人的速度和为:300÷150=2(米/秒),背向而跑则半分钟即30秒相遇,所以两个人的速度差为:300÷30=10(米/秒).两人的速度分别为:(10-2)÷2=4(米/秒), 10-4=6(米/秒)【巩固】在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?甲乙的速度和为:400÷40=10(米/秒),甲乙的速度差为:400÷200=2(米/秒),甲的速度为:(10+2)÷2=6(米/秒),乙的速度为:(10-2)÷2=4(米/秒).【例题4】两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。
第6讲环形跑道问题第一关求速度【知识点】1.环形跑道问题,从同一地点出发,如果是相向而行,则每相遇一次合走一圈(每隔第一次相遇时间就相遇一次);第几次相遇就合走几圈;如果是同向而行,则每多跑一圈就追上一次(每隔第一次追及时间就追上一次).第几次追上就多跑几圈.环形跑道:同向而行的等量关系:乙程﹣甲程=跑道长,背向而行的等量关系:乙程+甲程=跑道长.2.解题方法:(1)审题:看题目有几个人或物参与;看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后”就是从开始计时;看地点是指是同地还是两地甚至更多.看方向是同向、背向还是相向;看事件指的是结果是相遇还是追及相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助,一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断.追击问题中一个重要环节就是确定追上地点,从而找到路程差.比如“用10秒钟快比慢多跑100米”我们立刻知道快慢的速度差.这个是追击问题经常用到的,通过路程差求速度差(2)简单题利用公式(3)复杂题,尤其是多人多次相遇,一定要画路径图,即怎么走的线路画出来.相遇问题就找路程和,追击问题就找路程差.【例1】一圆形跑道周长300米,甲、乙两人分别从直径两端同时出发,若反向而行1分钟相遇,若同向而行5分钟甲可以追上乙,求甲、乙两人的速度?【答案】甲、乙的速度分别是180米/分,120米/分【例2】甲乙两人环绕周长是400米的跑道跑步,两人若从同一地点背向而行,经2分钟迎面相遇,两人若从同一地点同向而行,经20分钟追及相遇,求甲乙各自的速度.【答案】甲每分钟跑110米,乙每分钟跑90米【例3】甲、乙两人在环形跑道上跑步,他们的速度均保持不变,如果两人同时从两地出发相背而跑,4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需多少分钟?【答案】12【例4】甲、乙两人在400米的环形跑道上跑步,他们从同一地点出发,若同向而行,甲10分钟追上乙,若背向而行,甲2分钟与乙相遇.乙跑完一圈要多少分钟?【答案】5【例5】在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?【答案】两人跑一圈快的需要6分钟,慢的需要12分钟【例6】甲、乙两人绕环形跑道同时同地背向而行,甲每秒跑5米,乙每秒跑6米,已知甲与乙相遇后又跑了72米才回到原来出发地,求甲绕跑道一周需要多少秒?【答案】26.4【例7】甲、乙二人骑车同时从环形公路的某点出发,背向而行,已知甲骑一圈需40分,出发后25分两人相遇.如果两人的速度每分钟相差20米,那么环形公路的长度是多少米,乙骑一圈需要多少分钟?【答案】2000;【例8】小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.(1)小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?【答案】(1)300;(2)3【例9】甲、乙两人在400米长的环形跑道上跑步.甲以每分钟300米的速度从起点跑出1分钟时,乙从起点同向跑出,从这时起甲用5分钟赶上乙.乙每分钟跑多少米?【答案】280【例10】在一个环形跑道上有相距100米的甲、乙两个电动玩具车,两车同时出发同向而行,甲车在前,乙车在后,5分钟后乙车第一次追上甲车,又过了20分钟,乙车第二次追上甲车,此时甲车正好驶完一圈.那么乙车的速度为每分钟多少米?【答案】36【例11】有一个圆形跑道,甲、乙二人同时从一点出发,沿跑道向同一方向跑动,当甲跑完3圈到达出发点时恰好第一次追上乙,如果两人骑上自行车,每秒钟都快了6米,那么甲骑完6圈时恰好第一次追上乙,那么乙每秒钟跑多少米?【答案】4【例12】A与B沿着400米的圆形跑道跑步.A的速度是B速度的五分之三.他们同时从跑道上的同一点出发逆向而跑.200秒钟之后,他们第四次相遇.B的速度比A的速度每秒钟快多少米?【答案】2【例13】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.【答案】7米/秒【例14】一个圆的周长为70cm,甲、乙两只爬虫,从同一地点出发,同向爬行.甲爬虫以每秒4cm的速度不停地爬行,乙爬虫爬行15cm后,立即反向爬行,并且速度增加1倍,在离出发点30cm处与甲爬虫相遇.求乙爬虫原来的速度。
