环形跑道问题练习题(附答案和详解)_题型归纳
- 格式:docx
- 大小:11.21 KB
- 文档页数:2
环形跑道问题经典公式:路程=速度×时间同一地点出发:反向每相遇一次,合走一圈路程和=速度和×相遇时间同向每追上一次,多走一圈路程差=速度差×追及时间一、基础环形跑道例1佳佳和海海在周长为400米的环形跑道上进行万米长跑。
佳佳的速度是40米/分,海海的速度是60米/分。
⑴佳和海海同时从同一地点出发反向跑步,两人几分钟后第一次相遇?再过几分钟后两人第二次相遇?⑵佳佳和海海同时从同一地点出发,同一方向跑步,海海跑几分钟能第一次追上佳佳?再过几分钟能第二次追上佳佳?佳佳、海海两人骑自行车从环形公路上同一地点同时出发,背向而行。
这条公路长2400米,佳佳骑一圈需要10分钟。
如果第一次相遇时佳佳骑了1440米。
请问:⑴佳佳的速度是多少米/分?⑵出发到第一次相遇用时多少分钟?⑶海海骑一圈需要多少分钟?⑷再过多久他们第二次相遇?在周长为220米的圆形跑道的一条直径的两端,海海、佳佳二人骑自行车分别以6米/秒和5米/秒的速度同时反向出发(即一个顺时针一个逆时针),沿跑道行驶,则210秒内海海佳佳相遇几次?佳佳和海海在操场上比赛跑步,海海每分钟跑26米,佳佳每分钟跑21米,一圈跑道长50米,他们同时从起跑点出发,那么海海第四次超过佳佳需要多少分钟?佳佳、海海两人在400米的环形跑道上跑步,海海以300米/分钟的速度从起点跑出,1分钟后,佳佳从起点同向跑出。
又过了5分钟,海海追上佳佳。
请问:佳佳每分钟跑多少米?如果他们的速度保持不变,海海需要再过多少分钟才能第二次追上佳佳?在400米的环形跑道上,佳佳、海海两人分别从A、B两地同时出发,同向而行。
4分钟后,海海第一次追上佳佳,又经过10分钟海海第二次追上佳佳。
已知海海的速度是每分钟180米,那么佳佳的速度是多少?A、B两地相距多少米?在300米的环形跑道上,佳佳和海海同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?海海、佳佳在湖的周围环形道上练习长跑,海海每分钟跑250米,佳佳每分钟跑200米,两人同时同地同向出发,经过45分钟海海追上佳佳;如果两人同时同地反向出发,经过多少分钟两人相遇?二、多次相遇佳佳和海海分别从佳园和海堡坐车同时出发相向而行。
1、 掌握如下两个关系:(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
环线型同一出发点直径两端 同向:路程差nS nS + 相对(反向):路程和nS模块一、常规的环形跑道问题【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇【考点】行程问题之环形跑道 【难度】2星 【题型】解答【解析】 黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟).【答案】4分钟【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走 米就回到出发点。
【考点】行程问题之环形跑道 【难度】2星 【题型】填空【关键词】希望杯,4年级,1试【解析】 几分钟相遇一次:480÷(55+65)=4(分钟)知识精讲 教学目标环形跑道问题10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。
行程:环形跑道问题专项训练(含解析)一.选择题(共3小题)1.强强和明明同时从运动场环形跑道的同一起点沿着相同的方向出发跑步.强强跑完一圈需要6分钟,明明跑完一圈需要8分钟,他俩()分钟后第一次在起点相遇.A.12B.16C.24D.482.如图所示,甲骑车顺时针方向、乙步行逆时针方向沿着正方形的边同时从A点出发,刚好在B点相遇.已知甲骑车8分钟可骑完一圈,那么乙步行()分钟可走完一圈.A.6B.8C.24D.323.如图,在一圆形跑道上,甲从A点、乙从B点同时出发,反向而行,8分后两人相遇,再过6分甲到B 点,又过10分两人再次相遇.甲环行一周需()分.A.28B.30C.32D.34二.填空题(共7小题)4.小明在330米长的环行跑道上跑了一圈,已知他前一半时间每秒跑6米,后一半时间每秒跑5米,那么后一半路程小明跑了秒.5.甲、乙两人在40米的环形跑道上练习跑步,甲比乙快,甲的速度为6米/秒若两人同时同地同向出发,经过500秒后他们第2次相遇,则乙的速度为米/秒.6.一环形跑道周长为240米,甲与乙同向,两人都从同一地点出发,每秒钟甲跑8米,乙跑5米,出发后,两人第一次相遇时,甲跑了圈.7.某人在360米长的环形跑道上跑了一圈,已知他前一半时间每秒钟跑5米,后一半时间每秒钟跑4米,则他后一半路程跑了秒钟.1 8.甲乙二人环绕周长是400米的跑道跑步,如果两人从同一地点出发背向而行,那么经过2分钟两人相遇;如果两人从同一地点出发同向而行,那么经过20分钟两人相遇,已知甲的速度比乙的速度快,甲每分钟跑米.9.已知甲、乙两人在一个200米的环形跑道上练习跑步,现在把跑道分为相等的4段,即两条直跑道和两条弯道的长度相等.甲平均每秒跑4米,乙平均每秒跑6米.若甲、乙两人分别从A、C处同时出发(如右图),则他们第100次相遇时,在跑道上.(填“AB”或“BC”或“DA”或“CD”).10.如图,A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C第一次相遇,在D点第二次相遇.已知从A点出发逆时针到C点的路程为80米,从B点出发逆时针走到D点的路程为60米,这个圆的周长为米.三.应用题(共6小题)11.运动场的环形跑道长360米,淘气跑了一整圈,所用时间的前一半速度是5米/秒,所用时间的后一半速度是4米/秒.那么他跑后半圈要用多少时间?12.假期里,依依和妈妈每天早晨在环湖路上跑步锻炼身体.