热力叶轮机械原理第二章 单级蒸汽透平3
- 格式:ppt
- 大小:5.22 MB
- 文档页数:41
第二章气体动力学和热力学基本方程在叶轮机械中的应用作业21)以两种不同形式的能量方程(热焓形式和机械能形式)解释涡轮中的能量转换。
2)判断压气机转子所受轴向力是向前还是向后,并解释之。
第二章气体动力学和热力学基本方程在叶轮机械中的应用在气体动力学和工程热力学中已介绍过描述气体运动的基本方程:连续方程、能量方程、热力学第一定律方程、动量方程和动量矩方程。
本章重点介绍上述方程在叶轮机械中的应用。
在dt时间内流过面积dA的气体质量dm为:三、热力学第一定律方程第二章气体动力学和热力学基本方程在叶轮机械中的应用五、动量守恒方程→•→•→→→−=++′1221w m w m t p t p P第二章气体动力学和热力学基本方程在叶轮机械中的应用叶片在轴向方向受到的气体作用力为tp p w w m P a a a )()(2121−+−=•叶片在切向方向受到的气体作用力为)(21u u u w w m P −=•第二章气体动力学和热力学基本方程在叶轮机械中的应用六、动量矩方程)(1122r c r c m M u u −=•:单位时间内通过微元流股控制体进口和出口截面的气体质量;和:控制体进口和出口截面气流绝对速度的切向分量;•m u c 1u c 2第二章气体动力学和热力学基本方程在叶轮机械中的应用气体作用在叶轮机上的力矩与叶轮机作用在气体上的力矩大小相等,方向相反,。
在力矩作用下,气体对叶轮机的作功量:M ′M M M −=′M ′ℓu ´θM ′==dtM ω′= dtr c r c m u u ω)(1122−−•= m()Δ−1122r c r c u u −ω第二章气体动力学和热力学基本方程在叶轮机械中的应用单位质量气体对叶轮机作功为-ℓu ´/ = ==′u L m Δω)(1112r c r c u u −−)(1122u c u c u u −−叶轮机对单位质量气体所作轮缘功L u 为)(1122u c u c L L u u u u −=′−=。
河北工业大学蒸汽透平复习整理教材第一章、工业汽轮机的概述1.汽轮机按照热力过程分类。
①凝汽式工业汽轮机②抽气凝汽式工业汽轮机③背压式工业汽轮机④抽汽背压式工业汽轮机2.电站汽轮机的型号意义①第一部分由汉语拼音字母表示汽轮机的形式,由数字表示汽轮机的容量,即额定功率(MW )②第二部分信息用几组斜线分割的数字表示新蒸汽参数、再热蒸汽参数、供热蒸汽参数等,功率单位为MW ,蒸汽参数单位为MPa ,温度参数单位为℃。
③第三部分为厂家的设计序号。
N 表示凝汽式 B 表示背压式 C 表示一次调整抽气式CC 表示二次调整抽气式 CB 表示抽汽背压式 H 表示船用 Y 表示移动式意义:汽轮机的型号一般包含了汽轮机的形式,容量、新蒸汽参数和再热蒸汽参数信息,从汽轮机的型号可以判断出汽轮机的主要特征。
第二章、级的工作原理1.级的定义,级内流动的基本假设由一系列动叶栅和一系列静叶栅组成的一个能量转换的基本单元,称为汽轮机的级假设:①蒸汽是一元流动②蒸汽在流道中是稳定流动的③流动是绝热的④流动是无粘性的⑤流动气体是理想气体2.喷嘴、纯冲动级与反动级动叶流道及叶片形状(分类、填空)汽轮机的喷嘴叶栅是直接固定在汽缸上或固定在隔板上再装入气缸内气嘴分为:减缩形喷嘴、渐扩形喷嘴、缩放型喷嘴反动级叶片流道变窄且不对称纯冲动级叶片不变窄且对称3.喷嘴的速度系数定义及其影响因素。
实际速度与理想速度的比值称为喷嘴的速度系数。
喷嘴的高度、表面光洁度、汽道的形状、蒸汽的压力及蒸汽的状态与品质等都影响ψ值的大小。
4.部分进气度的定义(为了提高喷嘴高度,减小损失)布置喷嘴的弧段与整个周长的比值,称为部分进气度。