环形跑道问题一、知识点总结基本公式:路程 =速度×时间;路程÷时间 =速度;路程÷速度 =时间关键问题:确定运动过程中的位置和方向。
相遇问题(相向):相遇时间 =路程和÷速度和追及问题(同向):追及时间=路程差÷速度差注:不只是追及问题中我们用路程差÷速度差 =追及时间,实际在很多两人同时行进一段时间,不同的速度必然会造成路程不同,我们都可以用这个公式:路程差÷速度差 =所行时间环形跑道问题,从同一地点出发,如果是相向而行,则每相遇一次合走一圈(每隔第一次相遇时间就相遇一次);第几次相遇就合走几圈;如果是同向而行,则每多跑一圈就追上一次(每隔第一次追及时间就追上一次).第几次追上就多跑几圈。
这个等量关系往往成为我们解决问题的关键。
1、相遇问题题型特点:甲、乙两人同时从同地反向出发。
解题规律:两人相遇时一起走一圈(跑道周长)。
之后每见面一次,就一起走 1 圈;见面 n 次,两人一起走n 个周长。
2、追及问题题型特点:甲、乙两人同时从同地同向出发。
解题规律:开始出发时由于速度不同两人之间的距离会越来越远,之后快的会追上慢的,此时快的人比慢的人多走 1 圈(路程差为跑道周长)。
之后每追上一次,就多走 1 圈;追上 n 次,快的就比慢的多走 n 个周长。
二、做题方法:( 1)审题:看题目有几个人或物参与;看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后”就是从开始计时看地点是指是同地还是两地甚至更多。
看方向是同向、背向还是相向看事件指的是结果是相遇还是追及相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助,一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断。
追击问题中一个重要环节就是确定追上地点,从而找到路程差。
比如“用 10 秒钟快比慢多跑 100米”我们立刻知道快慢的速度差。
一个周长为400米的正方形ABCD跑道,甲在B点,乙在A点,甲的速度是每秒25米,乙的速度是是每秒5米,问多长时间后甲乙第一次相遇?分析:因为是环形跑道,所以方向为逆时针,还是顺时针,不知道,所以需要分类讨论.(对于不确定的事情,又合理的问题需要分类讨论)逆时针时:可以转化为一般形成问题中的相遇问题。
把BC、CD、AD拉直,问题转化为一般的行程问题:转化为甲乙相向而行的相遇过程,其中相距的路程是300米.等量关系:甲的路程+乙的路程=相距路顺时针时:分析:因为甲的速度快,乙的速度慢,乙是追不上甲的,要想相遇,必须是甲追上乙,转化行程问题的追及问题:依上图,问题可以转化为:甲在A点,乙在B点,同时向右跑的追及问题,开始甲乙相距300米.等量关系:甲的路程-乙行的路程=相距路程转化为一般的行程问题后,问题可以迎刃而解。
这里体现了一个数学思想---转化思想,把未知的知识转化为已知的知识,把复杂的问题,转化为简单的问题,是获得新知的一个很重要的手段。
环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
封闭环形上的相遇问题:环形周长÷速度和=相遇时间封闭环形上的追及问题:环形周长÷速度差=追及时间例1:如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点60米.求这个圆的周长.解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D 是80×3=240(米).240-60=180(米).180×2=360(米).答:这个圆的周长是360米.甲,乙两人从同一线上顺时针绕300米环形跑道跑道,甲每秒跑6米,乙每秒4米,问甲第2次追上乙时甲跑了几圈?解二次追上相当于超了对手两圈,即列式:2*300除以(6减4)等于300秒;300秒*6米等于1800米等于六圈例3:在一环形跑道上,甲从A点,乙从B点同时反向而行,6分钟后两人相遇,再过4分钟甲到达B 地,又过8分钟两人再次相遇,甲、乙各行一周各需多少分钟?【解析】:如下图,蓝色线条是甲走的路程,图中标注的时间是指甲走过每一段路程花费的时间;红色线条是乙走过的路程;细线条是第一次相遇前甲乙两人走过的路程,粗线条是第一次相遇和再次相遇之间两人走过的路程。
从上图中可以看出,从第一次相遇到再次相遇,走了(8+4)分钟,两人合走的路程正好是一周。
甲乙合走A、B两点间路程(黄色)用了6分钟。