环湖路长840米,依依每分跑108米,妈妈每分跑92米.(1)如果两人同时同地出发,相背而跑,多少分后相遇?(2)如果两人同时同地出发,同向而跑,多少分后依依超出妈妈一整圈?13.甲、乙两人沿着600米的环形跑道跑步,他们同时从同一地点出发,同向而行.甲的速度是270米/分,乙的速度是240米/分.经过多少分钟甲第一次追上乙?14.学校环形跑道长400米,笑笑和淘气从跑道的同一地点同时出发,都按顺时针方向跑,经过20分钟,笑笑第一次追上淘气.淘气的速度是240米/分,笑笑每分跑多少米?(列方程解答)15.如图是一个长为400米的环形跑道,其中跑道沿线段AB所在直线对称,AB是一条50米长的直通道.甲乙两人同时从A点处出发,甲按逆时针方向以速度V1沿跑道跑步,当跑道B处时继续沿跑道前进,乙按顺时针方向以速度V2沿跑道跑步,当跑到B点处时沿直线通道跑步到A处.假设两人跑步时间足够长,如果V1:V2=3:2,那么甲跑了多少路程后,两人首次在A点处相遇?16.星期日,小明和小强在5600m的环湖公路上晨跑.小强每分钟跑150米,小明每分钟跑130m,两人同时同地出发反向跑步.(1)估计两人在何处第一次相遇?在图中标出.(2)多长时间后两人第一次相遇?(列方程解)四.解答题(共34小题)17.(1)爸爸和妈妈同时从起点出发,他们几分钟后可以在起点第一次相遇?(2)请你提出一个数学问题,并尝试解答.18.在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次,如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问两人各跑一圈需要几分钟?19.在一个600米长的环形跑道上,兄妹两人同时在同一起点都按顺时针方向跑步,每隔12分钟相遇一次.若两人速度不变,还是在原出发点同时出发,哥哥改为按逆时针方向跑,则每隔4分钟相遇一次.两人跑一圈各要几分钟?20.如图,在长为400公尺的环形跑道上,A、B两点之间的跑道长100公尺.甲从A点、乙从B点同时出发相背而跑.两人相遇后,乙即转身与甲同向而跑,当甲跑到A时乙恰好跑到B.继续跑若甲追上乙时,甲从出发开始算起共跑了多少公尺?21.甲乙二人沿400米环形跑道同时从某点开始反方向跑步,已知甲的速度比乙的速度快,当两人第一次相遇时甲跑了多少米?22.甲、乙两车绕周长为400千米的环形跑道行驶,它们从同一点同时出发,相背而行,5小时相遇.如果两车每小时各加快10千米,那么相遇点距前一次相遇点3千米,已知乙车比甲车快,求原来甲车每小时行多少千米?23.如图,在长为490米的环形跑道上,A 、B 两点之间的跑道长50米,甲、乙两人同时从A 、B 两点出发反向奔跑.两人相遇后,乙立刻转身与甲同向奔跑,同时甲把速度提高了25%,乙把速度提高了20%.结果当甲跑到点A 时,乙恰好跑到了点B .如果以后甲、乙的速度和方向都不变,那么当甲追上乙时,从一开始算起,甲一共跑了多少米?24.甲、乙、丙三人环湖跑步锻炼,同时从湖边一固定点出发,乙、丙二人同向,甲与乙、丙反向,在甲第一次遇上乙后1.25分钟第一次遇上丙,再经过3.75分钟第二次遇上乙.已知甲速与乙速的比是3:2,湖的周长是1800米.求甲、乙、丙三人的速度每分钟各是多少米?25.小张、小王、小李同时从湖边同一地点出发,绕湖行走.小张速度是每小时5.4千米,小王速度是每小时4.2千米,他们两人同方向行走,他们两人同方向行走,小李与他们反方向行走,小李与他们反方向行走,小李与他们反方向行走,半小时后小张与小李相遇,半小时后小张与小李相遇,再过5分钟,小李与小王相遇.那么绕湖一周的行程是多少千米26.甲、乙两车绕周长为400千米的环形跑道行驶,它们从同一地点同时出发,背向而行,5小时相遇,如果两车每小时各加快10千米,那么相遇点距离前一次相遇地点3千米,已知乙车比甲车快,求原来每小时行多少千米?27.甲、乙在椭圆形跑道上训练,同时从同一地点出发反向而跑,每人跑完第一圈回到出发点立即回头加速跑第二圈.跑第一圈时,乙的速度是甲的速度的,甲跑第二圈时速度比第一圈提高了,乙跑第二圈时速度比第一圈提高了,已知甲、乙二人第二次相遇点距第一次相遇点190米,米,问这条椭圆形跑道问这条椭圆形跑道长多少米?28.李芳和张明在一个圆形场地上跑步,李芳跑一圈用8分钟,张明跑一圈用12分钟,如果他们从场地的同一地点出发,同时向相反的方向跑去,多少分钟后两个人第一次相遇?29.甲、乙、丙三人环湖跑步锻炼,同时从湖边一固定点出发,乙、丙二人同向,甲与乙丙反向,在甲第一次遇上乙后1.25分钟第一次遇上丙,再经过3.75分钟第二次遇乙.已知甲速与乙速的比是3:2,湖的周长是2000米.求甲、乙、丙三人的速度每分钟各是多少米?30.有一个200米的环形跑道,甲、乙两人同时从同一地点同方向出发.甲以每秒0.8米的速度步行,乙以每秒2.4米的速度跑步,乙在第2次追上甲时用了多少秒?31.小明和小华在环形跑道上跑步.小明跑一圈需8分钟,小华跑一圈需10分钟.现两人同时从起点出发后,至少需要几分钟两人第一次相遇?32.甲、乙两人沿着400米的环形跑道跑步,他们同时从同一地点出发,同向而行.甲的速度是每分钟290米,乙的速度是每分钟250米,经过多少分钟甲比乙多跑2圈?(用你喜欢的方法解)33.甲、乙二人沿一环形跑道从某点开始反方向跑步,已知甲的速度是乙的80%,经过10分钟相遇后各自继续向前跑,问甲跑回开始点还需几分钟?34.一个周长是300米环形操场,甲每分钟走100米,乙每分钟走60米,甲乙两人同时从起点同方向走,第多少分钟时他们又在起点相遇?35.陈丹和林龙分别以不同速度,在周长为500米的环形跑道上跑步,林龙的速度是每分钟180米,(1)如果两人从同一地点同时出发,反向跑步,75秒时第一次相遇,求陈丹的速度?(2)若两人以上面的速度从同一地点同时出发同向而行,陈丹跑多少圈后才能第一次追上林龙?36.