5.喷嘴截面积与蒸汽参数的关系①当气流速度小于音速时,喷嘴截面积随蒸汽的膨胀而减。
小。
②当气流速度小于音速时,喷嘴截面积随蒸汽的膨胀而。
增大③当气流速度等于音速时,喷嘴截面积有最小值。
6.喷嘴在斜切部分的膨胀①当c nεε>时,蒸汽在喷嘴的最小截面ab 上达到与出口压力相等的压力1p ,气流在斜切部分abc 无附加膨胀,喷嘴出口气流c c c <1,汽射角g 11αα=②当c n εε=时,最小截面ab 上达到临界压力,喷嘴出口气流速度c c c =1,汽射角g 11αα=③当c nεε<时,最小截面ab 上达到临界压力c p ,在斜切部分蒸汽由临界压力继续膨胀至出口压力1p ,气流也由临界速度c c 增加至超临界流速1c ,气流的方向偏转喷嘴中心线,射汽角δαα+=g 117.级的热流过程图绘制与标注(试卷已画出,求标注线段意义、代数式)①211200*2121C h C h h +=+=,滞止焓。
透平原理透平[turbine] 将流体介质中蕴有的能量转换成机械功的机器。
又称涡轮、涡轮机。
透平是英文turbine的音译,源于拉丁文turbo一词,意为旋转物体。
透平的工作条件和所用介质不同,因而其结构型式多种多样,但基本工作原理相似。
透平最主要的部件是旋转元件(转子或称叶轮),被安装在透平轴上,具有沿圆周均匀排列的叶片。
流体所具有的能量在流动中经过喷管时转换成动能,流过转子时流体冲击叶片,推动转子转动,从而驱动透平轴旋转。
透平轴直接或经传动机构带动其他机械,输出机械功。
透平按所用的流体介质不同可分为水轮机(用作水电站的动力源)、汽轮机(用于火力发电厂、船舶推进等)、燃气透平(用作喷气式飞机的推进动力、舰船动力,以及发电厂、尖峰负荷用小型电站等)和空气透平(只能用作微小动力)等。
编辑本段简介水轮机--水从高水位水库沿通道流向处于低水位的水轮机的过程中,高水位水的势能变成动能,推动水轮机旋转。
流过水轮机的尾水沿水道流去。
现代水轮机的唯一用途是作为水电站的动力源,带动发电机发电。
汽轮机--它的介质是蒸汽,具有热能。
蒸汽来自燃用矿物燃料的锅炉,或是来自核动力装置加热的蒸汽发生器。
它们产生的高温高压蒸汽以高速度经喷管送到蒸汽透平,驱动转子旋转,输出动力。
蒸汽流速很高,透平转子尺寸较小,所以转速可达10000转/分。
汽轮机主要用于火力发电厂,驱动发电机发电;也用于远洋大型船舶和潜水艇作为主机驱动螺旋桨,推进船舶。
燃气透平--它与压气机、燃烧室成为燃气轮机装置的三大主要部件。
空气供入压气机,压缩成较高压力和温度的压缩空气,流入燃烧室与燃料混合、燃烧,形成高温、高压、高速的燃气流,流入燃气透平并推动燃气透平旋转,经透平轴输出机械功。
燃气透平转速高达每分钟数万转。
现代燃气透平应用最广泛的是作为喷气式飞机的推进动力,有的用作舰船动力、发电厂、尖峰负荷用小型电站,也作为远距离输送天然气的气泵的动力。
用作机车、汽车动力的燃气透平还在研制试验中。
蒸汽透平机蒸汽透平机一、工艺概述1、编制依据《火电工程调整试运质量检验及评定标准》《HG/32/20型汽轮机使用与维护说明书》《3BCL458离心压缩机使用说明书》《化学工业大、中型装置试车工作规范》(HGJ231-91)2、生产工艺原理汽轮机工艺原理来自8.83Mpa蒸汽管网的蒸汽,通过调速阀进入汽轮机,依次高速流过一系列环形配置的喷嘴(静叶栅)和动叶栅而膨胀做功,推动汽轮机转子旋转(将蒸汽的内能转换成机械能),汽轮机带动氮气压缩机旋转。
高压蒸汽在汽轮机内主要进行两次能量的转化,使汽轮机对外作功。
第一次是将热能转化为动能:即中压蒸汽经过喷嘴(静叶栅)后压力降低、产生高速汽流而实现的。
第二次是将动能转化为机械能:即高速蒸汽的冲击力施加给动叶片使转子高速旋转,传递力矩,输出机械功而实现的。