甲乙两人的速度是一定的,路程与时间成正比例。
(8+4)÷6=2所以环形跑道一周的路程正好是A、B间路程(黄色)的2倍。
甲从A走到B用了(6+4)分钟,所以甲走一周需要时间:(6+4)×2=20(分)。
从B点到第一次相遇地点,乙走了6分钟,甲走了4分钟,即甲走1分钟的路程,乙需要(6÷4)分钟,所以乙走完全程需要时间:6÷4×20=30(分)。
小张和小王各以一定速度,在周长为500米的环形跑道上跑步。
小王的速度是180米/分。
(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?解答:(1)两人相遇,也就是合起来跑了一个周长的行程。
75秒=1.25分。
小张的速度是500÷1.25-180=220(米/分)。
(2)在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是500÷(220-180)=12.5(分)。
220×12.5÷500=5.5(圈)。
答:(1)小张的速度是220米/分;(2)小张跑5.5圈后才能追上小王。
例5:一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上。
它们同时出发,按顺时针方向沿着圆周爬行。
A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置?解答:先考虑B与C这两只爬虫,什么时候能到达同一位置。
开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米。
30÷(5-3)=15(秒)。
因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要90÷(5-3)=45(秒)。
B与C到达同一位置,出发后的秒数是15,60,105,150,195,……再看看A与B什么时候到达同一位置。
第一次是出发后30÷(10-5)=6(秒),以后再要到达同一位置是A追上B一圈。
需要90÷(10-5)=18(秒),A与B到达同一位置,出发后的秒数是6,24,42,60,78,96,…对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置。
答:3只爬虫出发后60秒第一次爬到同一位置。
例6;图上正方形ABCD是一条环形公路。
已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时。
从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇。
如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇。
求A至N距离:B至N距离=?解答:两车同时出发至相遇,两车行驶的时间一样多。
题中有两个“相遇”,解题过程就是时间的计算。
要计算方便,取什么作计算单位是很重要的。
设汽车行驶CD所需时间是1。
根据“走同样距离,时间与速度成反比”,可得出汽车行驶BC所需时间是=60/120=1/2汽车行驶AB所需时间是=60/90=2/3汽车行驶AD所需时间是=60/80=3/4。
分数计算总不太方便,把这些所需时间都乘以24。
这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18。
从P点同时反向各发一辆车,它们在AB中点相遇。
P→D→A与P→C→B所用时间相等。
PC上所需时间-PD上所需时间=DA所需时间-CB所需时间=18-12=6。
而(PC上所需时间+PD上所需时间)是CD上所需时间24。
根据“和差”计算得PC上所需时间是(24+6)÷2=15,PD上所需时间是24-15=9。
现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等。
M是PC中点。
P→D→A→N与C→B→N时间相等,就有BN上所需时间-AN上所需时间=P→D→A所需时间-CB所需时间=9+18-12= 15。
BN上所需时间+AN上所需时间=AB上所需时间=16。
立即可求BN上所需时间是15.5,AN所需时间是0.5。
A至N距离:B至N距离=A至N所需时间:B至N所需时间=0.5:15.5=1/31。
甲乙在椭圆形跑道上训练,同时从同一地点出发反向而跑,每人跑完第一圈回到出发点立即回头加速跑第二圈。