小明绕操场跑一圈要8分钟,爸爸跑一圈要3分钟,妈妈跑一圈要4分钟.如果爸爸妈妈和小明同时起跑,至少多少分钟后三人在起点再次相遇?此时爸爸、妈妈和小明各跑了多少圈?37.有一周长为1千米的环形跑道,甲、乙二人同时从同地出发,若同向跑1小时后,甲比乙多跑一圈,若以相反的方向跑4分钟后二人相遇,求甲、乙二人的速度.38.爸爸妈妈在操场上跑步,妈妈每8分钟跑一圈,爸爸每6分钟跑一圈,他们同时从起点出发,至少再过几分钟又能在起点相遇?39.甲乙在一个直径是100米的圆周上的同一点相反的方向运动,甲每分钟走18.84米,乙每分钟走12.56米,乙每分钟走米,当甲和乙第二次相遇时,甲比乙多走了多少米?40.环形跑道一周之长为1080米,甲乙两人骑自行车从同一地点同时出发,朝同一方向行驶,经过54分钟后,甲追上了乙,如果甲每分钟减少50米,乙每分钟增加30米,从同一地点同时背向而行,则经过3分钟后两人相遇.原来甲乙两人每分钟各行多少米?41.小刚和小强在400米的环形跑道上,从同一地点相背出发.小刚每秒跑4.5米,小强每秒跑5.5米,出发后多少秒两人第一次相遇?42.小明跑操场一圈要6分钟,爸爸跑一圈要3分钟,妈妈跑一圈4分钟.如果小明和妈妈同时起跑,至少多少分钟后两人在起点再次相遇?此时小明、妈妈分别跑了多少圈?43.附加题:甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时甲在乙的后面,出发后6分钟甲第一次追上乙,22分钟时甲第二次追上乙,假设两人速度都保持不变,并继续保持竞走状态.(1)问:出发后第几分钟两个人第十次相遇?(2)问:出发时甲在乙身后多少米?(3)问:若乙每秒竞走米,甲第二次追上乙后,甲立刻掉转方向竞走,乙保持原方向不变,再经过多少秒后两人第三次相遇?44.有一圆形跑道,甲、乙二人同时从同一地点沿同一方向出发,当甲跑完第三圈到达出发点时恰好第一乙原来每秒次追上乙.如果两个人每秒都快6米,那么甲跑完第7圈到达出发点时恰好第一次追上乙.圈到达出发点时恰好第一次追上乙.乙原来每秒跑多少米?45.早晨,小军和小强沿周长是1800米的湖边跑步.小军比小强跑得快.第一次,两人从同一地点出发向相反方向跑,9分钟相遇.第二次,两人都放慢速度,每分钟都少跑25米,那么,几分钟后两人相遇?如果两人的相遇地点与刚才的相遇地点相差33米,那么,第二次小军每分钟跑多少米?46.小明、小红、小王三人在学校的环形跑道上练接力赛,小明跑了一圈的,小红接着跑了一段路,小王又接着跑了一圈的.这样三人正好跑了一圈.已知小明比小王少跑40米,小红跑了多少米?47.小红和她的爸爸、妈妈一起去体育场散步.小红围着体育场的圆形跑道走一圈要6分钟,她爸爸走一他们至少几分钟后在起点相遇?现在她们一家同时从起点出发,他们至少几分钟后在起点相遇?圈用4分钟,她妈妈走一圈用5分钟.现在她们一家同时从起点出发,48.在400米的环形道路上,A、B两点相距100米.甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑10米,乙每秒跑9米,每人每跑100米都要停10秒.那么甲追上乙需要多少秒?49.甲、乙二人在圆形跑道上跑步,已知甲的速度比乙快,如果二人在同一地方同时出发,同向跑,则经过3分20秒可以第一次相遇;若反向跑,则经过40秒也可以第一次相遇,已知甲跑步的速度每秒跑6米,这个圆形跑道的直径有多少米?(圆周率取3)50.沿湖一周的路长为1920米,甲、乙两个人在沿湖的路上竞走,两人同时同地出发,反方向行走,甲比乙走得快,12分钟后两人相遇,如果两人每分钟都多走16米,则相遇地点与前两次相差20米.求甲、乙两人原来的行走速度.行程:环形跑道问题专项训练参考答案与试题解析一.选择题(共3小题)1.强强和明明同时从运动场环形跑道的同一起点沿着相同的方向出发跑步.强强跑完一圈需要6分钟,明明跑完一圈需要8分钟,他俩( )分钟后第一次在起点相遇.A .12B .16C .24D .48【分析】【分析】强强回到起点用的时间是强强回到起点用的时间是6分钟的整数倍,分钟的整数倍,明明回到原地是明明回到原地是8分钟的整数倍,分钟的整数倍,则第一次同时回则第一次同时回到起点的分钟数就是6和8的最小公倍数,因此得解.【解答】解:6=2×3,8=2×2×2,所以6和8的最小公倍数是2×3×2×2=24(分钟),答:他们24分钟后可以在起点第一次相遇.故选:C .2.如图所示,甲骑车顺时针方向、乙步行逆时针方向沿着正方形的边同时从A 点出发,刚好在B 点相遇.已知甲骑车8分钟可骑完一圈,那么乙步行( )分钟可走完一圈.A .6B .8C .24D .32【分析】由于两人在B 点相遇,则相遇时,甲共行了3个边长,乙共行了1个边长,所以甲的速度是乙的3倍,根据行驶相同的距离,所用时间和速度成反比,所以乙行完全程需要8×3=24分钟.【解答】解:甲的速度是乙的:3÷1=3倍,则乙行完全程需要8×3=24(分钟).故选:C .3.如图,在一圆形跑道上,甲从A 点、乙从B 点同时出发,反向而行,8分后两人相遇,再过6分甲到B点,又过10分两人再次相遇.甲环行一周需( )分.A.28B.30C.32D.34【分析】设跑道一周长是单位“1”,乙8分的行程甲行了6分,所以甲乙的速度比是:8:6=4:3;从第一次相遇到第二次相遇用了:6+10=16分,二人共行了一个全程.所以二人的速度和是:.即甲的速度是:×=,那么甲跑一周的时间是:1÷=28分钟.【解答】解:甲乙的速度比是:8:6=4:3.1÷[1÷(6+10)×]=1÷[×],=1,=28(分钟).答:甲环行一周需28分.故选:A.二.填空题(共7小题)4.小明在330米长的环行跑道上跑了一圈,已知他前一半时间每秒跑6米,后一半时间每秒跑5米,那么后一半路程小明跑了32.5秒.