氮气压缩机工作原理在蒸汽透平的驱动下,离心式氮气压缩机的叶轮随轴高速旋转,叶片间的气体也随叶轮旋转获得离心力,高速的气体被甩到叶轮外的扩压器中去,使气体的流动速度能转化为压力能,经过扩压器后的气体再经弯道、回流器进入下一级继续压缩,经过8级压缩,将氮气提到液氮洗所需要的压力后送往液氮洗工段。
压力提高的同时,介质气体温度也要升高,设置段间冷却器来降低压缩气体的温度,减少压缩功。
3、生产工艺流程工艺气系统来自空分的低压氮气(压力0.475MPaG、温度35℃、流量33000Nm3/h)进氮气压缩机(C0103)一段,氮气压缩机的型号是3BCL458,经一段压缩,压力提高到0.952MPaG、温度120.3℃。
经一段出口冷却器将温度降40℃后进二段压缩,经二段压缩压力提高到2.513MPaG、温度183℃。
经二段出口冷却器将温度降为40℃后进三段压缩。
经三段压缩压力提高到6.189MPaG、温度187.4℃,进三段出口冷却器降温度到40℃后,通过出口止逆阀、出口界区阀送往液氮洗工段。
蒸汽系统来自高压蒸汽管网的蒸汽(8.83MPaG,535℃),经手动闸阀后分两路经对向布置的双主汽阀通过调速阀进入透平内膨胀作功,做功后的蒸汽(4.0MPaG,410℃)经排气止逆阀、排气手动闸阀后排入中压蒸汽管网。
蒸汽透平工作原理蒸汽透平工作原理1. 工作原理蒸汽透平(或称汽轮机)是用蒸汽做功的旋转式原动机,它将蒸汽的热能转变成透平转子旋转的机械能,这一转变过程需要经过两次能量转换,即蒸汽通过透平喷嘴(静叶片)时,将蒸汽的热能转换成蒸汽高速流动的动能,然后高速气流通过工作叶片时,将蒸汽的动能转换成透平转子旋转的机械能。
蒸汽透平按工作原理分为两类:a. 冲动式b. 反动式冲动式透平的蒸汽热能转变成动能的过程,仅在喷嘴中进行,而工作叶片只是把蒸汽的动能转换成机械能,即蒸汽在喷嘴中膨胀,速度增大,温度压力降低,而在叶片中仅将其动能部分转变为机械能(汽体流速降低),而由于叶片沿流动方向的间槽道截面不变,因而蒸汽不再膨胀,压力也不再降低;而在反动式透平中,蒸汽在静叶片中膨胀,压力温度均下降,流速增大,然后进入动叶片(工作叶片),由于动叶片沿流动方向的间槽道截面形状与静叶片间槽道截面变化相同,所以蒸汽在动叶片中继续膨胀,压力也要降低,由于汽流沿着动叶片内弧流动时方向是改变的,因此,叶片既受到冲击力的作用,同时又受到蒸汽在动叶片中膨胀,高速喷离动叶片产生反动力的作用,冲动力和反动力的合力就是动叶片所承受的力,,这就是说,在反动式透平中,蒸汽热能转变成动能的过程,不仅在静叶片中进行,也在动叶片中进行。
按热力过程分,透平可分为:a. 背压式b. 凝汽式c. 抽汽凝汽式:背压式透平——在透平中工作后的蒸汽,在较高压力(大于0.1MPa)下排出,供作它用;凝汽式透平-----KT2501、KT1503等属于凝汽式透平――蒸汽在透平中作功后全部排入凝汽器中冷凝;抽汽凝汽式-----KT1501B属于抽汽凝汽式透平――将在透平高压缸作过功的蒸汽抽出一部分供作它用,而另一部分蒸汽在透平低压缸继续作功后全部排入凝汽器中冷凝。
只有一个叶轮的蒸汽透平称为单级透平,这种透平功率小、转速高、效率低,一般用于驱动小型油泵或水泵;为了提高能量转换的效率,透平往往不是仅有一只叶轮,而是让蒸汽依次通过几个叶轮(一个叶轮为一级),逐级降低其压力、温度,蒸汽每经过一次热能——动能——机械能的转换,称为工作的一个级,级与级之间用隔板隔开,第一级出来的蒸汽进入第二级,第一级的喷嘴装在汽缸的隔板上,蒸汽经过第二级喷嘴,再次降压、降温、升速,然后去推动第二个叶轮,依次类推,这种透平称为多级透平,多级透平的喷嘴和动叶片是相间排列的,大功率透平将几级叶轮装在一个汽缸内,根据蒸汽工作压力分为高、中、低压缸,有时一个缸还可分成几段,每段都有几个叶轮。