跑第一圈时,乙的速度是甲的速度的2/3,甲跑第二圈时速度比第一圈提高了1/3,乙跑第二圈时速度比第一圈提高了1/5,已知甲乙两人第二次相遇点距第一次相遇点190米,问这条椭圆形跑道长多少米?解:乙的速度是甲的速度的2/3,设甲速为1,那么乙速是2/3,他们的速度比是甲:乙=1:2/3=3:2相遇问题,第一次相遇在据甲出发点占全程的3/(2+3)=3/5处当甲跑完一圈的时候,乙只能跑2/3圈,也就是距离甲出发点占全程的1-2/3=1/3处,现在甲提速1/3,那么速度变成了1+1/3=4/3,现在他们的速度比为4/3:2/3=2:1所以当乙跑完剩下的1/3时,甲可以跑1/3 ×3/2×4/3=4/6=2/3,也就是在距离甲出发点1-2/3=1/3处现在乙提速1/5,变成了2/3×(1+1/5)=4/5所以他们的速度比是甲:乙=4/3:4/5=5:3,现在他们的相遇在距离甲出发点1/3×3/(5+3)=1/8处所以距离第一次相遇3/5 -1/8=19/40现在是190米,所以总长190÷19/40=400米答:这条椭圆形跑道长400米。
环形跑道:同相向而行的等量关系:乙程-甲程=跑道长,背向而行的等量关系:乙程+甲程=跑道长。
环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
如图38-1,A、B是圆的一条直径的两端,小张在A点,小王在B点,同时出发逆时针而行,第一周内,他们在C点第一次相遇,在D点第二次相遇。
已知C点离A点80米,D 点离B点60米。
求这个圆的周长。
【分析】这是一个圆周上的追及问题。
从一开始运动到第一次相遇,小张行了80米,小王行了“半个圆周长+80”米,也就是在相同的时间内,小王比小张多行了半个圆周长,然后,小张、小王又从C点同时开始前进,因为小王的速度比小张快,要第二次再相遇,只能是小王沿圆周比小张多跑一圈。
从第一次相遇到第二次相遇小王比小张多走的路程(一个圆周长)是从开始到第一次相遇小王比小张多走的路程(半个圆周长)的2倍。
也就是,前者所花的时间是后者的2倍。
对于小张来说,从一开始到第一次相遇行了80米,从第一次相遇到第二次相遇就应该行160米,一共行了240米。
这样就可以知道半个圆周长是180(=240-60)米。
【解】(80+80×2-60)×2=360(米)图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个"相遇",解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.设汽车行驶CD所需时间是1.根据"走同样距离,时间与速度成反比",可得出分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD 所需时间分别是24,12,16,18.从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与P→C→B所用时间相等.PC上所需时间-PD上所需时间=DA所需时间-CB所需时间=18-12=6.而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据"和差"计算得PC上所需时间是(24+6)÷2=15,PD上所需时间是24-15=9.现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有BN上所需时间-AN上所需时间=P→D→A所需时间-CB所需时间=(9+18)-12= 15.BN上所需时间+AN上所需时间=AB上所需时间=16.立即可求BN上所需时间是15.5,AN所需时间是0.5.从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些.绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇?解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.出发后2小时10分小张已走了此时两人相距24-(8+11)=5(千米).由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是5÷(4+6)=0.5(小时).2小时10分再加上半小时是2小时40分.答:他们相遇时是出发后2小时40分.甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10(千米).小王已走了6+2=8(千米).因此,他们的速度分别是小张10÷2=5(千米/小时),小王8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?解:(1 )75秒-1.25分.两人相遇,也就是合起来跑了一个周长的行程.小张的速度是500÷1.25-180=220(米/分).1.甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米;2.二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。