【分析】根据时间=路程÷速度和,求出一半的时间,再根据路程=速度×时间,求出后一半时间每秒跑5米跑的路程,一半路程为:330÷2=165米,减去后一半时间跑的米数,余下的米数是以每秒跑6米跑的,再由时间=路程÷速度,求出余下的米数用的时间,加上求出的一半时间即可.【解答】解:330÷(6+5)=30(秒)(330÷2﹣5×30)÷6=(165﹣150)÷6=15÷6=2.5(秒),30+2.5=32.5(秒);答:后一半路程小明跑了32.5秒.故答案为:32.5.5.甲、乙两人在40米的环形跑道上练习跑步,甲比乙快,甲的速度为6米/秒若两人同时同地同向出发,经过500秒后他们第2次相遇,则乙的速度为 5.84米/秒.【分析】环形追及问题,甲乙两人同时同地出发,每相遇一次,甲就比乙多跑一圈,经过500秒后他们第2次相遇,可以算出甲跑的总路程,再减去多跑的两圈的路程就是乙跑的路程,进而求出乙的速度.【解答】解:(6×500﹣40×2)÷500=2920÷500=5.84(米/秒)故答案为:5.84.6.一环形跑道周长为240米,甲与乙同向,两人都从同一地点出发,每秒钟甲跑8米,乙跑5米,出发后,两人第一次相遇时,甲跑了圈.【分析】出发后,两人第一次相遇时,也就是甲第一次追上乙时,甲正好比乙多跑一周即240米,甲每秒比乙多8﹣5=3米,根据除法的意义,甲第一次追上乙需要240÷3=80秒,根据乘法的意义,此时甲跑了8×80=640米,然后再除以每圈的米数,即640÷240.【解答】解:240÷(8﹣5)=240÷3=80(秒)8×80÷240=640÷240=(圈)答:两人第一次相遇时,甲跑了圈.7.某人在360米长的环形跑道上跑了一圈,已知他前一半时间每秒钟跑5米,后一半时间每秒钟跑4米,则他后一半路程跑了44秒钟.【分析】本题可列方程进行解答,设跑完一圈所用时间的一半为x秒,则用每秒5米跑的长度为5x,用每秒4米跑的长度为4x,由此可行方程:5x+4x=360.解得x=40.则他用每秒4米跑的长度为4×40=160米,此跑道一半的长度为360÷2=180米,180﹣160=20米,即此20米是按每秒5米的速度跑的,20÷5=4秒,所以他后一半路程跑了40+54=44秒.【解答】解:设跑完一圈所用时间的一半为x秒,可得方程:5x+4x=3609x=360,x=40.则后一半时间他跑的路程为:4×40=160(米).后一半路程用按每秒5米的速度跑的时间为:(360÷2﹣160)÷5=(180﹣160)÷5,=20÷5,=4(秒);所以,后一半路程跑的时间为:40+4=44(秒).答:后一半路程跑了44秒.故答案为:44.8.甲乙二人环绕周长是400米的跑道跑步,如果两人从同一地点出发背向而行,那么经过2分钟两人相遇;如果两人从同一地点出发同向而行,那么经过20分钟两人相遇,已知甲的速度比乙的速度快,甲每分钟跑110米.【分析】由题目条件可以求出二者的速度和与速度差,进而可求各自的速度.【解答】解:甲、乙的速度和是每分钟400÷2=200(米),甲、乙的速度差是每分钟400÷20=20(米),因此甲的速度是每分钟(200+20)÷2=110(米),乙的速度是每分钟200﹣110=90(米).故答案为:110.9.已知甲、乙两人在一个200米的环形跑道上练习跑步,现在把跑道分为相等的4段,即两条直跑道和两条弯道的长度相等.甲平均每秒跑4米,乙平均每秒跑6米.若甲、乙两人分别从A、C处同时出发(如右图),则他们第100次相遇时,在跑道DA上.(填“AB”或“BC”或“DA”或“CD”).【分析】根据题意,先算出甲乙二人第一次和第二次相遇所用时间,然后找出两人相遇所需时间的规律,根据规律做题即可求出第100次相遇所用时间,并求出所在路段.【解答】解:设x秒后两人首次相遇,依题意得到方程:4x+6x=10010x=100x=10设y秒后两人再次相遇,依题意得到方程:4y+6y=20010y=200y=20所以得出:第1次相遇,总用时10秒,第2次相遇,总用时10+20×1,即30秒,第3次相遇,总用时10+20×2,即50秒,……第100次相遇,总用时10+20×99,即1990秒,则此时甲跑的圈数为:1990×4÷200=7960÷200=39.8(圈)200×0.8=160(米)此时甲在DA弯道上.答:他们第100次相遇时,在跑道DA上.故答案为:DA.10.如图,A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C第一次相遇,在D点第二次相遇.已知从A点出发逆时针到C点的路程为80米,从B点出发逆时针走到D点的路程为60米,这个圆的周长为360米.【分析】两人在C 点第一次相遇,C 离A 为80米,说明,二人同走半圈,甲走了80米.在D 点第二次相遇,次相遇,说明二人同走一圈半,说明二人同走一圈半,说明二人同走一圈半,甲走了甲走了80×3=240(米).D 离B 为60米,米,那么半圈是:那么半圈是:240﹣60=180(米),所以,这个圆的周长为:180×2=360(米).【解答】解:80×3﹣60=240﹣60=180(米)180×2=360(米)答:这个圆的周长为360米.故答案为:360.三.应用题(共6小题)11.运动场的环形跑道长360米,淘气跑了一整圈,所用时间的前一半速度是5米/秒,所用时间的后一半速度是4米/秒.那么他跑后半圈要用多少时间?【分析】先设时间的一半是x 秒,则前一半时间跑的路程是5x 米,后一半时间跑的路程是4x 米,把这两部分相加就是总路程360米,由此列出方程求出总时间的一半是40米,40×5=200米,说明前一半时间跑了全程的一半还多20米,这20米用了20÷5=24秒,秒,再加上后一半的时间,再加上后一半的时间,再加上后一半的时间,就是他跑后半圈要就是他跑后半圈要用多少时间.【解答】解:设时间的一半是x 秒,则:5x +4x =3609x =360x =4040×5=200(米)360÷2=180(米)(200﹣180)÷5=20÷5=4(秒)40+4=44(秒)答:他跑后半圈要用44秒.12.