3、CTC 系统技术条件
- 格式:ppt
- 大小:109.50 KB
- 文档页数:13
contents •CTC系统概述•CTC系统主要功能•CTC系统技术特点•CTC系统应用场景•CTC系统发展趋势•CTC系统挑战与解决方案目录01CTC系统概述定义与背景定义背景CTC系统组成调度中心车站子系统区间子系统通信网络CTC系统工作原理列车运行计划管理调度中心根据铁路运输需求和实际情况,制定列车运行计划,并通过通信网络下发给各车站子系统。
列车进路控制车站子系统根据接收到的列车运行计划和实际列车位置信息,自动或手动排列列车进路,控制信号设备的动作。
列车运行监督CTC系统通过区间子系统实时监测区间内的列车运行状况,包括列车位置、速度等信息,并将这些信息反馈给调度中心和相邻车站。
调度指挥调度中心根据实时信息和运输需求,对列车运行进行调整和指挥,确保列车按照计划安全、高效地运行。
02CTC系统主要功能列车进路控制列车速度控制列车间隔控制030201列车运行控制调度指挥调度计划管理调度命令下达实时监控与调整车站联锁道岔位置表示信号设备控制实时显示道岔位置,为车站值班员提供准确的现场情况。
进路排列与锁闭旅客服务旅客信息显示通过车站和列车的显示屏向旅客提供实时的列车运行信息和到站信息。
广播服务提供车站和列车的广播服务,包括列车到发、安全提示、服务信息等。
旅客咨询与投诉处理设立旅客咨询台和投诉电话,及时解答旅客疑问和处理投诉。
03CTC系统技术特点分布式架构高可靠性设计采用冗余设计,确保系统的高可用性关键设备、模块支持热备份,实现无缝切换提供故障检测、隔离、恢复机制,确保系统稳定运行优化数据处理流程,减少数据传输延迟提供实时监控功能,方便用户及时了解系统运行状态采用实时通信技术,确保数据传输的实时性实时性保障安全性考虑采用多种安全防护技术,确保系统安全稳定运行对关键数据进行加密处理,防止数据泄露提供安全审计功能,方便用户对系统安全进行监管04CTC系统应用场景调度集中管理实现高速铁路全线列车的集中调度,提高运输效率。
第一章列车运行控制系统在国内外发展现状近年来随着人工智能技术,计算机及其相关技术的飞速发展,世界各国都开始了用高新技术改造传统铁路运输模式的研究,目的在于提高铁路运输效率,增强铁路运营安全,提高服务质量,减少环境污染。
如作为欧洲21世纪干线铁路总统解决方案的欧洲铁路运输管理系统ERTMS,法国铁路的连续实时追踪自动化系统ASTREE,日本新干线的列车运营管理系统COMTRAC和COSMOS,北美的先进列车控制系统A TCS,列车间隔控制系统PTS和PTC,美国旧金山港湾铁路的先进列车控制系统AATC,日本的新一代列车控制系统ATACS 及计算机和无线电辅助列车控制系统CARA T等。
其中代表世界先进水平的高速铁路列控系统的如德国LZB系统:采用轨道环线电缆传送列控信息;日本DS-ATC系统:采用有绝缘的数字轨道电路传送列控信息;法国UM2000+TVM430系统:采用无绝缘数字轨道电路传送列控信息(分级控制);但以上三种高速列控系统均采用大量专有技术,相互间不兼容,技术平台不开放。
欧洲ETCS系统:为实现欧洲铁路互联互通,欧盟组织确定了适用于高速铁路列控的标准体系,技术平台开放;基于GSM-R无线传输方式的ETCS2系统,技术先进,并已投入商业运营;欧洲正在建设和规划的高速铁路均采用ETCS列控系统,是未来高速列车控制系统的发展方向。
我国铁路地域广大、列车种类繁多、提速以后线路允许速度不统一,同为绿灯却有多种速度含义。
另外,我国铁路行车主要特点是客货混跑、高低速列车共线运行,这样必然要求客货列车均需装备ATP,从而使得我国发展ATP的难度明显大于国外。
我国铁路实行以地面信号为主、以机车信号为辅的行车方式,对列车运行实行开环控制,依靠司机严守信号保证行车安全。
因此,习惯于现有机车信号+监控装置的控车模式。
目前,机车普遍安装的通用机车信号未达到主体化的水平。
机车信号基于轨道电路和站内电码化,但轨道电路制式繁多,有的根本不能满足“主体化”的要求,将面临淘汰。
CTCS-3级列控系统的分析与研究20100175 李洪赭摘要:CTCS一级列控系统是我国通过自主创新建成的具有自主知识产权的列车运行控制系统,凝结了我国铁道部、高校、科研院所和骨干企业群策群力的智慧结晶。
通过对国外列车控制系统发展现状及我国列控系统发展历程的介绍,阐述了我国CTCS一级列控系统研究的必要性及技术方向的选择;说明了我国CTCS一级列控系统的技术特点;同时还对CTCS一级列控系统结构及主要设备的功能作了简要介绍,并总结了系统研发的主要创新成果。
关键词:高速铁路;CTCS一级列控系统;控制模式CTCS一级列控系统是中国列车运行控制系统((Chinese Train Control System)简称CTCS)的重要组成部分,基于GSM-R无线通信实现车地信息双向传输,无线闭塞中心(RBC)生成行车许可,轨道电路实现列车占用检查,应答器实现列车定位,满足动车组运营速度350 km /h和最小追踪间隔3 min的要求,并具备CTCS-2级列控系统功能,满族200-250 km /h动车组跨线运行要求。
依托武广、郑西和广深港高速铁路的建设,铁道部成立了C3技术攻关组,组织开展CTCS 3级列控系统的攻关研究工作。
通过自主创新,经过两年多的努力,武广、郑西高速铁路己分别于2009年12月26日和2010年2月6日投入商业运营。
CTCS 3级列控系统的攻关工作在标准规范、车载和RBC等关键设备、CTCS 3级列控系统的测试验证、系统评估、GSM-R系统承载列控信息传输等方面取得了一大批创新成果,初步建成具有完全自主知识产权的CTCS一级列控系统技术标准体系和技术平台。
一、国外列控系统发展概况自1964年日本铁路新干线开始运营时速210 km高速列车以来,高速铁路的高安全、高可靠、高效率、高舒适等特点已引起世界铁路运输界的高度重视,德国、法国、意大利等发达国家也相继结合本国国情发展自己的高速铁路。