假期里,依依和妈妈每天早晨在环湖路上跑步锻炼身体.环湖路长840米,依依每分跑108米,妈妈每分跑92米.(1)如果两人同时同地出发,相背而跑,多少分后相遇?(2)如果两人同时同地出发,同向而跑,多少分后依依超出妈妈一整圈?【分析】(1)如果两人同时同地出发,相背而跑,那么相遇的时候正好行了环湖路一圈的长度,然后除以两个人的速度和就是相遇时间.(2)如果两人同时同地出发,同向而跑,属于追及问题,依依超出妈妈一整圈正好是840米,然后除以以两个人的速度差就是追及时间.【解答】解:(1)840÷(108+92)=840÷200=4.2(分钟)答:如果两人同时同地出发,相背而跑,4.2分钟后相遇.(2)840÷(108﹣92)=840÷16=52.5(分钟)答:如果两人同时同地出发,同向而跑,52.5分钟后依依超出妈妈一整圈.13.甲、乙两人沿着600米的环形跑道跑步,他们同时从同一地点出发,同向而行.甲的速度是270米/分,乙的速度是240米/分.经过多少分钟甲第一次追上乙?【分析】甲第一次追上乙时,甲比乙多跑1圈,即600米,根据路程差÷速度差=追及时间,列式为:600÷(270﹣240).【解答】解:600÷(270﹣240)=600÷30=20(分钟)答:经过20分钟甲第一次追上乙.14.学校环形跑道长400米,笑笑和淘气从跑道的同一地点同时出发,都按顺时针方向跑,经过20分钟,笑笑第一次追上淘气.淘气的速度是240米/分,笑笑每分跑多少米?(列方程解答)【分析】笑笑第一次追上淘气时,笑笑比淘气多跑一圈,即400米,设笑笑每分钟跑x米,在20分钟跑20x米,淘气跑了240×20米,然后根据笑笑跑的路程﹣淘气跑的路程=400米列出方程求解.【解答】解:设笑笑每分钟跑x米,则:20x﹣240×20=40020x﹣4800=40020x=5200x=260答:笑笑每分钟跑260米.15.如图是一个长为400米的环形跑道,其中跑道沿线段AB所在直线对称,AB是一条50米长的直通道.甲乙两人同时从A点处出发,甲按逆时针方向以速度V1沿跑道跑步,当跑道B处时继续沿跑道前进,乙按顺时针方向以速度V2沿跑道跑步,当跑到B点处时沿直线通道跑步到A处.假设两人跑步时间足够长,如果V1:V2=3:2,那么甲跑了多少路程后,两人首次在A点处相遇?【分析】甲跑一周的长度是400米,乙跑一周的长度是400÷2+50=250,甲跑一周与乙跑一周的时间比是(400÷3):(250÷2),然后求出两人时间的最小公倍数.然后根据时间和速度求出路程即可.【解答】解:400÷2+50=250(米)(400÷3):(250÷2)=16:15[16,15]=240400×(240÷16)=6000(米)答:甲跑了6000路程后,两人首次在A点处相遇.16.星期日,小明和小强在5600m的环湖公路上晨跑.小强每分钟跑150米,小明每分钟跑130m,两人同时同地出发反向跑步.(1)估计两人在何处第一次相遇?在图中标出.(2)多长时间后两人第一次相遇?(列方程解)【分析】(1)两人同时同地出发反向跑步,两人在第一次相遇时,由于小强的速度比小明的速度快,所以第一次相遇的地方,在中点偏向小明出发的地方;据此画图即可;(2)在环形跑道上同时同地同向而行,当小明第一次遇时,也就是小明和小强共跑一圈,先求出两人的速度和,再依据时间=路程÷速度即可解答.【解答】解:(1)150>130,所以第一次相遇的地方,在中点偏向小明出发的地方;(2)5600÷(150+130)=5600÷280=20(分钟)答:20分钟后两人第一次相遇.四.解答题(共34小题)17.(1)爸爸和妈妈同时从起点出发,他们几分钟后可以在起点第一次相遇?(2)请你提出一个数学问题,并尝试解答.【分析】(1)可以通过求2、4、6的最小公倍数的方法求出在起点第一次相遇的时间;(2)提出合理问题,根据速度×时间=路程,即可解答.【解答】解:(1)4=2×2,6=2×32、4、6的最小公倍数是2×2×3=12,答:爸爸和妈妈同时从起点出发,他们12分钟后可以在起点第一次相遇.(2)爸爸每分钟跑200米,他们第一次相遇时爸爸一共跑了多少米?。
【导语】数学作为⼀门基础学科,其⽬的是为了培养学⽣的理性思维,养成严谨的思考的习惯,对⼀个⼈的以后⼯作起到⾄关重要的作⽤,特别是在信息时代,可以说,数学与任何科学领域都是紧密结合起来的。
以下是整理的相关资料,希望对您有所帮助。
【篇⼀】 1.在400⽶的环形跑道上,A、B两点相距100⽶,。
甲、⼄两⼈分别从A、B两点同时出发,按照逆时针⽅向跑步,甲每秒跑5⽶,⼄每秒跑4⽶,每⼈每跑100⽶,都要停10秒钟。
那么,甲追上⼄需要的时间是多少秒? 答案:假设没有休息那么100/(5—4)=100秒钟在100/5=20秒100/20-1=4(次)100+4*10=140秒 2.⼩明在360⽶的环形跑道上跑⼀圈,已知他前半时间每秒跑5⽶,后半时间每秒跑4⽶,为他后半路程⽤了多少时间? 答案:x÷4=(360-x)÷5×=160(360÷2-160)÷5+160÷4=44分 3.林琳在450吗长的环形跑道上跑⼀圈,已知她前⼀半时间每秒跑5⽶,后⼀半时间每秒跑4⽶,那么她的后⼀半路程跑了多少秒 答案:设总时间为X,则前⼀半的时间为X/2,后⼀半时间同样为X/2 X/2*5+X/2*4=360 X=80 总共跑了80秒 前40秒每秒跑5⽶,40秒后跑了200⽶ 后40秒每秒跑4⽶,40秒后跑了160⽶ 后⼀半的路程为360/2=180⽶ 后⼀半的路程⽤的时间为(200-180)/5+40=44秒【篇⼆】 ⼩君在360⽶长的环形跑道上跑⼀圈。
已知他前⼀半时间每秒跑5⽶,后⼀半时间每秒跑4⽶。
那么⼩君后⼀半路程⽤了多少秒? 答案:设时间X秒5X=360-4X9X=360X=40后⼀半时间的路程=40*4=160⽶后⼀半路程=360/2=180⽶后⼀半路程⽤每秒跑5⽶路程=180-160=20⽶后⼀半路程⽤每秒跑5⽶时间=20/5=4秒后⼀半路程时间=4+40=44秒答:后⼀半路程⽤了44秒 ⼩明在420⽶长的环形跑道上跑了⼀圈,已知他前⼀半时间每秒跑8⽶,后⼀半时间每秒跑6⽶.求他后⼀半路程⽤了多少时间? 答案:设总⽤时X秒。
第6讲环形跑道问题第一关求速度【知识点】1.环形跑道问题,从同一地点出发,如果是相向而行,则每相遇一次合走一圈(每隔第一次相遇时间就相遇一次);第几次相遇就合走几圈;如果是同向而行,则每多跑一圈就追上一次(每隔第一次追及时间就追上一次).第几次追上就多跑几圈.环形跑道:同向而行的等量关系:乙程﹣甲程=跑道长,背向而行的等量关系:乙程+甲程=跑道长.2.解题方法:(1)审题:看题目有几个人或物参与;看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后”就是从开始计时;看地点是指是同地还是两地甚至更多.看方向是同向、背向还是相向;看事件指的是结果是相遇还是追及相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助,一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断.追击问题中一个重要环节就是确定追上地点,从而找到路程差.比如“用10秒钟快比慢多跑100米”我们立刻知道快慢的速度差.这个是追击问题经常用到的,通过路程差求速度差(2)简单题利用公式(3)复杂题,尤其是多人多次相遇,一定要画路径图,即怎么走的线路画出来.相遇问题就找路程和,追击问题就找路程差.【例1】一圆形跑道周长300米,甲、乙两人分别从直径两端同时出发,若反向而行1分钟相遇,若同向而行5分钟甲可以追上乙,求甲、乙两人的速度?【答案】甲、乙的速度分别是180米/分,120米/分【例2】甲乙两人环绕周长是400米的跑道跑步,两人若从同一地点背向而行,经2分钟迎面相遇,两人若从同一地点同向而行,经20分钟追及相遇,求甲乙各自的速度.【答案】甲每分钟跑110米,乙每分钟跑90米【例3】甲、乙两人在环形跑道上跑步,他们的速度均保持不变,如果两人同时从两地出发相背而跑,4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需多少分钟?【答案】12【例4】甲、乙两人在400米的环形跑道上跑步,他们从同一地点出发,若同向而行,甲10分钟追上乙,若背向而行,甲2分钟与乙相遇.乙跑完一圈要多少分钟?【答案】5【例5】在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?【答案】两人跑一圈快的需要6分钟,慢的需要12分钟【例6】甲、乙两人绕环形跑道同时同地背向而行,甲每秒跑5米,乙每秒跑6米,已知甲与乙相遇后又跑了72米才回到原来出发地,求甲绕跑道一周需要多少秒?【答案】26.4【例7】甲、乙二人骑车同时从环形公路的某点出发,背向而行,已知甲骑一圈需40分,出发后25分两人相遇.如果两人的速度每分钟相差20米,那么环形公路的长度是多少米,乙骑一圈需要多少分钟?【答案】2000;【例8】小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.(1)小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?【答案】(1)300;(2)3【例9】甲、乙两人在400米长的环形跑道上跑步.甲以每分钟300米的速度从起点跑出1分钟时,乙从起点同向跑出,从这时起甲用5分钟赶上乙.乙每分钟跑多少米?【答案】280【例10】在一个环形跑道上有相距100米的甲、乙两个电动玩具车,两车同时出发同向而行,甲车在前,乙车在后,5分钟后乙车第一次追上甲车,又过了20分钟,乙车第二次追上甲车,此时甲车正好驶完一圈.那么乙车的速度为每分钟多少米?【答案】36【例11】有一个圆形跑道,甲、乙二人同时从一点出发,沿跑道向同一方向跑动,当甲跑完3圈到达出发点时恰好第一次追上乙,如果两人骑上自行车,每秒钟都快了6米,那么甲骑完6圈时恰好第一次追上乙,那么乙每秒钟跑多少米?【答案】4【例12】A与B沿着400米的圆形跑道跑步.A的速度是B速度的五分之三.他们同时从跑道上的同一点出发逆向而跑.200秒钟之后,他们第四次相遇.B的速度比A的速度每秒钟快多少米?【答案】2【例13】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.【答案】7米/秒【例14】一个圆的周长为70cm,甲、乙两只爬虫,从同一地点出发,同向爬行.甲爬虫以每秒4cm的速度不停地爬行,乙爬虫爬行15cm后,立即反向爬行,并且速度增加1倍,在离出发点30cm处与甲爬虫相遇.求乙爬虫原来的速度。
第6讲环形跑道问题第一关求速度【知识点】1.环形跑道问题,从同一地点出发,如果是相向而行,则每相遇一次合走一圈(每隔第一次相遇时间就相遇一次);第几次相遇就合走几圈;如果是同向而行,则每多跑一圈就追上一次(每隔第一次追及时间就追上一次).第几次追上就多跑几圈.环形跑道:同向而行的等量关系:乙程﹣甲程=跑道长,背向而行的等量关系:乙程+甲程=跑道长.2.解题方法:(1)审题:看题目有几个人或物参与;看题目时间:“再过多长时间”就是从此时开始计时,“多长时间后”就是从开始计时;看地点是指是同地还是两地甚至更多.看方向是同向、背向还是相向;看事件指的是结果是相遇还是追及相遇问题中一个重要的环节是确定相遇地点,准确找到相遇地点对我们解题有很大帮助,一些是题目中直接给出在哪里相遇,有些则需要我们自己根据两人速度来判断.追击问题中一个重要环节就是确定追上地点,从而找到路程差.比如“用10秒钟快比慢多跑100米”我们立刻知道快慢的速度差.这个是追击问题经常用到的,通过路程差求速度差(2)简单题利用公式(3)复杂题,尤其是多人多次相遇,一定要画路径图,即怎么走的线路画出来.相遇问题就找路程和,追击问题就找路程差.【例1】一圆形跑道周长300米,甲、乙两人分别从直径两端同时出发,若反向而行1分钟相遇,若同向而行5分钟甲可以追上乙,求甲、乙两人的速度?【答案】甲、乙的速度分别是180米/分,120米/分【例2】甲乙两人环绕周长是400米的跑道跑步,两人若从同一地点背向而行,经2分钟迎面相遇,两人若从同一地点同向而行,经20分钟追及相遇,求甲乙各自的速度.【答案】甲每分钟跑110米,乙每分钟跑90米【例3】甲、乙两人在环形跑道上跑步,他们的速度均保持不变,如果两人同时从两地出发相背而跑,4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需多少分钟?【答案】12【例4】甲、乙两人在400米的环形跑道上跑步,他们从同一地点出发,若同向而行,甲10分钟追上乙,若背向而行,甲2分钟与乙相遇.乙跑完一圈要多少分钟?【答案】5【例5】在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?【答案】两人跑一圈快的需要6分钟,慢的需要12分钟【例6】甲、乙两人绕环形跑道同时同地背向而行,甲每秒跑5米,乙每秒跑6米,已知甲与乙相遇后又跑了72米才回到原来出发地,求甲绕跑道一周需要多少秒?【答案】26.4【例7】甲、乙二人骑车同时从环形公路的某点出发,背向而行,已知甲骑一圈需40分,出发后25分两人相遇.如果两人的速度每分钟相差20米,那么环形公路的长度是多少米,乙骑一圈需要多少分钟?【答案】2000;【例8】小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.(1)小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?【答案】(1)300;(2)3【例9】甲、乙两人在400米长的环形跑道上跑步.甲以每分钟300米的速度从起点跑出1分钟时,乙从起点同向跑出,从这时起甲用5分钟赶上乙.乙每分钟跑多少米?【答案】280【例10】在一个环形跑道上有相距100米的甲、乙两个电动玩具车,两车同时出发同向而行,甲车在前,乙车在后,5分钟后乙车第一次追上甲车,又过了20分钟,乙车第二次追上甲车,此时甲车正好驶完一圈.那么乙车的速度为每分钟多少米?【答案】36【例11】有一个圆形跑道,甲、乙二人同时从一点出发,沿跑道向同一方向跑动,当甲跑完3圈到达出发点时恰好第一次追上乙,如果两人骑上自行车,每秒钟都快了6米,那么甲骑完6圈时恰好第一次追上乙,那么乙每秒钟跑多少米?【答案】4【例12】A与B沿着400米的圆形跑道跑步.A的速度是B速度的五分之三.他们同时从跑道上的同一点出发逆向而跑.200秒钟之后,他们第四次相遇.B的速度比A的速度每秒钟快多少米?【答案】2【例13】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.【答案】7米/秒【例14】一个圆的周长为70cm,甲、乙两只爬虫,从同一地点出发,同向爬行.甲爬虫以每秒4cm的速度不停地爬行,乙爬虫爬行15cm后,立即反向爬行,并且速度增加1倍,在离出发点30cm处与甲爬虫相遇.求乙爬虫原来的速度。
环形跑道问题练习题一.夯实基础:1.一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?2.一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?3.两名运动员在湖的周围环形道上练习长跑.甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?4. 一条环形跑道长400米,小青小琴两人在起点同时同向出发,8分钟后两人第一次相遇,已知小青每分钟跑260米,请问小琴速度是多少?5. 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走米就回到出发点。
二.拓展提高:6. 在 400 米的环行跑道上,A,B 两点相距 100 米。
甲、乙两人分别从 A,B 两点同时出发,按逆时针方向跑步。
甲甲每秒跑 5 米,乙每秒跑 4 米,每人每跑 100 米,都要停10 秒钟。
那么甲追上乙需要时间是多少秒?7. 琳琳在450米长的环形跑道上跑一圈,已知她前一半时间每秒跑5米,后一半时间每秒跑4米,那么她的后一半路程跑了多少秒?8. 下图中有两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米。
两只甲虫同时从A点出发,按箭头所指的方向以相同速度分别沿两个圆爬行。
问:当小圆上甲虫爬了几圈时,两只甲虫首次相距最远?9. 甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用 24 秒同时回到原地。
求甲原来的速度。
三.超常挑战10. 如图所示,甲沿长为400米大圆的跑道顺时针跑步,乙则沿两个小圆八字形跑步(图中-----)。
环形跑道问题例1 绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇?(5÷(4+6)=0.5(小时).2小时10分再加上半小时是2小时40分.)例2 乙两车同时从同一点出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上乙车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离点有多少米?(每一次甲车追上乙车也看作一次相遇)解析:第一次是一个相遇过程,相遇时间为:6÷(65+55)=0.05 小时,相遇地点距离A点:55×0.05=2.75千米.然后乙车调头,成为追及过程,追及时间为:6÷(65-55)=0.6 小时,乙车在此过程中走的路程为:55×0.6=33 千米,即5圈又3千米,那么这时距离A 点3-2.75=0.25 千米.此时甲车调头,又成为相遇过程,同样方法可计算出相遇地点距离A 点0.25+2.75=3千米,然后乙车掉头,成为追及过程,根据上面的计算,乙车又要走5圈又3千米,所以此时两车又重新回到了A点,并且行驶的方向与最开始相同.所以,每4次相遇为一个周期,而11÷4=2…3,所以第11次相遇的地点与第3次相遇的地点是相同的,与A点的距离是3000米.例3 二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。
问第十五次击掌时,甲走多长时间乙走多少路程?答案:前10圈甲跑一圈击掌一次,即10下此时已跑了5+5/7圈;后面2人跑了2/7时击掌一次,然后2人共一圈击掌1次耗时(4+2/7)/(1/4+1/7)=30/7*(11/28)=165/98;甲共总走了40+165/98 H 已走了(40+165/98)*(400/7)M例4 如右图所示,沿着某单位围墙外面的小路形成一个边长300米的正方形,甲、乙两人分别从两个对角处沿逆时针方向同时出发。
环形跑道问题专题训练一.解答题1.小明和小华在一个400米的环形跑道上练习跑步,两人同时从同一点出发,同向而行,小明每秒跑5.5米,小华每秒跑3.5米。
经过多少秒两人第一次相遇?2.甲、乙两名同学在周长为300米的环形赛道上从同一地点同时背向练习跑步,甲每秒跑3.6米,乙每秒跑3.9米.当他们第5次相遇时,甲还需要跑多少米才能回到出发点?3.甲、乙两人绕圆形跑道竞走,他们同时、同地、相背而行,6分钟相遇后又继续前进4分钟.这时甲回到出发点,乙离出发点还差300米.这个圆形跑道的长度是多少米?4.甲、乙两人沿着400米的环形跑道跑步,他们同时从同一地点出发,同向而行.甲每分钟跑280米,乙每分钟跑240米.经过多少分甲比乙多跑两圈?(用方程解答)5.甲、乙、丙三人沿一环形跑道跑步,甲跑一圈要60秒,乙跑一圈要40秒,丙跑一圈要50秒。
三人同时从起点出发后,保持速度不变,至少再过多长时间,他们又在起点相遇?6.甲、乙两人在周长为400米的环形跑道上赛跑,甲的速度为每分钟200米,乙的速度为每分钟120米,如果他们同时从同一个地点出发,沿着同一方向跑.(1)第几分钟时两人第一次相距240米?(2)第几分钟时两人第二次相距240米?(3)第几分钟时两人第十次相距240米?(4)假设时间为t分钟,甲比乙多跑n圈(n是自然数),已知他们相距240米,请列出含有t和n的等量关系式.7.小明和爷爷一起去操场散步。
如果两人同时同地出发,相背而行,247分钟相遇;如果两人同时同地出发,同方向而行,24分钟小明超出爷爷一整圈。
问小明和爷爷走一圈,各自需要多少分钟?8.甲、乙两人沿着400米的环形跑道跑步,他们同时从同一地点出发,同向而行。
甲的速度是每分钟300米,乙的速度是每分钟260米,经过多少分钟甲比乙多跑2圈?(用你喜欢的方法解)9.兄妹两人在周长30米的圆形水池边玩,从同一地点同时背向绕水池行走。
哥哥每秒走1.3米,妹妹每秒走1.2米。
环形跑道问题练习题(附答案和详解)_题型归纳
1.在400米的环形跑道上,A、B两点相距100米,。
甲、乙两人分别从A、B两点同时出发,按照逆时针方向跑步,甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟。
那么,甲追上乙需要的时间是多少秒?
答案:假设没有休息那么100/(54)=100秒钟在100/5=20秒100/20-1=4(次)100+4*10=140秒
2.小明在360米的环形跑道上跑一圈,已知他前半时间每秒跑5米,后半时间每秒跑4米,为他后半路程用了多少时间?
答案:x4=(360-x)5=160(3602-160)5+1604=44分
3.林琳在450吗长的环形跑道上跑一圈,已知她前一半时间每秒跑5米,后一半时间每秒跑4米,那么她的后一半路程跑了多少秒
答案:设总时间为X,则前一半的时间为X/2,后一半时间同样为X/2
X/2*5+X/2*4=360
X=80
总共跑了80秒
前40秒每秒跑5米,40秒后跑了200米
后40秒每秒跑4米,40秒后跑了160米
后一半的路程为360/2=180米
后一半的路程用的时间为(200-180)/5+40=44秒
4.小君在360米长的环形跑道上跑一圈。
已知他前一半时间每秒跑5米,后一半时间每秒跑4米。
那么小君后一半路程用了多少秒?
答案:设时间X秒5X=360-4X 9X=360 X=40 后一半时间的路程=40*4=160米后一半路程=360/2=180米后一半路程用每秒跑5米路程=180-160=20米后一半路程用每秒跑5米时间=20/5=4秒后一半路程时间=4+40=44秒答:后一半路程用了44秒
5.小明在420米长的环形跑道上跑了一圈,已知他前一半时间每秒跑8米,后一半时间每秒跑6米.求他后一半路程用了多少时间?
答案:设总用时X秒。
前一半时间和后一半时间都是X/2。
然后前一半跑8*(X/2)米,后一半跑6*(X/2)米,总共加起来等于420米。
所以列下方程8*(X/2)+6*(X/2)=420.解得X=60。
所以后一半跑了30秒。
又因为后一半为6M/S,所以后一半跑了6*30=180M。
6.二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。
问第十五次击掌时,甲走多长时间乙走多少路程?
答案:前10圈甲跑一圈击掌一次,即10下此时已跑了5+5/7圈;后面2人跑了2/7时击掌一次,然后2人共一圈击掌1次耗时(4+2/7)/(1/4+1/7)=30/7*(11/28)=165/98;甲共总走了40+165/98 H 已走了(40+165/98)*(400/7)M。